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SOBOLEYV SPACES WITH WEIGHTS IN DOMAINS AND
BOUNDARY VALUE PROBLEMS FOR DEGENERATE ELLIPTIC
EQUATIONS*

S. V. LOTOTSKY?

Abstract. A family of Banach spaces is introduced to control the interior smoothness and
boundary behavior of functions in a general domain. Interpolation, embedding, and other proper-
ties of the spaces are studied. As an application, a certain degenerate second-order elliptic partial
differential equation is considered.

1. Introduction. Let G be a domain in R? with a non-empty boundary &G and
pa(z) = dist(z,0G). For 1 < p < oo and 6§ € R define the space Ly ¢(G) as follows:

Lpo(G) = {u: / lu(@)[P ol 4(z)d < oo}
Then we can define the spaces HITO(G), m=1,2,..., so that

po(G) = {u:u,pcDu,...,pED™u € Ly},

where D* denotes generalized derivative of order k. The objective of the current
paper is to define spaces H; o(@), 7 € R, so that, for positive integer vy, the spaces
H "0(G) coincide with the ones introduced above. It will be shown that these spaces
can be easily defined using the spaces H. ’Y(R‘i) of Bessel potentials. Note that u €

+.d—p(G) if and only if u/pg, Du € LP(G) which means that, for bounded G, the

space H d_p(G) coincides with the space H,, 1 (G). As aresult, the spaces H p,e(G) can
be c0n51dered as a certain generalization of the usual Sobolev spaces on G' with zero
boundary conditions. A major application of the spaces H ; o(G) is in the analysis of
the Dirichlet problem for stochastic parabolic equations [5, 7].

Some of the spaces H) o(G) have been studied before. Lions and Magenes [6]
introduced what corresponds to H; 4(G). They constructed the scale by interpolating
between the positive integer 7 for y > 0 and used duality for v < 0. Krylov [3] defined
the spaces H) ,(R$), where R is the half-space. After that, if G is sufficiently regular
and bounded then H ; (G) can be defined using the partition of unity, and this was
done in [7]. Other related examples and references can be found in Chapter 3 of [10].

In this paper, an intrinsic definition (not involving R% ) of the spaces H) »(G) is
given for a general domain G, and the basic properties of the spaces are studied. Once
a suitable definition of the spaces is found, most of the properties follow easily from
the known results. Definition and properties of the spaces H ; o(G) are presented in
Sections 2, 3, and 4. Roughly speaking, the index 7 controls the smoothness inside
the domain, and the index 6 controls the boundary behavior. In particular, the space
H ;,o(G) with sufficiently large v and € < 0 contains functions that are continuous in
the closure of G and vanish on the boundary. In Section 5 some results are presented
about solvability of certain degenerate elliptic equations in a general domain G.
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196 S. V. LOTOTSKY

Throughout the paper, D™ denotes a partial derivative of order m, that is, D™ =
o™ [0x(" - - - 0z for some my +- - -+mgq = m. For two Banach spaces, X, Y, notation
X C Y means that X is continuously embedded into Y.

2. Definition and main properties of the weighted spaces in domains.
Let G C R? be a domain (open connected set) with non-empty boundary G, and
¢ > 1, areal number. Denote by pg(z), z € G, the distance from z to 8G. Forn € Z
and a fixed integer ky > O define the subsets G,, of G by

Gn={z €G:c" % < pg(z) < cTmHho},

Let {¢n, m € Z} be a collection of non-negative functions with the following
properties:

(n € C°(Gn), ID™Ga()] S N(m)™, Y Cala) = 1.

n€ez

The function {,(z) can be constructed by mollifying the characteristic (indicator)
function of G,,. If G,, is an empty set, then the corresponding (, is identical zero.

If u € D'(G), that is, u is a distribution on C§°(G), then {,u is extended by zero
to R? so that ¢,u € D'(R?). The space H) 4(G) is defined as a collection of those
u € D'(G), for which (,u is in H) and the norms ||, ul|g7, n € Z, behave in a certain
way. Recall [10, Section 2.3.3] that the space of Bessel potentials H) is the closure of
Cg°(R?) in the norm [|F~1(1 + [£[*)?/2F - ||, re), where F is the Fourier transform
with inverse F 1.

DEFINITION 2.1. Let G be a domain in R?, 8 and v, real numbers, and p €
(1,400). Take a collection {(x, n € Z} as above. Then

(2.1) H;’(,(G) = {u eD'(G): ||u||’;I;,9(G) = Zc"9||C_n(c"-)u(c"-)||’}{; < oo} .
nez

Since Hp* C Hp? for v; > 72, the definition implies that H%)(G) C H}%(G) for
v >y and all # € R} 1 < p < oo. Still, it is necessary to establish correctness of
Definition 2.1 by showing that the norms defined according to (2.1) are equivalent
for every admissible choice of the numbers ¢, kg and the functions (,. Proving this
equivalence is the main goal of this section.

PROPOSITION 2.2. 1. If u is compactly supported in G, then u € H;O(G) if and
only if u € HY.

2. The set C§°(G) is dense in every H) o(G).

3. If y = m is a non-negative integer, then
(2.2) H}o(G) = {u: ptD*u € Lypp(G), 0 <k <m},
where Ly ¢(G) = Ly(G, p% *(z)dz).

4. If {&n, n € Z} is a system of function so that &, € C§°(Gr), |D™&n(z)] <
N(m)c™", then

> " lle-nle™Jule™ )y < Nlully,

n€eZ
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with N independent of u, and if in addition ), £(x) > d > 0 for all x € G, then the
reverse inequality also holds.

Proof. 1. The result is obvious because, for compactly supported u, the sum in
(2.1) contains only finitely many non-zero terms.

2. Given u € H) 26(G), first approximate u by ux = u - Z|k|<K Ck, and then
mollify ug.

3. The result follows because, for all v € R and all z in the support of {_,,
Ny < c7""p¥(x) < Np with N; and Nj independent of n, v, z.

4. Use that by Theorem 4.2.2 in [9], C$°(R?) functions are pointwise multipliers
in every HJ. O

REMARK 2.3. In the future we will also use a system of non-negative C§°(R?)
functions {n,, n € Z} with the following properties: 7, is supported in {z : ¢7"~ko~1
< pg(z) < ¢kt n(z) = 1 on the support of ¢, |D™nn(z)] < N(m)c™. By
Proposition 2.2(4) the functions 7, can replace {, in (2.1).

PROPOSITION 2.4. 1. For every p € (1,00) and 6,y € R, the space H;,o(G) is a

reflexive Banach space with the dual H;?o, (G), where 1/p+1/p' =1 and 8/p+6'[p' =
d.

2. Ifo<v<ly=Q0-v)p+vn I/p=1-v)/p+v/pi, and § =
(1 =)0 + vb;, then

(2:3) Hy (@) = [Hpp 5,(G), Hy, 6, (G)]o

where [X,Y], is the complex interpolation space of X andY (see [10, Section 1.9] for
the definition and properties of the complex interpolation spaces).

Proof. Let lg(Hg ) be the set of sequences with elements from H)) and the norm

”{fn}”lo(H“r chollfn”fqg

nez

Define bounded linear operators Spo : H) ,(G) — lf,(H;,Y) and Rpg : lz(Hg) —

p,0
H),(G) as follows:

(Sp,ow)n(z) = (-n(c"z)u(c"z), Rpo({fn}) Zﬂ (@) fn(c ).
nez
Note that Ry 9Sp0 = Ide ,(G)- Then, by Theorem 1.2.4 in [10], the space H),(G) is
isomorphic to S, ( (G)) which is a closed subspace of a reflexive Banach space

l"(H 7). This means that H) 7,(G) is also a reflexive Banach space. The interpolation
result (2.3) follows from Theorems 1.2.4 and 1.18.1 in [10].
Denote by (-,-) the duality between H) and H,,”. If v € H, _,Ag, (@), then, by the

Holder inequality, v defines a bounded lmear functlonal on H 79(G) as follows:
— (v,u) = Zc"d(vn,un),

where u,(z) = (—,(c"z)u (c z) and v,(z) = N_n(c”z)v(c"z). Note that if u,v €
C&(G), then (v,u) = [, u(z)v(z)dz.
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Conversely, if V is a bounded linear functional on H;(G), then we use the Hahn-

Banach theorem and the equality (I(HJ)))' = l_e” /e (H,") to construct v € H,} (G)
so that V(u) = (v,u). O
One consequence of (2.3) is the interpolation inequality

(2.4) llull ey ) = ellullzze, @) + N o e)llullgy, () €> 0.

COROLLARY 2.5. The space H; ¢ does not depend, up to equivalent norms, on the
specific choice of the numbers ¢ and ko and the functions (,. Moreover, the distance
function pg can be replaced with any measurable function p satisfying Nipg(z) <
p(z) < Nopg(z) for all x € G, with Ny, Ny independent of x.

Proof. By Proposition 2.2(3), we have the result for non-negative integer +.
For general v > 0 the result then follows from (2.3), where we take pp = p; = p,
6o = 61 = 6, and integer 7o, 1. After that, the result for v < 0 follows by duality. O

In view of Corollary 2.5, it will be assumed from now on that ¢ = 2 and ko = 1.

REMARK 2.6. If X is a Banach space of generalized functions on R?, then we can
define the space Xy(G) according to (2.1) by replacing the norm || - ||z with || - |x.
In particular, we can define the spaces B) ,(G) and F/ ,(G) using the spaces By ,
and F}), described in Section 2.3.1 of [10] Results 31m11ar to Propositions 2.2 and 2 4
can then be proved in the same way.

EXAMPLE. (cf. [5, Definition 1.1].) Let G = R% = {z = (21,...,%q) € R¢ : 71 >
0} and ¢ € C§°((b1,b2)), 0 < by, by > 3b;. Define ((z) ¢(z1) and

HYy = {u € D'(G) ||u|| = e™||Cu(e” My < oo}
neZ
It follows that H , = H) ,(R}) with H) 5(R%) defined according to (2.1), where
c=e, pc(z) = 1, (u(z) = ((e™x)/ 3, C (€ :c) and ko is the smallest positive integer
for which by > e %0, by < eko. 00

3. Pointwise multipliers, change of variables, and localization. A func-
tion a = a(z) is a pointwise multiplier in a liner normed function space X if the
operation of multiplication by a is defined and continuous in X. To describe the
pointwise multlphers in the space H ,(G), we need some prehmmary constructions.
For v € R define 'y € [0,1) as follows If v is an integer, then ' = 0; if v is not
an integer, then 7/ is any number from the interval (0,1) so that |y| + 7' is not an
integer. The space of pointwise multipliers in H)) is given by

[ La(®), =0
B+ = ¢ ¢n-11 (RY), |yl=n=12,...
CH7' (R?), otherwise,

where C*~11(R?) is the set of functions from C™~1(R?) whose derivatives of order
n —1 are uniformly Lipschitz continuous. In other words, if v € H) and a € B+
then

llaullgy < N (v, d,p)llall prar [lllag -

For non-negative integer ~y this follows by direct computation, for positive non-integer
7, from Corollary 4.2.2(ii) in [9], and for negative v, by duality.
For v > 0, define the space A”(G) as follows:
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1. if v = 0, then A”(G) = Lo (G);
2. ifv=m=12,..., then

AY(G) ={a:a,pcDa,...,pE 'D™ ta € Lo(G), pE D™ a € C*(G)},

m—1

llallav(ay = ZHPchaHLm(G)HlP D™allcon(g);
k=0

3. fv=m+4, where m=0,1,2,...,d € (0,1), then

A*(G) ={a:a,paDa,...,pFD™a € Loo(G), p¢D™a € C°(G)},

m
lallas @ = Y llo& D™allz.(c) + 06 D™allcs(a)-
k=0

Note that, for every a € A¥(G) and n € Z,

(3.1) I{=n(2™)a(2™ )5~ < Nllallax(a)
with N independent of n.
THEOREM 3.1. Ifa € A7 (@), then

”au“H;,e(G) < N(d, ’Y,P)||a“Ah|+-r'(G) '“u“HZ,o(G)'

Proof. We have to show that |[n-,(2"-)a(2™)||gl1++ < Nllall 114+ (gy with
constant N independent of n. The result is obvious for v = 0; for |y| € (0,1] it follows
from the inequality (with § = |y| ++')

[1-n(z)a(z) = n-n(®)a)| < n-n()p5’ (@)la(z)p% (@) — a(y)p% V)|
+1a()] 11-n(2) = 1-n(®)] + 1-n(z)pg’ @)la()| 0% (z) — P& )|
and the observation that both 2"7_, and pg are uniformly Lipschitz continuous. If
|7] > 1, we apply the same arguments to the corresponding derivatives. O

Next, we study the following question: for what mappings ¢ : G; — G5 is the
operator u(-) = u(y(-)) continuous from H) ,(G2) to H, ;(G1)?

THEOREM 3.2. Suppose that G1 and G2 are domains with non-empty boundaries
and Y : G1 = Go is a C'-diffeomorphism so that y(8G;) = 8Gs. For a positive
integer m define v = max(m — 1,0). If Dy € A¥(G1), then, for every v € [—v,m]
and u € H) ;(G»),

Nlu(@ (e 4 (61) < Nllullaz 2

with N independent of .
Proof. Denote by ¢ the inverse of ¥. If v = 0, then

@O @ = / ()P o5 () Do () dy
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and the result follows because uniform Lipschitz continuity of pg,, ¥, and ¢ implies
that the ratio pg, (#(2))/pc, () is uniformly bounded from above and below. If
v = m, the computati-n is similar. After that, for v € (0,m), the result follows by
interpolation, and for y € [-v,0), by duality. O

The last result in this section is about localization. It answers the following
question: for what collections of C*°(G) functions {&,k = 1,2,...} are the values
of “““’;-I;(,(G) and Y, HUC"”%;',,(G) comparable? To begin with, let us recall the

corresponding theorem for H,.

THEOREM 3.3. ([4, Lemma 6.7].) If {&, k= 0,1,...,} is a collection of C*®(R?)
functions so that sup, 3_, |[D™&(z)| < M(m),m > 0, then 3,5, ||§kv||§[;, < N||v||’I’{;,
with N independent of v. If in addition inf; Y, |k (2)|P > & then the reverse inequality
also holds: Ilvll’;{g <N iso llfkvllf{;, with N independent of v.

The following is the analogous result for H) o(G).

THEOREM 3.4. Suppose that {xr, k > 1} is a collection of C*(G) func-
tions so that sup,cg > i, PE ()| D™xk(z)] < N(m),m > 0. Then ), ““Xk“%;fg((;) <
N]]u”’l’{;,‘e(a). If, in addition, infzeq Y, |Xk(2)|P > 6 for some 6 > 0, then ”“”?{3_8((3)
< NZk ”uXIc”l;{;'G(G)-

Proof. With Xo,n = 1= 17n, Xk.n(2) = Xk(€)7-n(2), k > 1, we find

> lluxilllyy @y = 22 D 2" IR (2" )Cn (2" 023y

k>1 nEZ k>0

Both statements of the theorem now follow from Theorem 3.3. O

EXAMPLE. (cf. [7, Section 2].) Let G be a bounded domain of class C171*+2 with
a partition of unity xo € C§(G),x1,--- Xk € CP(R?) and the corresponding dif-
feomorphism 1, ...,k that stretch the boundary inside the support of x1,... , XK
(see, for example, Chapter 6 of [2] for details). Then an equivalent norm in H ;” o(G)
is given by

Nullezy ) = lluxollay + Z llu(@m! (Dxm @m! (N7, @e)-

m=1

Indeed, writing ~ to denote the equivalent norms, we deduce from Proposition
2.2(1) and Theorems 3.2 and 3.4 that

lullez ,(a) ~ Z luxmllzy ) ~ lluxollmy + Z llu(m! (Dxm @' Dl ,me)-

m=0 m=1

4. Further properties of the spaces H) ,(G) . Let p = p(z) be a C*(G)

function so that Nypg(z) < p(z) < Napg(z) and |pZ (z) D™ p(z)| < N(m) for all
z € G and for every m = 0,1,.... In particular, p(z) = 0 on 0G and all the first-order
partial derivatives of p are pointwise multipliers in every H ;” o(G). An example of the

function p is
= Z 27" ()
nez
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where the functions (, are as in Section 2 with ¢ = 2.

THEOREM 4.1. 1. The following conditions are equivalent:
o u€ H),(G);

e u€ H7;1(G) and pDu € H'Y_l(G),
su€Hy 5 (G) and D(pu) € ; (@.
In addition, under either of these condztzons the norm ||u|| H ,(G) con be replaced by

||U||H;‘91(G) + ||PDU”H;1_61(G) or by ”U”H;’al ot “D(PU)”H;_al(m
2. For every v,y € R,

(4.1) p"H)o(G) = HJ,_,,(G) and |- &z ,_,,(c) is equivalent to lo™ - ||H;,G(G)~

Proof. Tt is sufficient to repeat the arguments from the proofs of, respectively,
Theorem 3.1 and Corollary 2.6 in [3]. O

COROLLARY 4.2. 1. Ifu € H) 4(G), then
Du€ H};A,(G) and [[Dullys ) < N@d7,p.0)llullm, (G).

2. If pG zs a bounded function (for emmple if G is a bounded domain), then
(G)C H, 0 (G) for 61 < 63 and HY(G) C H) 4(G) for 6 > d.

Recall the following notations for continuous functions uin G:

P91

[u(z) = vl ¢ 1),

)

u G—supux u)ov(g) = Sup
llullc(c) |lu(z)l, [ulcr(c) iy A T

THEOREM 4.3. Assume that y—d/p = k+v for somek =0,1,... andv € (0,1).
Ifu € H)»(G), then

m
> 1P Drulig(a) + [0 TP D™l ev () < N (A, 0, 0)lullaz ,(6)-
k=0

Proof. Tt is sufficient to repeat the arguments from the proof of Theorem 4.1 in
[3]. O

Note that if u € H) y(G) with v > 1 +d/p and 6 <0, then, by Theorem 4.3, u
is continuously dlfferentlable 1n G and is equal to zero on the boundary of G. This is
one reason why the spaces H. p,o (G) can be considered as a generalization of the usual
Sobolev spaces with zero boundary conditions.

5. Degenerate elliptic equations in general domains. Throughout this sec-
tion, G C R? is a domain with a non-empty boundary but otherwise arbitrary, and
p is the function introduced at the beginning of Section 4. Consider a second-order
elliptic differential operator

b, _ @)
£=a?@DiD; + Ty D= By

where D; = 8/8z; and summation over the repeated indices is assumed. A related
but somewhat different operator is studied in Section 6 of [10]. The objective of this
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section is to study solvability in H; ¢(G) of the equation Lu = f. It follows from
Theorem 4.3 that, for appropriate 6 and <, the solution of the equation will also
be a classical solution of the Dirichlet problem Lu = f, ulsg = 0. The values of
vy€ER,1 <p<oo,and f € R will be fixed throughout the section.

The following assumptions are made.

ASSUMPTION 5.1. Uniform ellipticity: there ezist k1, k2 > 0 so that, for allz € G
and € € RY, k1[¢]* < a¥ ()€€ < o€

ASSUMPTION 5.2. Regularity of the coefficients:
llall 441 (@) + lIbll av2 () + ”c”Al'r+1I+7’(G) < K2,

where v; = max(2, |y — 1| +7'), v2 = max(1, [y|+7'). (See beginning of Section 3 for
the definition of v'.)

Note that under assumption 5.2 the operator £ is bounded from H; ﬁp(G) to

H) ;:_p(G). Therefore, we say that u € Hg,jip(G) is a solution of Lu = f with

f € H) 51 (G) if the equality Lu = f holds in H;;ip(G)_

THEOREM 5.1. Under Assumptions 5.1 and 5.2, there exists a co > 0 depending
only on d, p, 0, the function p, and the coefficients a, b so that, for every f € H; ;_}_p(G)
and every c(z) satisfying c(z) > co, the equation Lu = f has a unique solution

1 | )
u € Hg,j_p(G) and I'””H;fg‘_p(a) < N]lfllH;,;iP(G) with the constant N depending

only on d,~v,p,0, the function p, and the coefficients a, b, c.

To prove Theorem 5.1, we first establish the necessary a priori estimates, then
prove the theorem for some special operator £, and finally use the method of continuity
to extend the result to more general operators.

LEMMA 5.2. Ifu € Hg’ﬁp(G) and Assumptions 5.1 and 5.2 hold, then

”U”H;_";‘_P(G) <N (”CUHHZ,ZL(G) + HUHH;";lp(G))

with N independent of u.

Proof. Assume first that b = ¢ = 0. Define u,(z) = (—n(2"z)u(2"z) and the
operator

Ap = (a9 (272)1-n(272) + (1 = 1-n(2"2)07)) Dy,

where 7 is as in Remark 2.3. Clearly, ||un||H;,+1 <N (HAunHH;,-l + ||u||H;,—1), and,
by (3.1), N is independent of n. On the other hand,

Apun(z) = 22" ((—nLu + 207 Dy, Dju + a“uD;;j(_n) (2"z).

It remains to use the inequalities ||Du||H;,-1 < Nljullgz < ellulngﬂ + Ne‘lllullH;_l
with sufficiently small €, and then sum up the corresponding terms according to (2.1).
If b, ¢ are not zero, then

”a”D”“”H;_;},_P(G) < ”‘CUHH;,;:_F(G) + N”'U'”H;’ @ * N”U”H;_zl_p(c),

0—p

and the result follows from the interpolation inequality (2.4). O
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LEMMA 5.3. If Assumptions 5.1 and 5.2 hold, then there exists a co > 0 depending
on d,p,8, the function p, and the coefficients a,b, so that, for every c(z) satisfying
c(z) > co and every u € L, 9(G),

lullz, o(c) < Nllp*Lulls, o)

with N independent of u.

Proof. Tt is enough to consider u € C$°(G). Writing f = —p?Lu, we multiply
both sides by |u|P~2up?~¢ and integrate by parts similar to the proof of Theorem 3.16
in [3]. The result is

/c:f|u|l7—2up0—ddx = /G (c(w) +h(m)) |U|ppo_ddm,

where |h(z)| < Nj and N depends on d,p,0, and ||a|| a2(a) + 1Bl a1(c) + | Dpll a1(c)-
It remains to take co = 2N, and use the Holder inequality. O
It follows from Lemmas 5.2 and 5.3 that if ¢(z) > ¢p and y > 1, then

(5.1) el @) < NliLullgss o)

LEMMA 5.4. There ezists a ¢ > 0 depending on p,0,~, and the function p so that
the operator p?(xz)A — € is a homeomorphism from H;,’;I(G) to H) S H(G).

Proof. Keeping in mind that p € C%!(G) and p(z) = 0 on OG, let p be a
C%'(R?) extension of p so that p € C=°(G — 8G). Consider a family of diffusion
processes (XF, = € R%,t > 0) defined by

t
XF =43 / AXE)dW,,
0

where (W;,t > 0) is a standard d-dimensional Wiener process on some probability
space (2, F, P) (see, for example, Chapter V of [1] or Chapter I of [8]). Note that, by
uniqueness, XF =z if x € 8G, and X € G for all t > 0 as long as x € G. Theorems
(3.3) and (3.9) from Chapter I of [8] imply that, with probability one, both DX and
its inverse are in C(G) for all ¢ > 0. Further analysis shows that, for every p > 1 and
every positive integer m,

(52) BIIDXE |y ) + BID(XE) " [Fym (g < Nie™*

with constants N; and Ny depending on p,m.
Assume that f € C§°(G) and define

u(z) = _E/:o F(XF)e~dt.

By Theorem 5.8.5 in [1], there exists a ¢; > 0 depending only on d and p so that,
for ¢ > c1, the function u is twice continuously differentiable in G and p?(z)Au(z) —
cu(z) = f(z) for all z € G. On the other hand, after repeating the proof of Theorem
3.2 and using (5.2), we conclude that there exists a co depending on d, 7, p so that,
for ¢ > ¢, and for every v € R, the function u belongs to H ,(G) and

lullery ) < Nllfllaz 4 (6)-
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The statement of Lemma 5.4 now follows. O

Proof of Theorem 5.1. Take ¢ as in Lemma 5.4 and define the operators £y =
A - ¢/p*(z) and Ly = p*(z)A — ¢. Lemmas 5.4 and Theorem 4.1(2) imply that, for
all v, e R and 1 < p < 00, these operators are homeomorphisms from H. 9—p(G) to,
respectively, H +p(G) and H 0*p(G)

Assume ﬁrst that v > 1. Then a priory estimate (5.1) and the method of conti-
nuity (using the operators AL + (1 — X)Ly, 0 < A < 1) imply the conclusion of the
theorem.

If v < 1, then assume first that 0 < v < 1. For f € p9+p(G), define u =
LoL™ VLG f) = L71(f), where f = (LLy — LoL)L™ (L5 f). Direct computations
show that

o [ € H:y (@) and [llsy, @) < Nlifllm=t (o

e u is well defined, u € 1’,""9'_1_],(6’) ||u||H.,+1 @ < < N||f||Hu L and Lu = f.

This process can be repeated as many time as necessary Theorem 5 1 is proved. O

REMARK 5.5. It follows from Theorem 4.3 that, if the conditions of Theorem 5.1
hold with v > d/p+ 2 and 8 < p, then the function u is the classical solution of

b@) @)

aij(x)D,-ju + (@) iU — 2(2)

u=f, ¢ € G, ulac,':O.
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