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A TOPOLOGICAL APPROACH TO STABILITY OF PULSES 
BIFURCATING FROM AN INCLINATION-FLIP HOMOCLINIC 

ORBIT* 

SHUNSAKU Nllt 

Abstract. The linear stability problem of multiple pulse solutions of a parabolic system is 
considered. A topological approach is applied to the eigenvalue problem. Pulses which bifurcate from 
an inclination-flip homoclinic orbit are treated. A relation between distribution of the eigenvalues 
and geometry of the homoclinic orbits is proven. In the proof of the theorem, a topological constraint 
for the distribution of the eigenvalues is discovered and made clear. 

1. Introduction. The subject of this paper is the linearized eigenvalue prob- 
lem associated with the stability problem of pulse solutions of a parabolic system. 
When a pulse solution satisfies certain degeneracy conditions, suitable perturbation 
generates a solution, called n-pulse, which is approximately an alignment of n copies 
of the original pulse solution. In this article, a relation between the linearized eigen- 
value problem of the system along these solutions and the geometric structure of the 
bifurcation shall be investigated. 

First, the notion of a pulse solution is defined. Consider the following type of 
parabolic system: 

(i.i) Ut = vuxx + /(to 

where t > 0, x G E, U 6 Rl and V = diag(di,--- ,d/) with d* > 0. A system of 
this type is called a system of reaction diffusion equations if d* > 0 for all i, and is 
a system of nerve axon equations if di > 0 and d* = 0 for i > 2. Throughout this 
paper, the system(l.l) is assumed to have the zero solution u(x,t) = 0 as a stable 
steady state solution. 

A pulse solution—or, more generally, a traveling wave solution—is a solution 
which decays to zero as x —> ±oo and spatially translates as time evolves, preserving 
its profile. In other words, £ = x 4- ct and (1.1) in (£>£) coordinates becomes: 

(1.2) Ut = VUtt-cUz + f(U) 

Then a pulse solution U(x,t) of (1.1) is a stationary solution U(x,t) = J7(0 0^ (1-2) 
which satisfies   lim   [/(£) = 0. That is, if the equation: 

£-►±00 

(1.3) VUtt-cUs + f(U) = 0 

possesses a solution [/(£) with that condition, then U(x H- ct) in (x,t) coordinates 
becomes a pulse solution of the system (1.1). 

The problem above is regarded as the existence problem of a homoclinic solution 
in the following manner.   The second order ordinary differential equation (1.3) is 
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rewritten as a first order system: 

'U{    =V1 

(1.4) 

U'k    =Vk 

U'k+1=\h+x(U) 

V{    =^{cV1-f1(U)} 

(' 
& 

n = ^{cVk-fk(U)} 

where di, • • • , dk ^ 0 and dk+i, • 
system is simply written as 

,dn = 0, andfiU) = (MU),. Ji(U)).  This 

u' = X(u) 

where u = (uu... ,ul+k) = {Ull... ,Ut,Vu... ,Vk). Then u=(U1,... ,UhU{,... ,C^) 
is a homoclinic solution to the origin of (1.4) if and only if [/ = (J7i,... , Ui) is a 
solution of (1.3) which converges to zero as f -> ±00. 

If a homoclinic orbit satisfies certain degeneracy conditions, the system (1.4) un- 
dergoes bifurcation generating n-homoclinic solutions which correspond to n-pulse 
solutions. More precisely, if (1.4) has a homoclinic solution /io(£) with certain prop- 
erties corresponding to a pulse solution E/o(£), then a system suitably perturbed from 
(1.4) possesses a homoclinic solution hn(^) which is near an alignment of n copies of 
/io(£); that is, the homoclinic orbit is 

MO - MO + M£ + &) + ••• + M£ + &) 
with 0 <^ £1 <C • • • <. £n- This /in(£) naturally corresponds to a pulse solution Un(€) 
of a perturbation of (1.1) which is approximated by an alignment of n-copies of Uo(0: 

un(0 ~ u0(0 + Uotf + 6) + • • • + Uo(Z + tn) 

There are two cases for this type of bifurcation: 
C: the linearization of (1.4) at the origin has complex principal eigenvalues or 
R: it has only real principal eigenvalues. 

Study of the first case goes back to Evans, Fenichel and Feroe [7], and of the second 
case to Yanagida [20].  [20] inspired several authors to do systematic studies of this 
problem. See [10] and references therein for more details. 

The bifurcation structure under consideration in this article is the bifurcation 
from what is called an inclination-flip homoclinic orbit, which was analyzed by Hom- 
burg, Kokubu and Krupa [9]. The system they treated is three-dimensional, and 
the equilibrium possesses a two-dimensional unstable manifold and a one-dimensional 
stable manifold. The system (1.4) falls into this category when / = 2, k = 1 and c < 0 
(Evans [5]), although no concrete example having an inclination-flip homoclinic orbit 
has been studied until now. 

The main interest here is in the stability of these pulses as solution of (1.1). 
Because it is well known that linear stability of a pulse implies non-linear stability 
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of it (Evans [4] and [6], Henry [8] e.t.c), the eigenvalue problem associated with the 
linearization along each pulse is investigated: 

(1.5) LP := VPK - cPs + Df (U(0) P = ^P 

Proving the stability of a pulse amounts to proving that there is some /? < 0 so that 
the essential spectrum of L is contained in the left half plane {A E C| Re < /?} and 
that there is no eigenvalue with non-negative real part except for a simple eigenvalue 
at the origin—L has zero as an eigenvalue which corresponds to the spatial translation 
of the pulse. Notice that the first order system corresponding to (1.5) is of the form 
of linear perturbation to the linearization of (1.4) along the homoclinic orbit: 

P{   = Qi 

(1.6) 

PL   =Qk 
P'k+1 = \Dfk+1{U)P-\KPk+l 

PI    =\DMU)P-±APi 
Qi    =^{cgi-I>/i(£/)P} + ^AP1 

.Qi   =-k{cQk-DMU)P} + ±.\pk 

where P — (Pi,... , Pi). This system is also simply written as 

T/ = [D£(E7(0)+AB]V, 

where v = (Pi,... ,P;,Qi,... ,Qk) and B = diag ^0,... ,0, -\,... , -\, ^,... , ~J. 
To tackle the the problem, the following topological approach is employed in this 

paper. 
Let us consider the case where / = 1 and V — 1: 

(1.7) Vt = Uxx + f(U) 

and assume that this equation has a travelling wave U(£). Then the linearized eigen- 
value problem associated with U(£) becomes 

(1.8) 

or 

P' = Q 
Q, = cQ-I>/(«(0)i, + AP 

p' = A(U(0;\)p 

where p = (P,Q) and 

MU(0;X) = (x_D
0
fm))     I )• 



208 S. Nil 

If zero is a stable steady state solution and U(£) approaches to it as £ —> ±00 i.e. 
lim   U(€) = 0, then 

£—>±oo 

Ao(A):=A(0)A)=(AJ/(0)        I 

has one stable eigenvalue and one unstable one if ReX > (3 for some /? < 0. 
Prom now on, let us restrict our attention to real eigenvalues, that is, /? < A is 

real and (1.8) is regarded as a system on M2.   Then (1.8) induces an equation on 

(1.9) p' = Y(U(0,p;\). 

Let eu be an unstable eigenvector associated with the unstable eigenvalue of AQ(\) and 
es be a stable one. Then (1.9) has a solution ]3(£; A) which satisfies   lim  p(£; A) = eu 

£->-±oo 

if A is not an eigenvalue, where eu or es are the points on MP1 corresponding to eu or 

Now an index which detects real eigenvalues of the eigenvalue problem (1.8) shall 
be defined. (c/.[ll]) 

Let us define a map g: S1 £ d([Xu A2] x [-1,1]) -+ IP1 as 

(1.10) 9(\r) = { 

eu(X) AG[Ai,A2], r = ±1 

p(log([^);A^    A = A,    (i = l,2),    rG(-l,l) 

for 0 < Ai < A2 which are not eigenvalues.   Then g is continuous and induces an 
homomorphism g*: #1 (0([Ai, A2] x [-1,1])) -> Hx (IP1). 

If there is no eigenvalue in the interval [Ai, A2], then the isomorphism g* is triv- 
ial. This is because in such case g can be naturally extended to a map defined on 
whole [Ai,A2] x [—1,1] and thus g is homotopic to a map into one point. More 
over if g*(l) = n then there are at least n eigenvalues in the interval [Ai, A2]. Here 
#1 (<9([Ai, A2] x [-1,1])) and #1 (IP1) are identified with Z. (See Fig 1.1) 

The stability problem of n-pulses was first studied in Yanagida and Maginu's 
pioneering work [21]. They proved stability and instability of 2-pulses which are 
generated by the bifurcation structure treated in [7]. Later this result was generalized 
by Alexander and Jones [2] and [3] to more general systems classified under case 
C, although the results were restricted to 2- and 3-pulses because of methodological 
reasons. 

Another breakthrough was made by Sandstede [16]. (See also [17], [18] and [22]). 
He extended what is called Lin's method, which was originally developed to study ho- 
moclinic and heteroclinic bifurcations [15], to treat the stability problem for traveling 
waves generated by the bifurcations. This is a purely analytic tool which reduces the 
eigenvalue problem for the linear operator to that of a matrix, and the information 
of the system reduces to the sign and the multitude of coefficients. This approach 
was so successful that the stability problem for all n-pulses was solved both for the 
bifurcation treated in [7] ([16]) and for the case R with the weakest degeneracy ([14]). 

One problem yet remains: the topological constraint of the eigenvalue problem 
remains unclear even after stability is obtained by Lin's method. In [21], [2] and [3], 
the geometry of the bifurcation plays an essential role to determine stability of the 
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RPi   < 

A=Ai 

X: an eigenvalue 

^=^2 

FIG. 1.1. 

pulses. At the same time Alexander, Gardner and Jones [1] established a topological 
invariant in the eigenvalue problem. Later, Nii [13] found another topological con- 
straint, which is similar to what is explained above, in the eigenvalue problem for 
AT-front solutions generated by a bifurcation from a doubly twisted heteroclinic loop. 
This approach contrasts well with Lin's method in [17] which do not tell anything 
about the topological constraint of the problem. 

The purpose of this paper is to reveal that there is a similar topological constraint 
in the distribution of the eigenvalues associated with the n-pulses which is generated 
by a bifurcation from what is called Inclination-flip homoclinic orbit. Although the 
result only covers a part of [14], the way in which it is proven provides a good insight 
into the problem which cannot be obtained from Lin's method. 

The following is the main result of this paper—a precise statement of the theorem 
shall be given in section 3. 

In [9], it was proven that under certain conditions, a suitable perturbation of the 
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system creates a suspension of a horseshoe. A periodic symbolic sequence of -M's and 
-I's is assigned to each periodic orbit in this horseshoe. If another perturbation is 
applied to this system, the periodic orbit disappears in an infinite period bifurcation, 
generating a homo clinic orbit. 

Let a = ((To,"- ,crn-i)00 be such a periodic symbolic sequence, and let ^(t) be 
an n-homoclinic orbit which is generated from the periodic orbit. Then, a number 
N(a) which is associated with the homoclinic orbit ^(t) is defined as follows. 

DEFINITION. 

n-2 
N(a) := 1 + ^ fl"! - cr2 • • • (Tk + 

Then, the following theorem holds. 

THEOREM. The eigenvalue problem (1.6) for (U,V) = ha- has at least N(a) 
negative (positive) eigenvalues if the perturbation is sufficiently small. 

This implies that there are stable pulses. 

COROLLARY. In the case of outward twist, the multiple pulse solutions corre- 
sponding to symbolic sequences (—1, +1 hi) (all symbols are +1 except for the first 
one) are stable for sufficiently small perturbation if the original 1-pulse is stable. 

This paper is organized as follows. In section 2 a review of Homburg, Kokubu 
and Krupa's result [9] and other necessary information shall be introduced. Section 3 
is devoted to a precise statement of the theorem following a geometric interpretation 
of the problem. Proof of the theorem appears in section 4 and 5; in section 4 a 
topological index shall be defined, and in section 5 the index is calculated. 

2. n-homoclinic bifurcation from an inclination-flip homoclinic orbit. 
In this section, the result of Homburg, Kokubu and Krupa [9] concerning n-homoclinic 
bifurcation from an inclination-flip homoclinic orbit shall be reviewed. 

2.1. Inclination-flip homoclinic orbit. To begin with, the notion of an 
inclination-flip homoclinic orbit and basic assumptions are introduced. 

The subject here is a system of ordinary differential equation defined on M3: 

(2.1) u' = Xo(u) 

satisfying the following conditions. 
1. The origin O is a hyperbolic equilibrium of (2.1) and the linearization DXo(0) 

of Xo around O has real eigenvalues As, Xu, \uu with As < 0 < \u < Xuu. 
2. (2.1) has a homoclinic orbit r to O i.e.   T = {ho(t)\t G E} and ho(t) is a 

non-trivial solution of (2.1) which satisfies   lim   ho(t) = O. 
t—*zLoo 

Condition (1) implies that the system (2.1) possesses an one-dimensional stable man- 
ifold Ws(0) and a two-dimensional unstable manifold Wu(0) at O. Furthermore, 
there exists a two-dimensional invariant manifold Wes(0), called extended stable 
manifold, the tangent space of which at O is spanned by the eigenvectors associated 
with eigenvalues Xs and Xu. 

The definition of an inclination-flip homoclinic orbit is as follows. 

DEFINITION 2.1. A homoclinic orbit T is called an inclination-flip homoclinic 
orbit provided that 
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FIG. 2.1. 

CT: Wu(0) and Wes(0) are tangent along T (see Fig 2.1), 
NR: Xu ± \\s\ and 
PR:0^   lim   l/ioWe"AMt| < +oo and 0 ^   lim   |/io(t)e-A^| <+oo. 

£-> —OO t-f+OO 

In [9], the problem is treated under additional conditions on the eigenvalues and 
the tangency of WU(P) and Wes(0): 

EV: \uu > 2XU and -As > 2XU] 
QT: unstable manifold  Wu(0)   and  extended  stable  manifold  Wes(0)  have 

quadratic tangency along homoclinic orbit F. 

In order to investigate the bifurcation from an inclination-flip homoclinic orbit, 
a smooth family of ordinary differential equations on on E3 which unfolds %Q is 
considered: 

(2.2) u' = £M(tO 

and a return map along the homoclinic orbit and its perturbation by JJ, is analyzed. 

The return map /^ is given as the composition of two successive mappings F and G 
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between two cross sections Ei := {x = 1, \y\, \z\ < 1} and EQ := {|a:|, \y\ < 1, z = 1}: 

FiEi^Eo: (l,2/,z)  ^ (2:-^,^-^i
7l) 

G^Eo-^En^y,!)^ (l,G(X,y;/x)) 

and 

/M:Ei->Ei:    (y,z)    .->     (GMoF)(j/,z) 

Here, the coordinates near origin is denoted by (x,y,z) and the system (2.2) is as- 
sumed to be linearized into the following form through a C3-coordinate change in a 
neighborhood A/" of the cube {|a:|, \y\, \z\ < 1}. 

(2-3) Xll = Kx°- + XTy°. + X>°. 

This linearization is possible under a generic non-resonance condition. 
The perturbation parameter is also suitably chosen in the following manner. Cor- 

responding to the existence of the homoclinic orbits T and the conditions (CT) and 
(QT), the map G(X,Y;IJL) = (g1(X,Y]fi),g

2(X,Y]fi)) satisfies 

G(o,oio) = (o,o),^M = „,?!£^)?,o. 
The second equality together with the fact that G is a diffeomorphism implies 

(2.4) ^f^M^O 

and by implicit function theorem, there exists Y = F*(^) so that p2(0,K»c(//);/x) = 0. 
Then, for a generic two parameter family X^ unfolding XQ, a new parameter v can be 
introduced through the relation 

(2.5) ^(^2):= [g (0,7 (/,);/,), ^y^.^) 

where gy stands for |^-. 
As the object of interest is the dynamics of the return map, a smaller rectangle 

Rp := [0,/?] x [-1, +1] C So, its preimage Cp := F~1(RP) C Si under F and its image 
Pp := Gv(Rp) C Si under Gy is put into focus. For properly chosen p > 0, any orbit 
which stays in a neighborhood of the heteroclinic orbit F passes through these sets. 
Note that Cp is a cusp-shaped region and the boundary of which consists of two side 
curves 

b± := {(±z^,z) \0<z<tz= p-^} 

and top segment 

t:={(p-^V,tx)\  -1 <!/<!} 

On the other hand, Pp is a parabola-like region, and if one of the boundary po := 
{G^O, r, 1) |  - 1 < Y < 1} C Pp is expressed as 



A TOPOLOGICAL APPROACH TO STABILITY OF PULSES 213 

FIG. 2.2. 

by eliminating Y from 

then 

hold. 

y = g1{0,Y',v)    and   z = g2(0,Y;v) 

<p(0; u) = 1/1  and  ^-<p(0; i/) = 1/2 

The mutual position of the cusp Cp and the parabola Fp at v — 0 is determined 

by the sign of 0x(O,O;O)0^y(O,O;O), where g]^ and ^y stand for |^ and ^-. In 
fact, the second derivative of ip(z', 0) at z = 0 is expressed as 

m   '  j     {^(0,0;0)P d*2 

and if p3i:(0> 0; ^)9YY (0> 0; 0) > 0, then the unstable manifold Wu(0) is on the outside 
boundary of Pp (inward twist case), and if gx(0,0; 0)<7yy (0,0; 0) < 0, then the unsta- 
ble manifold is on the inside boundary of Pp (outward twist case). In what follows, 
<7yy(0,0;0) is assumed to be positive. (See Fig 2.2.) 
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2.2. Bifurcation of ra-homoclinic orbits. Next, a part of the results of Hom- 
burg et al concerning existence of n-homoclinic orbits and a brief sketch of the corre- 
spondence between symbolic sequences and the orbits are summarized. 

The followings is the relevant part of the theorem in Homburg Kokubu and 
Krupa [9]. 

PROPOSITION 2.1. Consider a two parameter family of equations u' = Xu{u) 
having an inclination-flip bifurcation point at v = 0 and satisfying the assumptions in 
the previous section. 

For the case of inward twist, there exist functions v^ (1/2) < 0 < v^fa), a neigh- 
borhood U of F and e > 0 such that for each — e < V2 < 0 the following statements 
hold. 

(i) When 0 < vi < v*"(z/2) the non-wandering set in U is the union of the 
singularity at O and a suspended horseshoe, namely the Poincare map along 
F possesses a horseshoe, 

(ii) As v\ decreases from 0 to 1^1(^2), all the orbits of the suspended horseshoe 
disappear in a bifurcation connecting to the origin O. Especially, periodic 
orbits disappear in infinite period bifurcations generating homoclinic orbits. 

(Hi) There exists a symbolic representation of periodic orbits and homoclinic orbits 
which bifurcate from the periodic orbits. 

For the case of outward twist, there exist functions 0 < ^(^2)  < vffa), a 
neighborhood U ofT ande > 0 such that for each —£<U2<0 the following statements 
hold. 

(i)  When ^(^2) < ^1 < ^(^2) the non-wandering set in U is the union of the 
singularity at O and a suspended horseshoe, 

(ii) As 1/1 decreases from ^(^2) to 0, all the orbits of the suspended horseshoe 
disappear in a bifurcation connecting to the origin O.   Especially, periodic 
orbits disappear in infinite period bifurcations generating homoclinic orbits. 

(Hi) There exists a symbolic representation of periodic orbits and homoclinic orbits 
which bifurcate from the periodic orbits. 

Above result is proven by constructing an invariant foliation and reducing anal- 
ysis of the return map /^ to analysis of a multi-valued one dimensional map. This 
reduction and the correspondence between periodic or homoclinic orbits and sym- 
bolic sequences are explained in the sequel. For this purpose, the local map F is 
decomposed into two parts: 

S*:Ei->Erf:(l,j/,z)  ■->   faS^y, S^z) 

F5: SJ^EQ: (<J,y,*) »-► {Sz'^,yz'^, 1) 

where E^ := {x = 5, \y\, \z\ < 1}, and the return map from Cp,s := F^1(RP) to itself 
is put under consideration. This map is also denoted as /„: Cpj -> Cp,5- 

First, existence of invariant foliation is stated below. 

PROPOSITION 2.2. Let R and D be constants satisfying 

n     n         xs            r      A5            2A%      „      „ 
2<R< -—   max{- —} < D < R 

and a := *""*"", and V := {-e < 2/2 < 0, H < M2"1"*} for some 0 < K < R-2 
and s > 0, where e depends on K. {The dependence is specified in [9].) 
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C5,p 

:fr(C5,p) 

FIG. 2.3. 

Then, for p = l^l^)^ = l^l-0 an^ v € V there exists a foliation F™ on the cusp 
Cpj satisfying the following properties. (See Fig. 2.3.) 

(A) Tu is invariant for f in the following sense.   If I is a leaf of F11 then the 
connected components of f(l) fl Cpj are leaves of Tu. 

(B) Tu depends C1+Q! -smoothly on the base points and on the parameter vi. The 
dependence on v^ is continuous. The leaves of Tu are at least C2 smooth. 

(C) f contracts distances between the leaves of Tu and expands distances along 
the leaves of Tu. More precisely there exists ry > 1 such that 

1- if f(h) and fih) are in the same connected component of f(Cpj)C\Cp,8 
then dis(/(Ii),/(l2)) < rT1 • disft, fc), 

2. ifx.yel and f(x),f(y) eCpj, then dis(f (x), f (y)) > rj • dis(x,y). 

With this foliation, an one-dimensional multi-valued map TIV is defined as follows. 
Let I := (0,^] be the intersecting part of the line {y = 0} C E^ with the cusp Cpj, 

where t^ := \i'2\(<D~R^Tr, and r be the projection of the leaves of J7** onto /. Then 
the multi-valued map TIV is defined as 

TTjy: I -± I: z i-> r o fu o T-1
 (z) 

This map is the union of two C1+Q; maps ^(z) and rj^(z) satisfying (;v{z) > r)u(z) 
where both are defined - in fact, the domain of 77^ is a subinterval Kv of /. Although 
7iv is defined on (0,£j, it is extended to z = 0 by requiring that 7r„(0) = lim ir^fz). 

z—>0 
Note that each trajectory of TIV remaining in I corresponds to a unique trajectory of 
fv\Cp,8 an(i ©ach trajectory of fu which remains in Cpj for all positive time corresponds 
to a trajectory of TT^. 

This iTv is characterized by the next lemma. 
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FIG. 2.4. 

Vi>0 

V-j^O 

V^O 

LEMMA 2.1. In the case of inward twist, 

1. ifiyi>0 then Kv = [0, U] and rjv(0) > 0, 
2. ifui=0 then Kv = [0, U] and ^(0) = 0, 
3. if vi < 0 then Kv = [a^,^] m^/i au = ^~1(0) > 0, and Kv shrinks as vi 

decreases.   Moreover, there exists ^["(^2) < 0 so that if vi < ^(^2) then 

tKz) < 0 and rfv{z) > 0 holds for 1/1 > i/f (1/2). ^e F^. jg.^J 

/n the case of outward twist, there exists 1/1(1/2) > 0 so that 

1. if vi > 1^1(^2) then Ku = [0,^] and ^(U) > 0, 
2. if vi — Vifa) then Kv = [0, tv] and ^(U) = 0, 
3. if vi < 1^1(1^2) then Kv = [0,6^] with bu := r/"1^) and Ku shrinks as Vi 

decreases. Moreover, if vi < 0 then Ku = 0. 

gv(z) > 0 and TI'U(Z) < 0 holds for 1/1 > 0. (^ee F^.^J 
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V1>V{ 

v1=v1 

V1<V1' 

FIG. 2.5. 

Following [9], the inward twist case is focused on for a moment and later outward 
twist case is mentioned. 

As TT"
1
 is single valued map well defined on the union of two closed subinterval 

of /, symbolic dynamics for TT"
1
 can be defined in the similar manner for quadratic 

map. For each x G / with the property that TT"-
7
 (X) G / for all j G N, the sequence 

S(x) = (5o(x), Si(x)," -) of the letters -1 and +1 are defined as 

Sjix) = -i   ifiT^(x)eUi) 
+1    if^^)G^(7) 

If a = (CTQ, cri, • • •) and r = (TO, TI, • • •) are such symbols, then a -< r provided that 
CTJ = Ti for 0 < i < j — 1 and 

CTQ • 0"i • • • (Tj-i = +1,     CTJ = +1 and TJ = —1 

i CJO • ai • • • Gj-i = —1,     (Tj = —1 and TJ = +1 
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Note that each periodic orbit of TT"
1
 of period n has n different symbolic sequences 

corresponding to the n different initial points. The minimal sequence in them is 
referred to as the sequence of the periodic orbit. 

The n-homoclinic orbits, which are of interest in this paper, are generated in the 
process of disappearance of these periodic orbits. More precisely, when ^ is fixed at 
a small value and vi is decreased from 0, the leftmost point in each periodic orbit 
approaches 0, and the orbit disappears when it passes 0. A periodic orbit of TIV 

which involves 0 in its orbit corresponds to a homoclinic orbit of the vector field, and 
disappearance of a periodic orbit corresponds to disappearance of a periodic orbit of 
vector field through an infinite period bifurcation generating a homoclinic orbit. 

The case of outward twist is reduced to inward twist case. This is carried out 
through conjugacy map h: [0, bu] —> [0,1] which is the composition of reflection in the 
midpoint and rescaling, i.e. TT^ := h o TIV O /I

-1
 satisfies conditions required for inward 

twist case. Consequently, the same as above holds. In this case, however, the role of 
— 1 and +1 is interchanged because of the reflection, moreover, a symbolic sequence 
0 = (01 > * *' jfln-i^o)00 for 7ru corresponds to the sequence cr = (ao,cri, — - ^n-i)00 

for TIV. 

3. The theorem. The main theorem shall be stated in this section. Namely, 
distribution of the real eigenvalues of the linear stability problem associated with each 
n-pulse is treated. 

3.1. The eigenvalue problem. First, the setting of the problem is introduced. 
Consider the equation of traveling wave on E3: 

(3.1) u' = X(u]u) ueR2 

and assume that the system satisfies the conditions in the previous section. Assume 
also that the local coordinates (x,y,z) near the origin is chosen so that (2.3) holds 
and the parameter 1/ is taken as in (2.5) and belongs to V. In the sequel, a condition 
stronger than (EV) is assumed because of technical reasons: 

EV: Xuu > SXU and -Xs > 2XU. 
Under this situation, the equilibrium u = O corresponds to a steady state solution and 
the homoclinic orbit T to a single pulse solution, moreover existence of n-homoclinic 
orbits is equivalent to existence of n-pulse solutions. 

Let u = h{t) be a homoclinic solution to O—either the original one-homoclinic 
solution or one of the bifurcating n-homoclinic solutions—then linearized eigenvalue 
problem along h(t) is written in the following form. 

(3.2) v' = [DX(h(ty, 1/) + AB] v 

where B is some constant matrix. A non-trivial solution of this equation is an eigen- 
function if and only if it is bounded, and the A at which such a solution exists is an 
eigenvalue. 

REMARK 3.1. For general eigenvalue problem, A is in some domain of complex 
plane. However, it is assumed to be real throughout this paper as the geometric 
relation of (3.1) and (3.2) is the matter of interest. 

3.2. Geometric interpretation of the eigenvalue problem. Before the re- 
sult is stated, geometric interpretation of the eigenvalue problem needs to be ex- 
plained. 
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In order to do this, an additional coordinate change is applied to (3.2). Due to 
the assumption (2.3), the eigenvalue problem is written in the following form when 
h(t) is in Af. 

+ AB 

Through a smooth coordinate change, this is again diagonalized for small \A\: 

/VX       /Xl{A)        0 0 
(3.3) U'    =        0       AJJU(A)       0 

WJ       V   0 0        A«(vl), 

where A*(0) = A* for * = s,uu or u. 
Geometric meaning of the eigenvalue problem is easily seen in these coordinates. 

That is, suppose that v(t) is a non-trivial solution and it is expressed as v(t) = 
(vi(t),V2(t),vs(t)) when t « ±oo and thus h(t) is in A/*, then v(i) is bounded if and 
only if V2(t) = vs(t) = 0 for t « +oo and vi(i) = 0 for t « -oo. In the sequel, h(t) 
is assumed to be the solution which hits Ei (for the last time if h(t) is n-homoclinic 
solution) at t = 0 to avoid ambiguity, and the solution v(t)A) of (3.2) with initial 
condition (vi(0] A),V2(0; A),V3(0; A)) = (-1,0,0) in the coordinates of (3.3) is traced. 
Then the fact above is expressed as follows. 

LEMMA 3.1. A is an eigenvalue if and only ifvi(t;A) = 0 for t w —oo. 

The analysis requires a non-degeneracy condition on the eigenvalue problem (3.2). 
Let ho{t) be the original homoclinic solution for v = 0 and let to be the time 
when ho(t) hits the section EQ, then the solution vo(t,A) with the initial condition 
(voi(0',A)^vo2(0]A),vos(0;A)) = (—1,0,0) is assumed to satisfy the following non- 
degeneracy condition. 

REMARK 3.2. voiC^ojO) = 0 as A = 0 is an eigenvalue corresponding to the 
spatial translation of the pulse. 

3.3. Statement of the theorem. Now the theorem is ready to be stated. 
Let a = (cro,--- ^n-i)00 be a minimal periodic symbolic sequence, then as is 

presented in the previous section there is a n-homoclinic orbit ha (t) which is generated 
from the periodic orbit in a infinite period bifurcation. A number N(a) for the 
homoclinic orbit ha(t) is defined as follows. 

DEFINITION 3.1. 
n-2 

N(a) := 
f^ [ 0      if (Ti---crn_i = +1 

Concerning the eigenvalue problem associated to ha(t) the following holds. 

THEOREM. Assume that D < 0 (D > 0). Then, the eigenvalue problem (3.2) for 
h = ha has at least N(a) negative (positive) eigenvalues if l^l is sufficiently small. 

COROLLARY. In the case of outward twist, the multiple pulse solutions corre- 
sponding to symbolic sequences (—1,+1 • • • 4- 1) (all symbols are +1 except the first 
one) are stable for sufficiently small \u2\ if the original 1-pulse is stable. 
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4. The index. The proof of the theorem depends on a topological method, 
namely defining an index which counts the number of eigenvalues. The purpose of 
this section is to define this index. 

4.1. Existence of confining cone. The index is constructed through restrict- 
ing the eigenvalue problem (3.3) in the three dimensional space to a two dimensional 
cone. Finding this cone is the first task. 

Let hff(i) be one of the n-homoclinic orbit and v(t]A) be the solution of (3.3) 
with initial condition (vi(0;A),V2(0;A),vs(0]A)) = (-1,0,0), and denote the time at 
which ^(t) hits Rp for the A;-th times as Tn-k+i' Because the eigenvalues converges 
to 0 in the limit of U2 -» 0, the parameter A is rescaled as A = 1^2|xA for some fixed 
X satisfying 1 < x < §• Then the following is proven. 

PROPOSITION 4.1. Assume that the constant R appeared in proposition2.2 satis- 
fies xu%uu < R. 

Then, there exist c > 0 and Ap > 0 so that (vi^; A)1V2(Tk] A)1v3(Tk]A)) is 
inside the cone C :={V | vl^il2 + l^sl2 > c| 1/211^1} if |A| < AQ for sufficiently small 

REMARK 4.1. Condition EV is necessary to choose R satisfying the condition 
above. 

If u(t) is a solution of (3.1) staying in the cube {|a;|, \y\. \z\ < 1} for h <t <t2 
which starts in Cp at t — ti and reaches Rp at t = £2 5 then a straight forward 
calculation taking into account that p = \v2\R under the condition Au^MU < R shows 
the following. 

LEMMA 4.1. For arbitrary fixed c, d > 0 and x' > 1 with 1 < x' < ^j—R - 1, 
there exists Ai > 0 so that the following holds. Any solution to (3.3) with the initial 
condition inside the cone ^/\Vi\2 + [Vsl2 > c| 1/211^21 at t — t2 is inside the cone 

I^Kv^KI2 + \v^\2 > cf\v2\ att = ti if |A| < Ai for sufficiently small \i/2\. 

On the other hand, if u(t) is a solution of (3.1) which starts in Rp at t = ti and 
reaches CpHPp at t = ^2 and stay outside of the cube {|a;|, \y\, \z\ < 1} for ti < t < £2, 
then the following holds. 

LEMMA 4.2. For any x > 1? there exist c, c' > 0 and A2 > 0 so that any solution 
of (3.3) with the initial condition inside the cone |^2|x>/lvil2 "*" l^3!2 ^ c'l^l att — t2 
is inside the cone \/|Vi|2 + IV3I2 > c|i/2||^2| at t = ti if |A| < IA2I for sufficiently 
small 11/21- 

Proof of this lemma is divided into three steps. 
First, the Poincare map Gv has the following property. 

CLAIM 4.1. For (y,z) e CpDPp, let v = (v2,v3) e T^^jEi and V = (Vi,^) = 
DG^v e TG-i, 3)So- Then for any ci > 0 there exists C2 > 0 independent of (y,z) 

so that V satisfies \Vi\ > C2|^2||Vr2| if v satisfies Cil^H^sl > 1^21. 

Proof A foliation on the parabola-like region Pp is defined to analyze the com- 
position of the parabola and the cone Cp. Consider a segment {£} x [-1, +1] C Rp 
for 0 < f < p. This segment is mapped to a curve on £1 written by 

WK,I»      _1<y<1 
\z = g*(Z,Y;v) "     " 
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(2.4) means that the second equation can be solved for Y with 

02(£,n*;e,i/);i/) = s  and  Y(0;0,0) = 0 

Then, the graph y = (p(z; f, z/) of the function ip defined by 

gives a leaf of this foliation. Moreover, this cp is expanded as follows. 

<p(z\ f, i/) = 1/1 + ^2^ + a^2 + &£ + 0(|^|2, M3, |i/|2) 

Here, when z/ = 0, a is equal to /^ToJAp and thus positive, whereas b is equal to 

0x(O,O; 0) and hence & > 0 in inward twist case and 6 < 0 in outward twist case. 
The claim follows from the fact that Gv is diffeomorphism and that there exists 

constant C3 > 0 so that 

(4.1) £<•*" > Cs\l/2\ 

holds if (ip(z'^,u),z) G CpHPp (See proposition 2 in [9]). D 

CLAIM 4.2. There exist C4 > 0 and c^ > 0 so that any solution to (3.3) for 
A = 0 with the initial condition inside the cone |^2|x\/|^i|2 + bsl2 > QI^I att — t2 
is inside the cone y/\Vi\2 + IV3I2 > csl^H^I att = ti. 

Proof. The tangent vector £ (M(£); ^) to the solution u(t) satisfies (3.3) for A = 0 
and it is expressed as 

SOifo);!/)  =    (\IX,\™Y,K) 
and 

X(u(t2)\u)  =   (A',Ary,A» 

where w(ti) = (X,y, 1) and 1^2) = (1,2/, 2?). (1,2/,^) G CpflP^ implies 2; = 0(|i/2|) and 

y = Od^l^1) (see proposition 2 in [9]). Moreover X = 0(\i/2\
R) and y = 0(|i/2|) 

are easily seen. Therefore, there exists CQ > 0 so that \/(|Vi|2 4- IV3I2) > Csl^H^I 
holds if \vi\ > CQy/\v2\2 + 1^312 is satisfied. 

On the other hand, claim 4.1 implies that there exists C7 > 0 so that any solution 
with the initial condition inside the cone 1^21* 1^31 > cj\v2\ at t = 12 is inside the cone 
A/|VI|

2
 + IV3I2 > C5I1/2IIV2I at t = ti. Then the claim is easily obtained. □ 

Proof (Proof of lemma 4.2) The lemma immediately follows from the claim 
above and the fact that A = |z/2|xA with x > 1- D 

Proof (Proof of proposition 4.1) The lemma 4.2 means that the proposition 
holds for t — Xi. Successive application of lemma 4.1 and lemma 4.2 shows the 
proposition for t — Tk, k > 2. D 

The basis of the index is the fact that the set C C M3 has one-dimensional homol- 
ogy group isomorphic to Z. In the sequel, the problem is dealt with in the projective 
space MP2 rather than E3 to suppress the ambiguity of multiplication of constant. 

Consider the coupled system of (3.1) and (3.2) 

(4 2) («' = £(«;«/) 
*■ ' ' \i/ = [DX(h(t);v)+AB]v 
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on f a x E3, where IV := {ha(t)\ - oo < t < +00} and f ff = {0} UIV Here, through 
suitable coordinate change, ^-component of the system is assumed to be of the form of 
(3.3) as far as u(t) is in Af. As this system is linear in ^-component, the flow defined 
by it induces a flow on fV x MP2 in the following way. 

Let #*: f a x E3 -* f a x E3 be the flow determined by (4.2) and H: R3 -> EF2 

be the projection. Then, the flow £* on F^ x EF2 is defined by 

(4.3) ^(ti, v) := (id x H) (^(w, v)) 

where v := Il(v). This definition does not depend on the choice ofv€ Tl~l(v) as the 
flow #* is linear in v. 

In this framework, lemma 3.1 is interpreted as follows. 

LEMMA 4.3. A is an eigenvalue if and only if the orbit (/v(£),i)(£; A)) of the 
flow & which converges to (O, [—1 : 0 : 0]) in the limit of t -> +00 converges to 
(O, [0:1: 0]) or (O, [0:0: 1]) in the limit oft -> -00. 

On the other hand, if A is not an eigenvalue, (ha(t), v(t; A)) converges to (O, [1 : 
0:0]) as t ^ -00. 

Next task is interpretation of proposition 4.1 in this framework. Let C/Q, £/& 
(k = 1, • • • n - 1) and Crn be defined as 

cr0 

CTk 

CTn 

= {#*(7,t))|7 = M0),t) = K : 0 : 173],^ < t < +00} 

= {#*(7,t))|7 = Mr*), 6 6 ^Tife+i - T^ < t < 0} 

= {<P*(7,t>)|7 = ^(r„),i) G C, -00 < t < 0} 

where C := 11(C) with C ={v | \/|T4|2 + IV^I2 > c|i/2||V^|} which appeared in proposi- 
tion 4.1 and { } stands for the closure of the set. Then by lemma 4.1 and lemma 4.2, 

CF := U CFk is homotopic to IV x S1 for each A. Moreover, the following is easily 
A:=0 

seen. 

PROPOSITION 4.2. There are an open set So C EF2 which is homotopic to S1 

and a subset S of To- x EP2 which is homeomorphic to F^ x SQ with the following 
property. 

1. SDCrifA< H^AQ. 
2. There is a homeomorphism S: S -> Ta x So satisfying S (5 fl ({7} x EP2)) = 

{7} x So for each 7. 

4.2. Definition of the index. Finally the index is defined in this subsection. 
Take Ai and A2 (Ai < A2) satisfying |Aj| < |z/2|xAo and neither of which is an 

eigenvalue. Then a map g: d ([Ai, A2] x [-1, +1]) -> 5o defined below is continuous. 

(A    ,= fProH(/i(r(log(i±i)),{i(log(i±^);A))     ifA = A1,A2   and r 6 (-1,+1) 
3    'r     \pro~(O,[l:0:0]) if A G [Ai, A2] and r = ±1 

where Pr: F^ x So —> -So is the projection. This Q induces a homomorphism 
8.: ^(^([Ai.Aa] x [-1,+!]))-> Hi (So), where both Ht (a([Ai,A2] x [-1,+!])) and 
Hi(So) are isomorphic to Z. 



A TOPOLOGICAL APPROACH TO STABILITY OF PULSES 223 

DEFINITION 4.1.   Let Hi (9([Ai, A2] x [-1,4-1])) and #1 (So) be identified with 
Z. Then the index /^(Ai, A2) is defined by 

I^i,A2):=\&*(l)\ 

Next proposition shows a basic property of this index. 

PROPOSITION 4.3. J//(Ai,A2) > N, there are at least N eigenvalues in the 
interval [Ai, A2]. 

Proof. This proposition is proven by induction. 
First, if g*(l) 7^ 0 then there exists at least one eigenvalue in [Ai, A2]. In fact, if 

there is no eigenvalue in the interval, the map $ can be extended to a continuous map 
Q: [AI,A2] x [— 1,-fl] ->> So by lemma 4.3, and thus it is homotopic to a map which 
maps whole [Ai, A2] x [—1, +1] into one point. Therefore g* is trivial and g*(l) = 0. 

Next, assume that the proposition has been proven up to N and suppose that 
|fl.(l)|>iV + l. 

Let A' be the smallest eigenvalue in the interval [Ai, A2] and let A3 be a value 
in [A',A2] so that there is no eigenvalue between A' and A3. Let Qi: ^([AijAs] 
x[-!,+!]) -> So, 92 •• <9([A3,A2] x [-1,+!]) ->• So be similarly defined as g, then it 

is easy to see that g*(l) = fli*(l) + fl2*(l) and |gi*(l)| < 1. Thus |fl2*(l)| > N and, 
by applying the assumption, there are at least iV eigenvalues in the interval [A3, A2]. 
This means the proposition also holds for iV + 1. D 

5. Proof of the theorem. The goal of this section is to prove the theorem by 
calculating the index defined in the previous section. More precisely, let A < 0 be a 
fixed number satisfying |A| < Ao and set Ai = |^2|XA and let A2 < 0 be a negative 
number with small absolute value, then /^(Ai, A2) = N(a) shall be proven for small 

5.1. Preliminary analysis. In this part of the section, the flow &* is analysed 
by taking Poincare maps between So x MP2 and Si x MP2. For this purpose, set T^_k+1 

(k = 1, • • • ,71) be the time at which /^(t) hits Cp for the fc-th time — notice that 
T{ = 0 — and let 9: SQ x IF2 -> Si x MP2 and #': Si x IP2 -> So x IP2 be Poincare 
maps defined by the flow $*. For the later use, two different systems of inhomogeneous 
coordinates for IP2 are employed, that is, the point (X, Y, 1, [f : TJ : CD G So x IP2 is, the point (X, Y, 1, [f : TJ : £1) G SQ 

1 as (X,r,l;P,(5) with P := |, Q := in homogeneous coordinates is expressed as (X, Y", 1\P,Q) with P := 4, Q := % and 

(l,2/,^,[^ : 7]: (]) € Si x IP2 is expressed as (l,2/,^;^,r) with q := |, r := |. 
First consider &'. Let u(t) be a solution of (3.1) staying in the cube {|x|, \y\, \z\ < 

1} for ti <t<t2 which starts in Cp at t = ti and reaches Rp at t = tz, then straight 
forward calculation shows the following. 

X3 xuu 

LEMMA 5.1. Ifu(ti) = (l,y,z) thenufo) = {z~^nr,yz~^1~,1) and 

,_1    / \' Xuu \ ( Q      AttM(A)-An(A)       1       Au(A)-Aa(A)\ 
^     ^-^,^-"^-,l;F,gJ = [l,»,^^      ^^      ,-p^     *u<0>     J 

Especially, the tangent vector u^t) along the orbit satisfies 

(     xs xuu       Xs      xs   Xuu       A— \ 
(u(t2y,u'(t2))= [z-^,yz-—,l',—z-^,—yz    ^   \ 
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and 

(u(t1);u,(t1))= hy,zi—y,—z 

Next, consider \P. This time, let u(t) be a solution of (3.1) staying outside the 
cube {|:r|, \y\, \z\ < 1} for h < t < t2 which starts in Rp at i = ^i and reaches Cp at 
t = ^2. Denote u(ti) = (X,Y, 1) and ufo) = (1,2/,^) and let 

?p-Hl,y,^;9,r) = (-X',y,l;!Pi(i/,^;9,r),!p2(y,^;(Z,0) 

and expand #1 and ^2 up to first order: 

,      T   f        \uu     \u 

#1 u/, ^; ^^ n = #1 (2/, ^; -^-2/, -^ 

d&i (       \uu    Xu \ (      \u 

+ ^\y^^Tsz)\T-Tsz 

dVx (     xuu   A
U 

+ (higher order terms) 

4- (higher order terms) 

A 
A=0 

and 

\uu / \uu    \ / \ u    \ 
&2(y,z;q,r) = —Y + fyq U - -jry) + $2r [r - —z\ + ^AA 

-f (higher order terms) 

Then, for u(t) — h^ii), the following holds. 

LEMMA 5.2. 

(5.1) fflr = 0(M) 

Prooj.   Let (X,Y,Z) = §{x,y,z\t;v) = (^1(x,y,z)^2(x,y,z)1^3(x1y,z)^ be 

the time t map defined by the flow induced by (3.1) and let t = t^(y,z]i/) be the 
function satisfying ^(l,y,z;U(y,z;i/)]u) = (X,Y, 1) = Gj1(l,2/,^) where G^: EQ -> 
Ei is the return map defined in Section 2. 

First, the tangent vector v(t) to the orbit u(t) satisfies 

v(t1) = (\aX,\uuY,\u) 

= £)$ (1,y, z; ^(2/, ^; 1/); z/) vfe) 

t;(t2)=  (As,A-2/,A^) 
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where u(*i) = (X,Y,1) and ufo) = (l,a:,2/).   This together with X = OG^I*), 

y = 0(|i/2|"xir") and z = 0(|i/2|) implies that 

— = 0(h|)  and  ^--+-  as ,2 -> 0 

Second, there exists a constant c so that 

dip 
c\^2\ > dz{z;^) 

if 11/21 is sufficiently small.   This is shown in similar manner as (4.1).   This means 

= 0(1^21) and henc 
nded. 
On the other hand, 

^ = 0(H) and hence ^ = 0(H) because % = & - ^X^ and ^ 
bounded. 

dx   ^   dy V ^   dz ' 

and therefor 

d±L  (Oil 4. 9*3.n M §1*3. A   _ ^4a.  f Q§± J-  d±Ln -L Q^X 
d&i  _    dz    \ dx   "T   dy V ^   dz ') dz    \ dx   ^   dy y ^   dz 

The lemma immediately follows from this. D 
The fact below is also easily seen. 

«+ *»■)' 

LEMMA 5.3. 

Xud^1 f       \uu    Xu \ „ J 

(5.2) "A^aX" l27'^'"^"27'A^"^]        "^ a5X'2/ 2 ">0 

where D is what is defined in the condition ND. 

The following three propositions are basis of calculation of the index. For a 
moment, D is assumed to be negative, but the result for positive D is obtained by 
simply change the sign of A. 

Let Vi(Tk]A) (i = 1,2) be defined as 

V (T • A^ - V^T^^ V (T '• A^ - ^(FfciA) Ki(ifc, A) .-     ^ . Av        ViUfc; A) —     ^   Av 
vz{Tk]h) v3(Tk]A) 

PROPOSITION 5.1. Fix A satisfying —AQ < A < 0, then 

(5.3) Vi(Tfc;M*A)>0 

/or sufficiently small \u2\. 

Proof. Before going into the proof, note that ha2(Tlc) = 0(|*/2|"**"") and h^T^) — 

Od^l) as ha{T'k) is in Cp C\ Pp and this implies ^(T^-i) = Od^l-^), where 
ha{T) = (hrtiT^hrfiT^haaiT)) in (x,y,2;)-coordinates for T = Tk or T = T^ 
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Then the proposition is proven by induction. 
(I) For k = 1. 

Vi(Ti;h|xA) > 0 and Vi(Ti-M\xA.) = 0(hlx) but Vx^l^A) # o(M*) 
follows immediately from the expansion below. 

V'i(r1;|^|XA)=^(0,0;0,0) 

= T^<TI(7\) + ^IAI^I^A + (higher order terms) 

(II) For k > 2. Assume that Vi(Tk-i;\v2\xA) > 0 and Vi(Tk-i;\v2\x&) = 0(hlx) 
but Vi(Tk-i; 1^2|xA) ^ O(|JA>|

X
) holds. 

Let ^(T^; A) (i = 2,3) be defined as 

2( ^A) - ^PP) 3( ^A) - ^iA) 
Then, by lemma 5.1, ^(T^; |^2|XA) is expressed as 

1 .     AU(A)-A3(A) 

ViCT/fe-uliAalxA) 

and thus ^(T^; |^2|XA)   =  o(|i/2|)-    Moreover, this fact and lemma 4.1 implies 
V2(Tj[: \i/o.\xA.) = o(\u2\x). This leads to the following estimate: 

+ $lr (v3(n; \u2\
xA) - ^hMU)) + PIAWA 

+ (higher order terms) 

= ^IA|^2|
X

A + (higher order terms in l^l) 

Then, Vi(Tki\iS2\xA) > 0 and V^T^l^A) = 0(\u2\
x) but Vi^jl^^A) ^ 

o(|z/2|x) immediately follows. D 
On the other hand theVi^; A) has the opposite sign for small A. 

PROPOSITION 5.2. //A < 0 and |A| is sufficiently small, then 

(5.4) t>1(T,;A)<0 

holds for k = 1, • • • , n — 1 

Proof. This is easily seen from the fact that 

Vi(T*;0) = ^i(r,)<0 

D 
The other proposition concerns changes of the orientation of C along the flow. 

PROPOSITION 5.3.  Let zV C <-+ {^(T^)} x C c fo x MF2 be the inclusion and 
P: fo x MP2 -> MP2 be the projection, and define 

ek:=Po £T
K-

T
X-I o zVi: C -» C 
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for k = 2,- • • ,n. 

Then Qk*: Hi(C) -> Hi(C) is equal to id: Hi(C) -> fl"i(C) if dk-i = +1 and 
-id: ^(6)^^(0) if ak^ = -l. 

Proof First, as stated in [9], 9^(0,0]0) = 0 and ^(0'050)^y(0'0;0) < 0- 
If 9x(0,0; 0)^yy (0,0; 0) > 0 (inward twist case), the assumption that pyy (0,0; 0) 

> 0 means ^(0,0; 0) > 0 and g£(0,0; 0) < 0. Thus 1/2 < 0 is equal to ^(0, Y+(v)) v) 
> 0. This implies g\r(ha{Tk)]u) > 0 if ^(T^) = (^(^(Tfc);!/)^2^^);!/)) is 
in the component of Cp fl Pp which includes (y,z) = (0,0) (i.e. cr^ = 4-1), and 
^y(/io-(21k); 1/) < 0 if /^(Ifc) is in the other component (i.e. a^ = —1). 

On the other hand, if ^(0,0; 0)pyy(0,0; 0) < 0 (outward twist case), ^(0,0; 0) 
< 0 and ^y(0,0;0) > 0. Thus 1/2 < 0 is equal to #y(0, Y*(i/);i/) < 0. This implies 
0y(ft<r(Tfe);i/) < Oif ha^l) is in the component of CpflPp which includes (y,z) = (0,0) 
(i.e. Gk — — 1), and 0y(h<r(Tfc); J/) > 0 if /lo-(T^) is in the other component (i.e. 
crfe = +1). 

Therefore, if o-fc = +1, then the half-line {/^(T*)} x {(0, V2,0)1^2 > 0} is mapped 

into (MT^)} x {(^1^2,^3) I |^|x>/|vi|2 + |t;3|2<c/H,t;2 > o} by *T*-ri, and if 

Gk = -1, then into {h(T{T^}x^{vuv2,v3) \ I^^VKI2 + hi2 < c'M,<;2 < o}. The 

proposition follows from this and the fact that #Tfc~rfc is orientation preserving. D 

5.2. Proof of the theorem. In this section, the index is calculated and the 
theorem is proven. 

Let fti,fi2 be some small neighborhood of [0 : 0 : 1] and [1 : 0 : 0] of MP2 and 
1,1,1,2: [0, +1] -> IP2 be defined as 

H(0 = [*:0:l-t], i2(O = [-t:0:l-t] 

and let f)^ := Pr o ^(^(Tfe),^) C 5o and ^ := Pr oS^CTfc),^-)): [0,1] -> So- 
Here is a homology exact sequence 

•■•^tfifUCniJfeUlWj ^Hi(5o) 

4^1 f5o,lJ(ni^un2,)j ^ffo[U(ni*un2fe)) ^••• 

where .H"* stands for reduced homology group and Hi(So) can be identified with 
Hi(So). Moreover j* is injective and i*(i?i(5o)) is generated by ([tik] — [i>2k]) iov 
arbitrary fc. 

Choose a generator 1 G Hi(So) = Z so that j*(l) = [^11] - [^21] Then, proposition 
5.3 implies the following. 

PROPOSITION 5.4. j*(l) = [^ifc] - [^fe] if the product cri--(Tk-i = +1 a^d 
i*(l) = -[^ifc] + [^2fc] if 
01 "'Vk-l = "I 

Proof This proposition easily follows from the fact that the diagram below com- 
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mutes. 

W) (e*°-oe2)-)   H^C) 

(ProSoii), (ProSoik)* 

HiiSo) -7r->    ^(^o) id* 

D 
On the other hand, proposition 5.1 and 5.2 implies next. 

PROPOSITION 5.5. For k = I,--- ,n - 1, Pr o S (v(Tk + (r^+1 - T^)^; M*A)) 

is homotopic to Lik+i(t) as a map ([0,1], {0,1}) -*■ (So,{Jk(ttik U ti>2k)), whereas 
Pr o E (v(Tk + (Tjfe+i — Tfc)^;A)) Z5 homotopic to i2k+i(t) when A < 0 and |A| Z5 
sufficiently small. 

For k = n, ProE (v(Tn + (T — Tn)£; |z/2|xA) J 25 ako homotopic to tin(t) whereas 

Pr oE (v(Tn + (T — Tn)t; A)) /or T large enough can be both Lin(t) or £2n(<0- 

ProE (v(Tn + (T — Tn)t] A)) can be determined by standard argument concerning 
what is called Evans' function.(See [21].) Only results presented here without proof. 

LEMMA 5.4. ProE;(i;(Tn + (T - Tn)£; A)) is homotopic to Lin(t) if ai • ••crn_1 = 
+1 and homotopic to L2n(t) if &i — -Cn-i = —1 

Finally the theorem is proven. 

Proof. (Proof of the theorem) First, notice that 

g*: ffi (<9([H*A,A] x [-i,+i])) ->fri(5o,U(niifeun2ib)) 
A; 

coincides with the composition of g*: Hi (d([\u2\xA, A] x [-1,+1])J -> Hi(So) and 

j*. Then, from proposition 5.5 and lemma 5.4, 

in Hi(So,{Jk(fLik U ^2^)) • Therefore by proposition 5.4, 

1,(11*1*^) = -    ,   V^ ,    f-1     lf   al •••crn-l = "I 
f^ [ 0     if (7i"'an-i = +1 

and thus the theorem holds. □ 

Proof.  (Proof of corollary to the theorem) First, D has to be negative for 
the original pulse to be stable. This is because 

sign {det (vofto, A), (0,1,0), (0,0,1))} 

for large positive A coincides with that for small positive A if there is no eigenvalue 
between them. On the other hands, it coincides with 

sign {det ((-1,0,0), (0,1,0), (0,0,1))} 
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by standard argument of Evans' function. (See [21]). The conclusion is obtained 
immediately from this. 

Second, under the assumption, there are n critical eigenvalues near origin and 
other eigenvalues have negative real part.(See [2] or [11] for this fact.) 

Therefore applying the theorem, there are n — 1 negative eigenvalues near origin 
and the other one is at origin. Thus the n-pulse is stable. D 
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6. Appendix. This section is devoted to brief summary of topological notions. 
For more details, consult some textbooks on algebraic topology such as [19]. 

6.1. The projective space. First, definition of the projective space is intro- 
duced. 

Let ~ be an equivalent relation on R™4"1 \ {0} defined as follows: 
x ~ y if and only if there exists a constant c G M. \ {0} such that x — cy. 
Then the projective space is defined below. 

DEFINITION 6.1. The quotient space lFn := (Mn+1 \ {0}) /~ with the quotient 
topology is called the n-dimensional (real)projective space. 

This space has a structure of a manifold and a coordinate system can be defined 
in the following manner. 

Let x — (#0, #1, • • • , ^n) be a point in En+1 \ {0} then the ratios XQ : xi : • • • : xn 

defines a point in Wn therefore the equivalent class of [x] E MFn is written as [XQ : 
xi : • • • : xn]. Moreover, if xi ^ 0 then this expression can be normalized so that [x] = 

i-th 
[^ : I1 : • • • : 1 : • • • : |^], thus there is a homeomorphism cpi from C7i ;= {[XQ : • • • : 

Xn] I Xi ^ 0} C lPn to E^ such that Vi([xo : • • • : xn]) = (f^,... , ^r1, ^i,... , %). 
The pair (ipi, Ui) is employed as a local chart and $ = {((/?;, Ui)}™--^ becomes an atlas. 

Next, let 

(6.1) x = A(t)x 

be a linear ordinary differential equation on lRn+1, and let xi(t) and X2(t) be two 
non-trivial solutions of this equation. If Xi(to) and ^(^o) belong to same equivalence 
class of MPn i.e. [xi(to)] = faito)], then [xi(t)] = [x2(i)] holds for all t because of 
linear nature of the equation. This is the way in which the equation induces a flow 
onMPn. 

Assume that A(t) = A is independent of £, and let e be an eigenvector with 
eigenvlue A and assuem that any other eigenvalue has the real part which is smaller 
than ReA. Then [v] is an equilibrium of the induced flow because spanjt;} is a invariant 
subspace of (6.1). Moreover, [v] is an attracting equilibria, because any other solution 
nearby approaches to this subspace as time evolves. Similarly, an eigenspace for an 
eigenvalue whith smallest real part corresponds to a repelling equilibria. Similar 
argument holds true if A(t) -> A as t -t ±oo. 

6.2. The homology group. First, the homology group is defined. 
The following set is called the n-simplex. 

An:= \x = (xo,xu... ,x„) GEn+1 | 0 < xu ^x* = 1 I 
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An~1 can be identified with A^-1 := {x = (xo,xi,... ,xn) G An | Xj = 0} and the 
inclusion map A^-1 ^ An is denoted by e™ for each j. 

Let X be a topological space then a continuous map a: An -)• X is called singular 
n-simplex. The free module generated by the set of all singular n-simples is denoted 
by Sn(X), then Sn(X) is defined to be {0} for n < 0. Let dj(a) := cr oe™ and let the 
boundary homomorphism d: Sn(X) -> Sn-i(X) be defined by 

n 

d = YJ(-
1)Jd3    (n>0), 5 = 0    (n<0) 

i=o 

DEFINITION 6.2. 7%e n-dimensional homology group of the topological space X 
is defined by 

Hn(X):=keid/Imd 

where kerd is the kernel of the map d: Sn{X) -> Sn-i{X) and Imd is the image of 
the map d: Sn+1(X) -> Sn(X). 

If An is homeomorphic to An and 0: An -^ An is a homeomorphism, then a 
continuous map a: An -> X can be regarded as an n-simplex by identifying it with 
a o (/). A choice of such a (f) determines the sign of [cr] € Hn(X). 

If Y is a subspace of X, then S(Y) is a submodule of S{X) and d induces a ho- 
momorphism from Sn(X,Y) := Sn(X)/Sn(Y) to 5n_i(X,y) := 5n_i(X)/5n_i(y). 
This homomorphism is also denoted by d. 

DEFINITION 6.3. The n-dimensional homology group of the pair of topological 
spaces (X, Y) is defined by 

Hn{X,Y):= kerd /Imd 

where kerd is the kernel of the map d: Sn(X, Y) -» Sn-i(X, Y) and Imd is the image 
of the map d: Sn+1 (X, Y) -> Sn(X, Y). 

When X is not empty, a homomorphism e: So(X) -^ Z is defined by e(%2 a>x%) = 
J2ax, (x G X). Let Sn{X) = Sn{X) (n > 0) S-i{X) = Z and Sn(X) = 0 (n < 0), 
and let d = e for SQ{X) -> 5_i(X). 

DEFINITION 6.4. The n-dimensional reduced homology group of the topological 
space X is defined by 

Hn(X):= kevd /Imd 

where kevd is the kernel of the map d: Sn(X) -» S^-ipO and Imd is the image of 
the map d: 5n+i(-X") -> Sn(X). 

Next, a continuous map induces a homomorphism between homology groups. 
Let X and Y be topological spaces and /: X ->• Y be a continuous map. Then 

/l: Sn(X) -+ Sn(Y) is defined by f^a) :=foa. 

DEFINITION 6.5. A homomorphism between homology groups /*: Hn(X) —> 
Hn(Y) is the induced homomorphism by f§. 

The important property of the homology group is as follows. 
Let 6: A1 -> S1 be such that 0(x, 1 -x) := eirc, then [0] G ^(S1) is the generator 

of ffitS1) = Z. Moreover, [0*] = A: in ^(S1) for 6k(x, 1 - x) := e***. 
Therefore, if /: S1 -> S1 is a continuous map such that /*(1) = fc, then / maps 

S1 onto A:-fold of S1. Same holds true if X is homotopic to S1. 
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