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SOBOLEV SPACES WITH WEIGHTS IN DOMAINS AND 
BOUNDARY VALUE PROBLEMS FOR DEGENERATE ELLIPTIC 

EQUATIONS* 

S. V. LOTOTSKYt 

Abstract. A family of Banach spaces is introduced to control the interior smoothness and 
boundary behavior of functions in a general domain. Interpolation, embedding, and other proper- 
ties of the spaces are studied. As an application, a certain degenerate second-order elliptic partial 
differential equation is considered. 

1. Introduction. Let G be a domain in Rd with a non-empty boundary dG and 
PG(#) = dist(x,dG). For 1 < p < oo and 6 E E define the space Lpj(G) as follows: 

LPte(G) = {u: [ \u(x)\ppe
G-

d{x)dx < oo}. 
JG 

Then we can define the spaces H™0(G), m = 1,2,..., so that 

HZelP) = {u : u,pGDu,... ,pdDmu G £„,*}, 

where Dk denotes generalized derivative of order k. The objective of the current 
paper is to define spaces H^ e(G), 7 G M, so that, for positive integer 7, the spaces 
Hpe(G) coincide with the ones introduced above. It will be shown that these spaces 
can be easily defined using the spaces if^(Ed) of Bessel potentials. Note that u e 
Hpd_p(G) if and only if u/pG,Du G Lp(G), which means that, for bounded G, the 

o 

space Hpd_p(G) coincides with the space H* (G). As a result, the spaces Hpe(G) can 
be considered as a certain generalization of the usual Sobolev spaces on G with zero 
boundary conditions. A major application of the spaces Hpe(G) is in the analysis of 
the Dirichlet problem for stochastic parabolic equations [5, 7]. 

Some of the spaces HjgiG) have been studied before. Lions and Magenes [6] 
introduced what corresponds to H^ d{G). They constructed the scale by interpolating 
between the positive integer 7 for 7 > 0 and used duality for 7 < 0. Krylov [3] defined 
the spaces iJ^(E^), where E^ is the half-space. After that, if G is sufficiently regular 
and bounded, then H'le{G) can be defined using the partition of unity, and this was 
done in [7]. Other related examples and references can be found in Chapter 3 of [10]. 

In this paper, an intrinsic definition (not involving E^) of the spaces H^e(G) is 
given for a general domain G, and the basic properties of the spaces are studied. Once 
a suitable definition of the spaces is found, most of the properties follow easily from 
the known results. Definition and properties of the spaces Hpe(G) are presented in 
Sections 2, 3, and 4. Roughly speaking, the index 7 controls the smoothness inside 
the domain, and the index 9 controls the boundary behavior. In particular, the space 
Hp Q (G) with sufficiently large 7 and 0 < 0 contains functions that are continuous in 
the closure of G and vanish on the boundary. In Section 5 some results are presented 
about solvability of certain degenerate elliptic equations in a general domain G. 
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Throughout the paper, Dm denotes a partial derivative of order ra, that is, Dm = 
dTn/dx™1 - - • dx™d for some raiH hm^ = m. For two Banach spaces, X, Y, notation 
X C Y means that X is continuously embedded into Y. 

2. Definition and main properties of the weighted spaces in domains. 
Let G C Rd be a domain (open connected set) with non-empty boundary <9G, and 
c > 1, a real number. Denote by PG(%), X € G, the distance from x to dG. For n G Z 
and a fixed integer ko > 0 define the subsets Gn of G by 

Gn = {z G G : c-n-*0 < pG(x) < c-n+*0}. 

Let {Cn5 ft G Z} be a collection of non-negative functions with the following 
properties: 

Cn e CnC), ProCn(x)| < N(m)cmn, 52 Mx) = 1. 

The function Cn(^) can be constructed by mollifying the characteristic (indicator) 
function of Gn. If Gn is an empty set, then the corresponding fn is identical zero. 

If u G V'(G), that is, u is a distribution on CQ
0
(G), then (nu is extended by zero 

to Rd so that Cnu e V'tW1). The space H^e{G) is defined as a collection of those 
u G V^G), for which £n^ is in H^ and the norms ||Cn^||/f7, n G Z, behave in a certain 
way. Recall [10, Section 2.3.3] that the space of Bessel potentials H^ is the closure of 

C^iW1) in the norm H-F-1^ + l^|2)7/2F * \\LP(R*), 
where ^ is the Fourier transform 

with inverse J7-1. 

DEFINITION 2.1. Le^ G be a domain in Rd, 6 and 7, real numbers, and p G 
(l,-|-oo).  Take a collection {£&, n G Z} as above.  Then 

(2.1) /£,((?) := (u G D'(G) : ||«||^((G) := ^^|K-„(c'l-)«(cn-)ll^ < <x»} . 
I P, nGZ ) 

Since Hp C iJ^2 for 71 > 72, the definition implies that H£e(G) C H£0(G) for 
7i > 72 and all 0 G E, 1 < p < 00. Still, it is necessary to establish correctness of 
Definition 2.1 by showing that the norms defined according to (2.1) are equivalent 
for every admissible choice of the numbers c, A:o and the functions (n. Proving this 
equivalence is the main goal of this section. 

PROPOSITION 2.2. 1. If u is compactly supported in G, then u G iJjd{G) if and 
only if u G H^. 

2. The set 0^(0) is dense in every H^e(G). 
3, If 7 = 777, is a non-negative integer, then 

(2.2) #?.*(<?) = {u • PGDku G LM(G), 0 < A; < m} , 

where LPie{G) = Lp(G1p
9

cf
d(x)dx). 

4- If {£n, ^ G Z} is a system of function so that £n G C^(Gn), \Drn£>n{x)\ < 
N(m)cmn, then 

E^llf-n(cnOti(cnOII^<^||ii||^ 
nGZ 
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with N independent of u, and if in addition Yln€(x) ^ ^ > 0 /or a^ x £G, then the 
reverse inequality also holds. 

Proof. 1. The result is obvious because, for compactly supported w, the sum in 
(2.1) contains only finitely many non-zero terms. 

2. Given u E H^^G), first approximate u by UK = u • ^i^K^Cfc? and then 
mollify UK- 

3. The result follows because, for all v G M and all x in the support of C-n? 
JVx < c-vnpv

G(x) < N2 with iVi and iV2 independent of n, z/,x. 
4. Use that, by Theorem 4.2.2 in [9], Co0(Erf) functions are pointwise multipliers 

in every H^. D 

REMARK 2.3. In the future we will also use a system of non-negative CQ
0
( 

functions {r]n, n € Z} with the following properties: r/n is supported in {x : c-""*0-1 

< pG(x) < c-n+A;o+1}, r){x) = 1 on the support of Cn, \Dmr)n{x)\ < N(m)cmn. By 
Proposition 2.2(4) the functions r)n can replace Cn in (2.1). 

PROPOSITION 2.4. 1. For every p e (l,oo) and 9,j e R, *fte space H^e(G) is a 

reflexive Banach space with the dualH~t
y

e,(G), where l/p+l/p' = 1 andO/p+O'/p' = 
d. 

2. If 0 < v < 1, 7 = (1 - i/)7o + 1/71, 1/p = (1 - i/)/po + u/pi, and 6 = 
(1 — z/)0o + ^1? ^ften 

(2-3) Hle{G) = [H;iea(G),H;iei{G)}v, 

where [X, Y]v is the complex interpolation space of X and Y (see [10, Section 1.9] for 
the definition and properties of the complex interpolation spaces). 

Proof.   Let l6p{H^) be the set of sequences with elements from H^ and the norm 

ll{/n}||fj(fZj) = 2^^   II^IIH?- 
nGZ 

Define bounded linear operators Sv,e : H^e{G) -> /p(fl^) and i?p^ : l9p{H^) -> 
F^(G) as follows: 

(Sp^tx)n(x) = C-n(cnx)w(cna;),   ^({/n})(^) = ^77_n(a:)/n(c-
na;). 

nGZ 

Note that RpjSpj = Id^-y ^^ Then, by Theorem 1.2.4 in [10], the space H'le{G) is 

isomorphic to Sp^iH^e(G)), which is a closed subspace of a reflexive Banach space 
Ip(H^). This means that H'lQ{G) is also a reflexive Banach space. The interpolation 
result (2.3) follows from Theorems 1.2.4 and 1.18.1 in [10]. 

Denote by (•, •) the duality between H^ and H',1'. If v G H~^0t(G), then, by the 
Holder inequality, v defines a bounded linear functional on H'1Q{G) as follows: 

u ^ {v, u) = ^2 cnd{vn,un), 
n 

where un(x) = (-n(cnx)u(cnx) and vn(x) = r]-n(cnx)v(cnx). Note that if u,v e 
Co0(G), then (v,u) = JGu(x)v(x)dx. 
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Conversely, if V is a bounded linear functional on H^e{G)^ then we use the Hahn- 

Banach theorem and the equality (l^(H^)y = l~?pl,p{H~,'r) to construct v G H^0I(G) 
so that V(u) = (v^u). U 

One consequence of (2.3) is the interpolation inequality 

(2.4) IMItf^CG) = cIMIflZ°0(G) +N(v,p,6)\\u\\H^(G), 6 > 0. 

COROLLARY 2.5. The space H'IQ does not depend, up to equivalent norms, on the 
specific choice of the numbers c and ko and the functions £n. Moreover, the distance 
function pa can be replaced with any measurable function p satisfying Nipcix) < 
p{x) < N2PG{%) for all x E G, with Ni,N2 independent of x. 

Proof. By Proposition 2.2(3), we have the result for non-negative integer 7. 
For general 7 > 0 the result then follows from (2.3), where we take po = Pi = P? 
0O = 0l = Q, and integer 70, 71. After that, the result for 7 < 0 follows by duality. □ 

In view of Corollary 2.5, it will be assumed from now on that c = 2 and ko = 1. 

REMARK 2.6. If X is a Banach space of generalized functions on Rd, then we can 
define the space X^(G) according to (2.1) by replacing the norm || • \\Ht with || • \\x. 
In particular, we can define the spaces B^ e(G) and F^q.Q{G) using the spaces B^q 

and F^q described in Section 2.3.1 of [10]. Results similar to Propositions 2.2 and 2.4 
can then be proved in the same way. 

EXAMPLE, (cf. [5, Definition 1.1].) Let G = E| = {x = (xu... ,xd) £ Rd : xi > 
0} and C € Cf

0
oo((&i,62)), 0 < bu 62 > 3&i. Define ((x) = C(^i) and 

Hie = (^ e V'(G) : \\u\\pH;d := ^6^||Cu(e^)ll^ < 00} . 
I P,        nez J 

It follows that H^9 = H£e(Wl) with H^R^) defined according to (2.1), where 

c = e, PG(X) = a;i, Cn(^) = C(en^)/ Ylk ((ekx)i ancl ^0 is the smallest positive integer 
for which 61 > e~ko, 62 < eko. D 

3. Pointwise multipliers, change of variables, and localization. A func- 
tion a = a(x) is a pointwise multiplier in a liner normed function space X if the 
operation of multiplication by a is defined and continuous in X. To describe the 
pointwise multipliers in the space Hpe{G), we need some preliminary constructions. 
For 7 G M define 7' € [0,1) as follows. If 7 is an integer, then 7' = 0; if 7 is not 
an integer, then 7' is any number from the interval (0,1) so that I7I +7' is not an 
integer. The space of pointwise multipliers in H^ is given by 

( LooflR*), 7 = 0 
£171+7' = ;   (7n-1»1(Rd),    |7| = n = l,2,... 

[ Cl7l+7,(Ed),    otherwise, 

where Cn~1'1(Mrf) is the set of functions from Cn~1(Md) whose derivatives of order 
n — 1 are uniformly Lipschitz continuous. In other words, if u G H^ and a G ^l7'"1"7 , 
then 

IMb? < N(7,d,p)IMI.Bhi+v IMItf?- 

For non-negative integer 7 this follows by direct computation, for positive non-integer 
7, from Corollary 4.2.2(ii) in [9], and for negative 7, by duality. 

For z/ > 0, define the space AV(G) as follows: 
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1. if v = 0, then A^G) = 1^(0); 
2. if v = m = 1,2,..., then 

A'iG) = {a : a,pGDa,... ,p%-xDm-la € L00{G),p^Dm-la € C0'1^)}, 

771—1 

IMU-fG) = £ W&D'aU^G) + \\pdDma\\c°.HGy, 
fe=0 

3. if v = m -f 5, where m = 0,1,2,... , S G (0,1), then 

A'iG) = {a : a,pGDa,... yp
1SDma G Loo(G), PG^ma G C*(G)}, 

771 

IMU-tG) = E H^G ^olkcfG) + \\PGDma\\CS(G). 

Note that, for every a G ^(G) and n G Z, 

(3.1) llC-n(2nX2n.)||^<iV||a|U,(G) 

with iV independent of n. 

THEOREM 3.1. //a G A^^'(G), then 

\\au\\Hie(G) < ^(d:,7,p)l|a|Ui7H-y(G) • NIJ*; (G)- 

Proo/. We have to show that ||ry_n(2n-)a(2n-)||B|7H.7/ < iVIMLhi+^'tG) wit^ 
constant N independent of n. The result is obvious for 7 = 0; for |7| G (0,1] it follows 
from the inequality (with 5 = \j\ + 7') 

\ri-n{x)a(x) - ri-.n{y)a{y)\ < r)-n(x)p^6{x)\a{x)p6
G{x) - a{y)p6

G{y)\ 

+ \a(y)\ \Ti-n(x) - r/_n(2/)| + ^n(x)pa6(x)\a(y)\ \p5
G(x) - p5

G(y)\ 

and the observation that both 2nr]-.n and pG are uniformly Lipschitz continuous. If 
|7| > 1, we apply the same arguments to the corresponding derivatives. D 

Next, we study the following question: for what mappings ^ : Gi -> G2 is the 
operator ii(-) i-> u(ip(')) continuous from H^e{G2) to H^e(Gi)l 

THEOREM 3.2. Suppose thatGi andG2 o>re domains with non-empty boundaries 
and tj) : Gi -> G2 is a C1 -diffeomorphism so that ^(dGi) = 9G2. For a positive 
integer m define v = max(m - 1,0). // Dty G AI/(Gi), then, for every 7 G [-v,m] 
andu G H^e(G2), 

M^'))\\H;t9(G1) < N\H\HI$(G2) 

with N independent of u. 

Proof. Denote by 0 the inverse of T/J. If 7 = 0, then 

ll«W-))IISr,(Gl) = / K^I^GT"^))!^^)!^ p' •/G2 
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and the result follows because uniform Lipschitz continuity of pd, '0, and (j) implies 
that the ratio PGA^^))!PG^) 'ls uniformly bounded from above and below. If 
7 = ra, the computation is similar. After that, for 7 € (0,m), the result follows by 
interpolation, and for 7 € [—^,0), by duality. □ 

The last result in this section is about localization. It answers the following 
question: for what collections of C00(G) functions {£&,& = 1,2,...} are the values 
of |M|#7 (G\ and Yin ll^Cnlltf-y (G\ comparable? To begin with, let us recall the 

corresponding theorem for H^. 

THEOREM 3.3. ([4, Lemma 6.7].) //{&, k = 0,1,... ,} is a collection o/C,00(Md) 
functions so thatsupx ^ \Dm€k{z)\ < M(m),m > 0, then Yk>o \\€kv\\PH-r < N\M\PHt 
with N independent of v. If in addition infx Yk \€k(x)\p > S then the reverse inequality 
also holds: ||v||^7 < NYk>o M^\\P

Ht wtth N independent of v. 

The following is the analogous result for H^e(G). 

THEOREM 3.4. Suppose that {xfc, k > 1} is a collection of C00(G) func- 
tions so that supxeGY,kPG(x)\DmXk(x)\ < N(m),m > 0. Then ^ \\u>Xk\\PHid{G) < 

N\\u\\:ijp (G). If in addition, inf^G Y,k \Xk(x)\p > 8 for some 5 > 0, then \\u\\^p (G) 

<NY,k\WXk\\PHle(Gy 

Proof. With xo,n = !-»?«, XkAx) = Xk(x)T]-n(x), k>l,we find 

Eii"**!!*^) = EE2nf'ii^(2"-)c-n(2n-)«(2"-)ii^- 
k>l P' neZk>0 

Both statements of the theorem now follow from Theorem 3.3. D 
EXAMPLE, (cf. [7, Section 2].) Let G be a bounded domain of class C^+2 with 

a partition of unity xo G 0° (G), xi 5 • • • XK € CffiM?) and the corresponding dif- 
feomorphism ipi,... , ipx that stretch the boundary inside the support of Xi > • • • » XK 

(see, for example, Chapter 6 of [2] for details). Then an equivalent norm in H^e(G) 
is given by 

K 

IMIf£,(G) = \\
U

XO\\H; + Yl M^mWXmtymi'MH;^**.)' 
171=1 

Indeed, writing ~ to denote the equivalent norms, we deduce from Proposition 
2.2(1) and Theorems 3.2 and 3.4 that 

K K 

J
P,eV \MHle(G) ~ E H^mll^^G) ~ HuXollflJ + E llU(,/'m1(-))Xm(V'm1(-))ll^e(Ri)- 

m=0 m=l 

4. Further properties of the spaces H^e{G) . Let p = p(x) be a C00{G) 
function so that Nxpoix) < p(x) < N2PG(X) and \p^(x)Dm+1p(x)\ < N(m) for all 
x e G and for every m = 0,1, In particular, p(x) =0 on dG and all the first-order 
partial derivatives of p are pointwise multipliers in every H^e{G). An example of the 
function p is 

p{x) = YJ^
nu^ 

n€Z 
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where the functions Cn are as in Section 2 with c = 2. 

THEOREM 4.1. 1. The following conditions are equivalent: 

• u € fl^G) anrf pD« G fl^G); 
• u eHJ^iG) and D((M) € ^^(G). 

/n addition, under either of these conditions, the norm \\u\\ip e(G) can be replaced by 

IMIfl^o)+ WPDVWH;-,1^ or by H^HH^^G) + II^MIIH^-^G)- 
2. For every u, 7 € K, 

(4.1) p^Hle{G) = Hle_vu{G)   and   || • lbpV^(G) is equivalent to Wp'" • ||^(G). 

Proo/. It is sufficient to repeat the arguments from the proofs of, respectively, 
Theorem 3.1 and Corollary 2.6 in [3]. □ 

COROLLARY 4.2. 1. Ifue H^e(G), then 

Du£H£lp(G)    and   ||^||^-ip(G) < iV(d,7,P^)IHI^(G). 

2. If po is a bounded function (for example, if G is a bounded domain), then 
HleSG) C H;e2(G) for 6, < 92 and H;(G) C ff^(G) for 6 > d. 

Recall the following notations for continuous functions u in G: 

IMIc(G) = sup Kz)|, MC,(G) = sup Hf~^, v e (o,i). 
xGG x,y€.G       \x~y\ 

THEOREM 4.3. Assume that j-d/p = k + v for some k = 0,1,... and u e (0,1). 
IfueHle(G), then 

m 

£ \\pk+^Dku\\c{G) + [pm+^e/PDmu}c,{G) < iV(d>7,P^)||«||flji,(o). 
k=0 

Proof It is sufficient to repeat the arguments from the proof of Theorem 4.1 in 
[3].D 

Note that if u G H^9(G) with 7 > 1 + d/p and 9 < 0, then, by Theorem 4.3, u 
is continuously differenti'able in G and is equal to zero on the boundary of G. This is 
one reason why the spaces H^e(G) can be considered as a generalization of the usual 
Sobolev spaces with zero boundary conditions. 

5. Degenerate elliptic equations in general domains. Throughout this sec- 
tion, G C Md is a domain with a non-empty boundary but otherwise arbitrary, and 
p is the function introduced at the beginning of Section 4. Consider a second-order 
elliptic differential operator 

C = aiHx)DiDi + ?¥lDi-^, 
p(x) p2(x) 

where £>i = d/dxi and summation over the repeated indices is assumed. A related 
but somewhat different operator is studied in Section 6 of [10]. The objective of this 
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section is to study solvability in H'le{G) of the equation Cu = /.   It follows from 
Theorem 4.3 that, for appropriate d and 7, the solution of the equation will also 
be a classical solution of the Dirichlet problem Cu = /, u\dG = 0.   The values of 
7 E R, 1 < p < 00, and 9 G E will be fixed throughout the section. 

The following assumptions are made. 

ASSUMPTION 5.1. Uniform ellipticity: there exist KI,K2 > 0 SO that, for allx € G 
and £ € Md, Ki|£|2 < a^{x)^ < ^? • 

ASSUMPTION 5.2. Regularity of the coefficients: 

IHU'ifG) + IMU^G) + llcIUl7+i|+7,(G) ^ ^2, 

w;/iere 1/1 = max(2, (7 — 1| + 7'), ^2 = max(l, |7| + 7'). (See beginning of Section 3 for 
the definition ofj'.J 

Note that under assumption 5.2 the operator C is bounded from H^_ {G) to 

Hpf+p(G). Therefore, we say that u G H^l_p(G) is a solution of Cu = f with 

/ e Hl'l^G) if the equality Cu = f holds in H^l^G). 

THEOREM 5.1. Under Assumptions 5.1 and 5.2, there exists a CQ > 0 depending 
only on d,p, 9, the function p, and the coefficients a, b so that, for every f G Hp^p(G) 
and every c(x) satisfying c(x) > CQ, the equation Cu = f has a unique solution 
u G ^CfliJG) and IMI^+i (G) < NUfW^-i (G) with the constant N depending 

only on d, 7,2?, 9, the function p, and the coefficients a,b,c. 

To prove Theorem 5.1, we first establish the necessary a priori estimates, then 
prove the theorem for some special operator £, and finally use the method of continuity 
to extend the result to more general operators. 

LEMMA 5.2. Ifu G ifJ|lp(G) and Assumptions 5.1 and 5.2 hold, then 

IHktlp(G) < N (\\CU\\H;-\V{G) + MH;-IP(G)) 

with N independent of u. 

Proof. Assume first that b = c = 0. Define un(x) = C>-n{2nx)u(2nx) and the 
operator 

An = {ai^2nx)r]-n{2nx) + (1 - r].n{2nx)8i^)Dij, 

where 77 is as in Remark 2.3. Clearly, ||wn||#-y+i < N (\\Aun\\H~<-\ + IMI^-i J, and, 

by (3.1), iV is independent of n. On the other hand, 

Anun{x) = 22n (<;-nCu + 2aijDiC-nDju + a^uDijC-n) (2nx). 

It remains to use the inequalities HJJull^-i < ^Ikll^ < ^ll^llJff^+1 + Ne^WuWjji-i 
with sufficiently small €, and then sum up the corresponding terms according to (2.1). 

If 6, c are not zero, then 

WaVD^uW^-^ < \\Cu\\H;-lp{G) +N\\u\\Hle_p{G) +;V|Mlff-lp(G), 

and the result follows from the interpolation inequality (2.4). □ 
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LEMMA 5.3. If Assumptions 5.1 and 5.2 hold, then there exists a CQ > 0 depending 
on d,p,0, the function p, and the coefficients a,b, so that, for every c(x) satisfying 
c(x) > Co and every u G Lpf(G), 

IMU,..(G) < N\\^Cu\\LfAG) 

with N independent of u. 

Proof. It is enough to consider u G 0^(0). Writing / = -p2Cu, we multiply 
both sides by \u\v~2up6~d and integrate by parts similar to the proof of Theorem 3.16 
in [3]. The result is 

f f\u\lp-2upe-ddx= I (c{x) + h(x)}\u\vp6-ddx, 

where \h(x)\ < Nh and Nh depends on d,p,6, and ||a|U2(G) + IIMUMG) + II^PIUHG)- 

It remains to take CQ = 2^ and use the Holder inequality. □ 
It follows from Lemmas 5.2 and 5.3 that if c(x) > CQ and 7 > 1, then 

(5.1) MB;+I,W < mm^w 

LEMMA 5.4. There exists ac>0 depending on p, 0,7, and the function p so that 
the operator p2(x)A — c is a homeomorphism from H^ (G) to H^ (G). 

Proof. Keeping in mind that p G C0,1(G) and p(x) = 0 on 9G, let p be a 
C0'1^) extension of p so that p G C00(G - dG). Consider a family of diffusion 
processes (Xf, x G Rd,t > 0) defined by 

Cf=x + y/2[ 
Jo 

X?=x + V2      p(XZ)dWa, 
Jo 

where (Wt,t > 0) is a standard d-dimensional Wiener process on some probability 
space (n, J7, P) (see, for example, Chapter V of [1] or Chapter I of [8]). Note that, by 
uniqueness, Xf = x if x G dG, and Xf G G for all £ > 0 as long as x G G. Theorems 
(3.3) and (3.9) from Chapter I of [8] imply that, with probability one, both DX? and 
its inverse are in C(G) for all t > 0. Further analysis shows that, for every p > 1 and 
every positive integer m, 

(5.2) E\\DXf \\pAmiG) +E\\D(X?r1\\PA~(G) < ^ 

with constants iVi and A^2 depending on p,m. 
Assume that / G CQ

0
(G) and define 

N2t 

poo 
u(x) = -E        f{X*)e-~ctdt. 

Jo 

By Theorem 5.8.5 in [1], there exists a ci > 0 depending only on d and p so that, 
for c > Ci, the function u is twice continuously differentiable in G and p2{x)/±u(x) — 
cu(x) = f(x) for all x G G. On the other hand, after repeating the proof of Theorem 
3.2 and using (5.2), we conclude that there exists a C2 depending on d,7,p so that, 
for c > C2 and for every 7 G M, the function u belongs to H^Q (G) and 

MHleiG)<N\\f\\H;AG). 
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The statement of Lemma 5.4 now follows. D 
Proof of Theorem 5.1. Take c as in Lemma 5.4 and define the operators CQ = 

A — c/p2(x) and Co — p2(a;)A — c. Lemmas 5.4 and Theorem 4.1(2) imply that, for 
all 7,0 G E and 1 < p < oo, these operators are homeomorphisms from Hp^p(G) to, 

respectively, fl^G) and ^ip(G). 
Assume first that 7 > 1. Then a priory estimate (5.1) and the method of conti- 

nuity (using the operators A£ + (1 — X)Co, 0 < A < 1) imply the conclusion of the 
theorem. 

If v < 1, then assume first that 0 < u < 1. For / e Hpj)+P(G), define u = 

CoC'^C^f) - C-l{f), where / = (CCQ - CQCJC'
1
^

1
 f). Direct computations 

show that 
. feH;Mp(G) and ||/||^+I,(G) < iV||/||^-Xp(G); 

• u is well defined, u G iif^i (G), IMI^+i (Q) ^ ^ll/llfr-1 (G)* 
an(^ ^ := f* 

This process can be repeated as many time as necessary. Theorem 5.1 is proved. □ 

REMARK 5.5. It follows from Theorem 4.3 that, if the conditions of Theorem 5.1 
hold with 7 > d/p + 2 and 8 < p, then the function u is the classical solution of 

aij{x)Diju + -j^rDiU - -yTT^ = /, a G G;    u\dG = 0. 
p{x) p [x) 
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