SOBOLEV SPACES WITH WEIGHTS IN DOMAINS AND BOUNDARY VALUE PROBLEMS FOR DEGENERATE ELLIPTIC EQUATIONS*

S. V. LOTOTSKY[†]

Abstract. A family of Banach spaces is introduced to control the interior smoothness and boundary behavior of functions in a general domain. Interpolation, embedding, and other properties of the spaces are studied. As an application, a certain degenerate second-order elliptic partial differential equation is considered.

1. Introduction. Let G be a domain in \mathbb{R}^d with a non-empty boundary ∂G and $\rho_G(x) = dist(x, \partial G)$. For $1 \leq p < \infty$ and $\theta \in \mathbb{R}$ define the space $L_{p,\theta}(G)$ as follows:

$$L_{p,\theta}(G) = \{u : \int_G |u(x)|^p \rho_G^{\theta-d}(x) dx < \infty\}.$$

Then we can define the spaces $H_{p,\theta}^m(G)$, $m=1,2,\ldots$, so that

$$H_{p,\theta}^m(G) = \{u : u, \rho_G D u, \dots, \rho_G^m D^m u \in L_{p,\theta}\},\$$

where D^k denotes generalized derivative of order k. The objective of the current paper is to define spaces $H_{p,\theta}^{\gamma}(G)$, $\gamma \in \mathbb{R}$, so that, for positive integer γ , the spaces $H_{p,\theta}^{\gamma}(G)$ coincide with the ones introduced above. It will be shown that these spaces can be easily defined using the spaces $H_p^{\gamma}(\mathbb{R}^d)$ of Bessel potentials. Note that $u \in H_{p,d-p}^1(G)$ if and only if u/ρ_G , $Du \in L_p(G)$, which means that, for bounded G, the

space $H^1_{p,d-p}(G)$ coincides with the space $H^1_p(G)$. As a result, the spaces $H^\gamma_{p,\theta}(G)$ can be considered as a certain generalization of the usual Sobolev spaces on G with zero boundary conditions. A major application of the spaces $H^\gamma_{p,\theta}(G)$ is in the analysis of the Dirichlet problem for stochastic parabolic equations [5, 7].

Some of the spaces $H^{\gamma}_{p,\theta}(G)$ have been studied before. Lions and Magenes [6] introduced what corresponds to $H^{\gamma}_{2,d}(G)$. They constructed the scale by interpolating between the positive integer γ for $\gamma > 0$ and used duality for $\gamma < 0$. Krylov [3] defined the spaces $H^{\gamma}_{p,\theta}(\mathbb{R}^d_+)$, where \mathbb{R}^d_+ is the half-space. After that, if G is sufficiently regular and bounded, then $H^{\gamma}_{p,\theta}(G)$ can be defined using the partition of unity, and this was done in [7]. Other related examples and references can be found in Chapter 3 of [10].

In this paper, an intrinsic definition (not involving \mathbb{R}^d_+) of the spaces $H^{\gamma}_{p,\theta}(G)$ is given for a general domain G, and the basic properties of the spaces are studied. Once a suitable definition of the spaces is found, most of the properties follow easily from the known results. Definition and properties of the spaces $H^{\gamma}_{p,\theta}(G)$ are presented in Sections 2, 3, and 4. Roughly speaking, the index γ controls the smoothness inside the domain, and the index θ controls the boundary behavior. In particular, the space $H^{\gamma}_{p,\theta}(G)$ with sufficiently large γ and $\theta < 0$ contains functions that are continuous in the closure of G and vanish on the boundary. In Section 5 some results are presented about solvability of certain degenerate elliptic equations in a general domain G.

^{*}Received Sept 7, 1999.

[†]Department of Mathematics, M. I. T., Cambridge, MA 02139-4307, USA (lototsky@math. mit.edu). This work was partially supported by the NSF grant DMS-9972016.

Throughout the paper, D^m denotes a partial derivative of order m, that is, $D^m = \frac{\partial^m}{\partial x_1^{m_1} \cdots \partial x_d^{m_d}}$ for some $m_1 + \cdots + m_d = m$. For two Banach spaces, X, Y, notation $X \subset Y$ means that X is continuously embedded into Y.

2. Definition and main properties of the weighted spaces in domains. Let $G \subset \mathbb{R}^d$ be a domain (open connected set) with non-empty boundary ∂G , and c > 1, a real number. Denote by $\rho_G(x)$, $x \in G$, the distance from x to ∂G . For $n \in \mathbb{Z}$ and a fixed integer $k_0 > 0$ define the subsets G_n of G by

$$G_n = \{x \in G : c^{-n-k_0} < \rho_G(x) < c^{-n+k_0}\}.$$

Let $\{\zeta_n, n \in \mathbb{Z}\}$ be a collection of non-negative functions with the following properties:

$$\zeta_n \in C_0^{\infty}(G_n), \ |D^m \zeta_n(x)| \le N(m)c^{mn}, \ \sum_{n \in \mathbb{Z}} \zeta_n(x) = 1.$$

The function $\zeta_n(x)$ can be constructed by mollifying the characteristic (indicator) function of G_n . If G_n is an empty set, then the corresponding ζ_n is identical zero.

If $u \in \mathcal{D}'(G)$, that is, u is a distribution on $C_0^{\infty}(G)$, then $\zeta_n u$ is extended by zero to \mathbb{R}^d so that $\zeta_n u \in \mathcal{D}'(\mathbb{R}^d)$. The space $H_{p,\theta}^{\gamma}(G)$ is defined as a collection of those $u \in \mathcal{D}'(G)$, for which $\zeta_n u$ is in H_p^{γ} and the norms $\|\zeta_n u\|_{H_p^{\gamma}}$, $n \in \mathbb{Z}$, behave in a certain way. Recall [10, Section 2.3.3] that the space of Bessel potentials H_p^{γ} is the closure of $C_0^{\infty}(\mathbb{R}^d)$ in the norm $\|\mathcal{F}^{-1}(1+|\xi|^2)^{\gamma/2}\mathcal{F}\cdot\|_{L_p(\mathbb{R}^d)}$, where \mathcal{F} is the Fourier transform with inverse \mathcal{F}^{-1} .

DEFINITION 2.1. Let G be a domain in \mathbb{R}^d , θ and γ , real numbers, and $p \in (1, +\infty)$. Take a collection $\{\zeta_k, n \in \mathbb{Z}\}$ as above. Then

$$(2.1) \quad H_{p,\theta}^{\gamma}(G) := \left\{ u \in \mathcal{D}'(G) : \|u\|_{H_{p,\theta}^{\gamma}(G)}^{p} := \sum_{n \in \mathbb{Z}} c^{n\theta} \|\zeta_{-n}(c^{n}\cdot)u(c^{n}\cdot)\|_{H_{p}^{\gamma}}^{p} < \infty \right\}.$$

Since $H_{p^1}^{\gamma_1} \subset H_{p^2}^{\gamma_2}$ for $\gamma_1 > \gamma_2$, the definition implies that $H_{p,\theta}^{\gamma_1}(G) \subset H_{p,\theta}^{\gamma_2}(G)$ for $\gamma_1 > \gamma_2$ and all $\theta \in \mathbb{R}$, $1 \leq p < \infty$. Still, it is necessary to establish correctness of Definition 2.1 by showing that the norms defined according to (2.1) are equivalent for every admissible choice of the numbers c, k_0 and the functions ζ_n . Proving this equivalence is the main goal of this section.

PROPOSITION 2.2. 1. If u is compactly supported in G, then $u \in H_{p,\theta}^{\gamma}(G)$ if and only if $u \in H_p^{\gamma}$.

- 2. The set $C_0^{\infty}(G)$ is dense in every $H_{p,\theta}^{\gamma}(G)$.
- 3. If $\gamma = m$ is a non-negative integer, then

(2.2)
$$H_{p,\theta}^{\gamma}(G) = \left\{ u : \rho_G^k D^k u \in L_{p,\theta}(G), \ 0 \le k \le m \right\},$$

where $L_{p,\theta}(G) = L_p(G, \rho_G^{\theta-d}(x)dx)$.

4. If $\{\xi_n, n \in \mathbb{Z}\}$ is a system of function so that $\xi_n \in C_0^{\infty}(G_n)$, $|D^m \xi_n(x)| \leq N(m)c^{mn}$, then

$$\sum_{n\in\mathbb{Z}} c^{n\theta} \|\xi_{-n}(c^n\cdot)u(c^n\cdot)\|_{H_p^{\gamma}}^p \le N \|u\|_{H_{p,\theta}^{\gamma}}^p$$

with N independent of u, and if in addition $\sum_n \xi(x) \geq \delta > 0$ for all $x \in G$, then the reverse inequality also holds.

Proof. 1. The result is obvious because, for compactly supported u, the sum in (2.1) contains only finitely many non-zero terms.

- 2. Given $u \in H_{p,\theta}^{\gamma}(G)$, first approximate u by $u_K = u \cdot \sum_{|k| \leq K} \zeta_k$, and then mollify u_K .
- 3. The result follows because, for all $\nu \in \mathbb{R}$ and all x in the support of ζ_{-n} , $N_1 \leq c^{-\nu n} \rho_G^{\nu}(x) \leq N_2$ with N_1 and N_2 independent of n, ν, x .
- 4. Use that, by Theorem 4.2.2 in [9], $C_0^{\infty}(\mathbb{R}^d)$ functions are pointwise multipliers in every H_p^{γ} . \square

REMARK 2.3. In the future we will also use a system of non-negative $C_0^{\infty}(\mathbb{R}^d)$ functions $\{\eta_n, n \in \mathbb{Z}\}$ with the following properties: η_n is supported in $\{x : c^{-n-k_0-1} < \rho_G(x) < c^{-n+k_0+1}\}$, $\eta(x) = 1$ on the support of ζ_n , $|D^m \eta_n(x)| \leq N(m)c^{mn}$. By Proposition 2.2(4) the functions η_n can replace ζ_n in (2.1).

PROPOSITION 2.4. 1. For every $p \in (1, \infty)$ and $\theta, \gamma \in \mathbb{R}$, the space $H_{p,\theta}^{\gamma}(G)$ is a reflexive Banach space with the dual $H_{p',\theta'}^{-\gamma}(G)$, where 1/p+1/p'=1 and $\theta/p+\theta'/p'=d$.

2. If $0 < \nu < 1$, $\gamma = (1 - \nu)\gamma_0 + \nu\gamma_1$, $1/p = (1 - \nu)/p_0 + \nu/p_1$, and $\theta = (1 - \nu)\theta_0 + \nu\theta_1$, then

(2.3)
$$H_{p,\theta}^{\gamma}(G) = [H_{p_0,\theta_0}^{\gamma_0}(G), H_{p_1,\theta_1}^{\gamma_1}(G)]_{\nu},$$

where $[X,Y]_{\nu}$ is the complex interpolation space of X and Y (see [10, Section 1.9] for the definition and properties of the complex interpolation spaces).

Proof. Let $l_p^{\theta}(H_p^{\gamma})$ be the set of sequences with elements from H_p^{γ} and the norm

$$\|\{f_n\}\|_{l_p^{\theta}(H_p^{\gamma})}^p = \sum_{n \in \mathbb{Z}} c^{n\theta} \|f_n\|_{H_p^{\gamma}}^p.$$

Define bounded linear operators $S_{p,\theta}: H_{p,\theta}^{\gamma}(G) \to l_p^{\theta}(H_p^{\gamma})$ and $R_{p,\theta}: l_p^{\theta}(H_p^{\gamma}) \to H_{p,\theta}^{\gamma}(G)$ as follows:

$$(S_{p,\theta}u)_n(x) = \zeta_{-n}(c^n x)u(c^n x), \quad R_{p,\theta}(\{f_n\})(x) = \sum_{n \in \mathbb{Z}} \eta_{-n}(x)f_n(c^{-n} x).$$

Note that $R_{p,\theta}S_{p,\theta} = \operatorname{Id}_{H_{p,\theta}^{\gamma}(G)}$. Then, by Theorem 1.2.4 in [10], the space $H_{p,\theta}^{\gamma}(G)$ is isomorphic to $S_{p,\theta}(H_{p,\theta}^{\gamma}(G))$, which is a closed subspace of a reflexive Banach space $l_p^{\theta}(H_p^{\gamma})$. This means that $H_{p,\theta}^{\gamma}(G)$ is also a reflexive Banach space. The interpolation result (2.3) follows from Theorems 1.2.4 and 1.18.1 in [10].

Denote by (\cdot, \cdot) the duality between H_p^{γ} and $H_{p'}^{-\gamma}$. If $v \in H_{p',\theta'}^{-\gamma}(G)$, then, by the Hölder inequality, v defines a bounded linear functional on $H_{p,\theta}^{\gamma}(G)$ as follows:

$$u \mapsto \langle v, u \rangle = \sum_{n} c^{nd}(v_n, u_n),$$

where $u_n(x) = \zeta_{-n}(c^n x) u(c^n x)$ and $v_n(x) = \eta_{-n}(c^n x) v(c^n x)$. Note that if $u, v \in C_0^{\infty}(G)$, then $\langle v, u \rangle = \int_G u(x) v(x) dx$.

Conversely, if V is a bounded linear functional on $H_{p,\theta}^{\gamma}(G)$, then we use the Hahn-Banach theorem and the equality $(l_p^{\theta}(H_p^{\gamma}))' = l_{p'}^{-\theta p'/p}(H_{p'}^{-\gamma})$ to construct $v \in H_{p',\theta'}^{-\gamma}(G)$ so that $V(u) = \langle v, u \rangle$. \square

One consequence of (2.3) is the interpolation inequality

$$(2.4) ||u||_{H^{\gamma_0}_{p,\theta}(G)} = \epsilon ||u||_{H^{\gamma_0}_{p,\theta_0}(G)} + N(\nu, p, \epsilon) ||u||_{H^{\gamma_1}_{p,\theta_1}(G)}, \ \epsilon > 0.$$

COROLLARY 2.5. The space $H_{p,\theta}^{\gamma}$ does not depend, up to equivalent norms, on the specific choice of the numbers c and k_0 and the functions ζ_n . Moreover, the distance function ρ_G can be replaced with any measurable function ρ satisfying $N_1\rho_G(x) \leq \rho(x) \leq N_2\rho_G(x)$ for all $x \in G$, with N_1, N_2 independent of x.

Proof. By Proposition 2.2(3), we have the result for non-negative integer γ . For general $\gamma > 0$ the result then follows from (2.3), where we take $p_0 = p_1 = p$, $\theta_0 = \theta_1 = \theta$, and integer γ_0 , γ_1 . After that, the result for $\gamma < 0$ follows by duality. \square In view of Corollary 2.5, it will be assumed from now on that c = 2 and $k_0 = 1$.

REMARK 2.6. If X is a Banach space of generalized functions on \mathbb{R}^d , then we can define the space $X_{\theta}(G)$ according to (2.1) by replacing the norm $\|\cdot\|_{H^{\gamma}_{p}}$ with $\|\cdot\|_{X}$. In particular, we can define the spaces $B^{\gamma}_{p,q;\theta}(G)$ and $F^{\gamma}_{p,q;\theta}(G)$ using the spaces $B^{\gamma}_{p,q}$ and $F^{\gamma}_{p,q}$ described in Section 2.3.1 of [10]. Results similar to Propositions 2.2 and 2.4 can then be proved in the same way.

Example. (cf. [5, Definition 1.1].) Let $G = \mathbb{R}^d_+ = \{x = (x_1, \dots, x_d) \in \mathbb{R}^d : x_1 > 0\}$ and $\zeta \in C_0^\infty((b_1, b_2)), \ 0 < b_1, \ b_2 > 3b_1$. Define $\zeta(x) = \zeta(x_1)$ and

$$H_{p,\theta}^{\gamma} = \left\{ u \in \mathcal{D}'(G) : \|u\|_{H_{p,\theta}^{\gamma}}^{p} := \sum_{n \in \mathbb{Z}} e^{n\theta} \|\zeta u(e^{n}\cdot)\|_{H_{p}^{\gamma}}^{p} < \infty \right\}.$$

It follows that $H_{p,\theta}^{\gamma} = H_{p,\theta}^{\gamma}(\mathbb{R}_{+}^{d})$ with $H_{p,\theta}^{\gamma}(\mathbb{R}_{+}^{d})$ defined according to (2.1), where c = e, $\rho_{G}(x) = x_{1}$, $\zeta_{n}(x) = \zeta(e^{n}x)/\sum_{k} \zeta(e^{k}x)$, and k_{0} is the smallest positive integer for which $b_{1} > e^{-k_{0}}$, $b_{2} < e^{k_{0}}$. \square

3. Pointwise multipliers, change of variables, and localization. A function a=a(x) is a pointwise multiplier in a liner normed function space X if the operation of multiplication by a is defined and continuous in X. To describe the pointwise multipliers in the space $H_{p,\theta}^{\gamma}(G)$, we need some preliminary constructions. For $\gamma \in \mathbb{R}$ define $\gamma' \in [0,1)$ as follows. If γ is an integer, then $\gamma' = 0$; if γ is not an integer, then γ' is any number from the interval (0,1) so that $|\gamma| + \gamma'$ is not an integer. The space of pointwise multipliers in H_p^{γ} is given by

$$B^{|\gamma|+\gamma'} = \begin{cases} L_{\infty}(\mathbb{R}^d), & \gamma = 0\\ C^{n-1,1}(\mathbb{R}^d), & |\gamma| = n = 1, 2, \dots\\ C^{|\gamma|+\gamma'}(\mathbb{R}^d), & \text{otherwise,} \end{cases}$$

where $C^{n-1,1}(\mathbb{R}^d)$ is the set of functions from $C^{n-1}(\mathbb{R}^d)$ whose derivatives of order n-1 are uniformly Lipschitz continuous. In other words, if $u \in H_p^{\gamma}$ and $a \in B^{|\gamma|+\gamma'}$, then

$$||au||_{H_p^{\gamma}} \le N(\gamma, d, p) ||a||_{B^{|\gamma|+\gamma'}} ||u||_{H_p^{\gamma}}.$$

For non-negative integer γ this follows by direct computation, for positive non-integer γ , from Corollary 4.2.2(ii) in [9], and for negative γ , by duality.

For $\nu \geq 0$, define the space $A^{\nu}(G)$ as follows:

- 1. if $\nu = 0$, then $A^{\nu}(G) = L_{\infty}(G)$;
- 2. if $\nu = m = 1, 2, ...$, then

$$A^{\nu}(G) = \{a : a, \rho_G D a, \dots, \rho_G^{m-1} D^{m-1} a \in L_{\infty}(G), \rho_G^m D^{m-1} a \in C^{0,1}(G)\},\$$

$$||a||_{A^{\nu}(G)} = \sum_{k=0}^{m-1} ||\rho_G^k D^k a||_{L_{\infty}(G)} + ||\rho_G^m D^m a||_{C^{0,1}(G)};$$

3. if $\nu = m + \delta$, where $m = 0, 1, 2, ..., \delta \in (0, 1)$, then

$$A^{\nu}(G) = \{a : a, \rho_G D a, \dots, \rho_G^m D^m a \in L_{\infty}(G), \ \rho_G^{\nu} D^m a \in C^{\delta}(G)\},\$$

$$||a||_{A^{\nu}(G)} = \sum_{k=0}^{m} ||\rho_G^k D^m a||_{L_{\infty}(G)} + ||\rho_G^{\nu} D^m a||_{C^{\delta}(G)}.$$

Note that, for every $a \in A^{\nu}(G)$ and $n \in \mathbb{Z}$,

(3.1)
$$\|\zeta_{-n}(2^n \cdot)a(2^n \cdot)\|_{B^{\nu}} \le N\|a\|_{A^{\nu}(G)}$$

with N independent of n.

THEOREM 3.1. If $a \in A^{|\gamma|+\gamma'}(G)$, then

$$||au||_{H_{p,\theta}^{\gamma}(G)} \le N(d,\gamma,p)||a||_{A^{|\gamma|+\gamma'}(G)} \cdot ||u||_{H_{p,\theta}^{\gamma}(G)}.$$

Proof. We have to show that $\|\eta_{-n}(2^n\cdot)a(2^n\cdot)\|_{B^{|\gamma|+\gamma'}} \leq N\|a\|_{A^{|\gamma|+\gamma'}(G)}$ with constant N independent of n. The result is obvious for $\gamma=0$; for $|\gamma|\in(0,1]$ it follows from the inequality (with $\delta=|\gamma|+\gamma'$)

$$\begin{aligned} |\eta_{-n}(x)a(x) - \eta_{-n}(y)a(y)| &\leq \eta_{-n}(x)\rho_G^{-\delta}(x)|a(x)\rho_G^{\delta}(x) - a(y)\rho_G^{\delta}(y)| \\ &+ |a(y)| \ |\eta_{-n}(x) - \eta_{-n}(y)| + \eta_{-n}(x)\rho_G^{-\delta}(x)|a(y)| \ |\rho_G^{\delta}(x) - \rho_G^{\delta}(y)| \end{aligned}$$

and the observation that both $2^n\eta_{-n}$ and ρ_G are uniformly Lipschitz continuous. If $|\gamma| > 1$, we apply the same arguments to the corresponding derivatives. \square

Next, we study the following question: for what mappings $\psi: G_1 \to G_2$ is the operator $u(\cdot) \mapsto u(\psi(\cdot))$ continuous from $H^{\gamma}_{p,\theta}(G_2)$ to $H^{\gamma}_{p,\theta}(G_1)$?

THEOREM 3.2. Suppose that G_1 and G_2 are domains with non-empty boundaries and $\psi: G_1 \to G_2$ is a C^1 -diffeomorphism so that $\psi(\partial G_1) = \partial G_2$. For a positive integer m define $\nu = \max(m-1,0)$. If $D\psi \in A^{\nu}(G_1)$, then, for every $\gamma \in [-\nu,m]$ and $u \in H^{\gamma}_{p,\theta}(G_2)$,

$$||u(\psi(\cdot))||_{H_{p,\theta}^{\gamma}(G_1)} \le N||u||_{H_{p,\theta}^{\gamma}(G_2)}$$

with N independent of u.

Proof. Denote by ϕ the inverse of ψ . If $\gamma = 0$, then

$$||u(\psi(\cdot))||_{H^{\gamma}_{p,\theta}(G_1)}^p = \int_{G_2} |u(y)|^p \rho_{G_1}^{\theta-d}(\phi(y))|D\phi(y)|dy$$

and the result follows because uniform Lipschitz continuity of ρ_{G_1} , ψ , and ϕ implies that the ratio $\rho_{G_1}(\phi(x))/\rho_{G_2}(x)$ is uniformly bounded from above and below. If $\gamma=m$, the computation is similar. After that, for $\gamma\in(0,m)$, the result follows by interpolation, and for $\gamma\in[-\nu,0)$, by duality. \square

The last result in this section is about localization. It answers the following question: for what collections of $C^{\infty}(G)$ functions $\{\xi_k, k=1,2,...\}$ are the values of $\|u\|_{H^{\gamma}_{p,\theta}(G)}^p$ and $\sum_n \|u\zeta_n\|_{H^{\gamma}_{p,\theta}(G)}^p$ comparable? To begin with, let us recall the corresponding theorem for H^{γ}_p .

Theorem 3.3. ([4, Lemma 6.7].) If $\{\xi_k, \ k=0,1,\dots,\}$ is a collection of $C^{\infty}(\mathbb{R}^d)$ functions so that $\sup_x \sum_k |D^m \xi_k(x)| \leq M(m), m \geq 0$, then $\sum_{k \geq 0} \|\xi_k v\|_{H^{\gamma}_p}^p \leq N \|v\|_{H^{\gamma}_p}^p$ with N independent of v. If in addition $\inf_x \sum_k |\xi_k(x)|^p \geq \delta$ then the reverse inequality also holds: $\|v\|_{H^{\gamma}_p}^p \leq N \sum_{k \geq 0} \|\xi_k v\|_{H^{\gamma}_p}^p$ with N independent of v.

The following is the analogous result for $H_{n,\theta}^{\gamma}(G)$.

THEOREM 3.4. Suppose that $\{\chi_k, k \geq 1\}$ is a collection of $C^{\infty}(G)$ functions so that $\sup_{x \in G} \sum_k \rho_G^m(x) |D^m \chi_k(x)| \leq N(m), m \geq 0$. Then $\sum_k \|u\chi_k\|_{H^{\gamma}_{p,\theta}(G)}^p \leq N\|u\|_{H^{\gamma}_{p,\theta}(G)}^p$. If, in addition, $\inf_{x \in G} \sum_k |\chi_k(x)|^p \geq \delta$ for some $\delta > 0$, then $\|u\|_{H^{\gamma}_{p,\theta}(G)}^p \leq N \sum_k \|u\chi_k\|_{H^{\gamma}_{p,\theta}(G)}^p$.

Proof. With $\hat{\chi}_{0,n} = 1 - \eta_n$, $\hat{\chi}_{k,n}(x) = \chi_k(x)\eta_{-n}(x)$, $k \ge 1$, we find

$$\sum_{k\geq 1} \|u\chi_k\|_{H^{\gamma}_{p,\theta}(G)}^p = \sum_{n\in\mathbb{Z}} \sum_{k\geq 0} 2^{n\theta} \|\hat{\chi}_{k,n}(2^n\cdot)\zeta_{-n}(2^n\cdot)u(2^n\cdot)\|_{H^{\gamma}_p}^p.$$

Both statements of the theorem now follow from Theorem 3.3. \square

EXAMPLE. (cf. [7, Section 2].) Let G be a bounded domain of class $C^{|\gamma|+2}$ with a partition of unity $\chi_0 \in C_0^{\infty}(G), \chi_1, \ldots, \chi_K \in C_0^{\infty}(\mathbb{R}^d)$ and the corresponding diffeomorphism ψ_1, \ldots, ψ_K that stretch the boundary inside the support of χ_1, \ldots, χ_K (see, for example, Chapter 6 of [2] for details). Then an equivalent norm in $H_{p,\theta}^{\gamma}(G)$ is given by

$$||u||_{H^{\gamma}_{p,\theta}(G)} = ||u\chi_0||_{H^{\gamma}_p} + \sum_{m=1}^K ||u(\psi_m^{-1}(\cdot))\chi_m(\psi_m^{-1}(\cdot))||_{H^{\gamma}_{p,\theta}(\mathbb{R}^d_+)}.$$

Indeed, writing \sim to denote the equivalent norms, we deduce from Proposition 2.2(1) and Theorems 3.2 and 3.4 that

$$||u||_{H_{p,\theta}^{\gamma}(G)} \sim \sum_{m=0}^{K} ||u\chi_{m}||_{H_{p,\theta}^{\gamma}(G)} \sim ||u\chi_{0}||_{H_{p}^{\gamma}} + \sum_{m=1}^{K} ||u(\psi_{m}^{-1}(\cdot))\chi_{m}(\psi_{m}^{-1}(\cdot))||_{H_{p,\theta}^{\gamma}(\mathbb{R}_{+}^{d})}.$$

4. Further properties of the spaces $H_{p,\theta}^{\gamma}(G)$. Let $\rho = \rho(x)$ be a $C^{\infty}(G)$ function so that $N_1\rho_G(x) \leq \rho(x) \leq N_2\rho_G(x)$ and $|\rho_G^m(x)D^{m+1}\rho(x)| \leq N(m)$ for all $x \in G$ and for every $m = 0, 1, \ldots$ In particular, $\rho(x) = 0$ on ∂G and all the first-order partial derivatives of ρ are pointwise multipliers in every $H_{p,\theta}^{\gamma}(G)$. An example of the function ρ is

$$\rho(x) = \sum_{n \in \mathbb{Z}} 2^{-n} \zeta_n(x),$$

where the functions ζ_n are as in Section 2 with c=2.

THEOREM 4.1. 1. The following conditions are equivalent:

- $u \in H^{\gamma}_{p,\theta}(G)$;

• $u \in H_{p,\theta}^{\gamma-1}(G)$ and $\rho Du \in H_{p,\theta}^{\gamma-1}(G)$; • $u \in H_{p,\theta}^{\gamma-1}(G)$ and $D(\rho u) \in H_{p,\theta}^{\gamma-1}(G)$. In addition, under either of these conditions, the norm $||u||_{H_{p,\theta}^{\gamma}(G)}$ can be replaced by $\begin{aligned} \|u\|_{H^{\gamma-1}_{p,\theta}(G)} + \|\rho Du\|_{H^{\gamma-1}_{p,\theta}(G)} & \text{ or } by \ \|u\|_{H^{\gamma-1}_{p,\theta}(G)} + \|D(\rho u)\|_{H^{\gamma-1}_{p,\theta}(G)}. \\ & \text{ 2. For every } \nu, \gamma \in \mathbb{R}, \end{aligned}$

$$(4.1) \ \rho^{\nu}H^{\gamma}_{p,\theta}(G)=H^{\gamma}_{p,\theta-p\nu}(G) \ \text{ and } \|\cdot\|_{H^{\gamma}_{p,\theta-p\nu}(G)} \text{ is equivalent to } \|\rho^{-\nu}\cdot\|_{H^{\gamma}_{p,\theta}(G)}.$$

Proof. It is sufficient to repeat the arguments from the proofs of, respectively, Theorem 3.1 and Corollary 2.6 in [3]. \square

COROLLARY 4.2. 1. If $u \in H_{p,\theta}^{\gamma}(G)$, then

$$Du \in H_{p,\theta+p}^{\gamma-1}(G)$$
 and $||Du||_{H_{p,\theta+p}^{\gamma-1}(G)} \le N(d,\gamma,p,\theta)||u||_{H_{p,\theta}^{\gamma}}(G)$.

2. If ρ_G is a bounded function (for example, if G is a bounded domain), then $H^{\gamma}_{p,\theta_1}(G)\subset H^{\gamma}_{p,\theta_2}(G) \ \text{for} \ \theta_1<\theta_2 \ \text{and} \ H^{\gamma}_p(G)\subset H^{\gamma}_{p,\theta}(G) \ \text{for} \ \theta\geq d.$

Recall the following notations for continuous functions u in G:

$$||u||_{C(G)} = \sup_{x \in G} |u(x)|, \ [u]_{C^{\nu}(G)} = \sup_{x,y \in G} \frac{|u(x) - u(y)|}{|x - y|^{\nu}}, \ \nu \in (0, 1).$$

THEOREM 4.3. Assume that $\gamma - d/p = k + \nu$ for some $k = 0, 1, \ldots$ and $\nu \in (0, 1)$. If $u \in H_{p,\theta}^{\gamma}(G)$, then

$$\sum_{k=0}^{m} \|\rho^{k+\theta/p} D^k u\|_{C(G)} + [\rho^{m+\nu+\theta/p} D^m u]_{C^{\nu}(G)} \le N(d, \gamma, p, \theta) \|u\|_{H^{\gamma}_{p, \theta}(G)}.$$

Proof. It is sufficient to repeat the arguments from the proof of Theorem 4.1 in [3].

Note that if $u \in H_{p,\theta}^{\gamma}(G)$ with $\gamma > 1 + d/p$ and $\theta < 0$, then, by Theorem 4.3, u is continuously differentiable in G and is equal to zero on the boundary of G. This is one reason why the spaces $H_{p,\theta}^{\gamma}(G)$ can be considered as a generalization of the usual Sobolev spaces with zero boundary conditions.

5. Degenerate elliptic equations in general domains. Throughout this section, $G \subset \mathbb{R}^d$ is a domain with a non-empty boundary but otherwise arbitrary, and ρ is the function introduced at the beginning of Section 4. Consider a second-order elliptic differential operator

$$\mathcal{L} = a^{ij}(x)D_iD_j + \frac{b^i(x)}{\rho(x)}D_i - \frac{c(x)}{\rho^2(x)},$$

where $D_i = \partial/\partial x_i$ and summation over the repeated indices is assumed. A related but somewhat different operator is studied in Section 6 of [10]. The objective of this section is to study solvability in $H_{p,\theta}^{\gamma}(G)$ of the equation $\mathcal{L}u = f$. It follows from Theorem 4.3 that, for appropriate θ and γ , the solution of the equation will also be a classical solution of the Dirichlet problem $\mathcal{L}u = f$, $u|_{\partial G} = 0$. The values of $\gamma \in \mathbb{R}, 1 , and <math>\theta \in \mathbb{R}$ will be fixed throughout the section.

The following assumptions are made.

Assumption 5.1. Uniform ellipticity: there exist $\kappa_1, \kappa_2 > 0$ so that, for all $x \in G$ and $\xi \in \mathbb{R}^d$, $\kappa_1 |\xi|^2 \le a^{ij}(x) \xi_i \xi_j \le \kappa_2 |\xi|^2$.

Assumption 5.2. Regularity of the coefficients:

$$||a||_{A^{\nu_1}(G)} + ||b||_{A^{\nu_2}(G)} + ||c||_{A^{|\gamma+1|+\gamma'}(G)} \le \kappa_2,$$

where $\nu_1 = \max(2, |\gamma - 1| + \gamma')$, $\nu_2 = \max(1, |\gamma| + \gamma')$. (See beginning of Section 3 for the definition of γ' .)

Note that under assumption 5.2 the operator \mathcal{L} is bounded from $H_{p,\theta-p}^{\gamma+1}(G)$ to $H_{p,\theta+p}^{\gamma-1}(G)$. Therefore, we say that $u \in H_{p,\theta-p}^{\gamma+1}(G)$ is a solution of $\mathcal{L}u = f$ with $f \in H_{p,\theta+p}^{\gamma-1}(G)$ if the equality $\mathcal{L}u = f$ holds in $H_{p,\theta+p}^{\gamma-1}(G)$.

Theorem 5.1. Under Assumptions 5.1 and 5.2, there exists a $c_0 > 0$ depending only on d, p, θ , the function ρ , and the coefficients a, b so that, for every $f \in H^{\gamma-1}_{p,\theta+p}(G)$ and every c(x) satisfying $c(x) \geq c_0$, the equation $\mathcal{L}u = f$ has a unique solution $u \in H^{\gamma+1}_{p,\theta-p}(G)$ and $\|u\|_{H^{\gamma+1}_{p,\theta-p}(G)} \leq N\|f\|_{H^{\gamma-1}_{p,\theta+p}(G)}$ with the constant N depending only on d, γ, p, θ , the function ρ , and the coefficients a, b, c.

To prove Theorem 5.1, we first establish the necessary a priori estimates, then prove the theorem for some special operator \mathcal{L} , and finally use the method of continuity to extend the result to more general operators.

LEMMA 5.2. If $u \in H_{p,\theta-p}^{\gamma+1}(G)$ and Assumptions 5.1 and 5.2 hold, then

$$||u||_{H_{p,\theta-p}^{\gamma+1}(G)} \le N\left(||\mathcal{L}u||_{H_{p,\theta+p}^{\gamma-1}(G)} + ||u||_{H_{p,\theta-p}^{\gamma-1}(G)}\right)$$

with N independent of u.

Proof. Assume first that b = c = 0. Define $u_n(x) = \zeta_{-n}(2^n x)u(2^n x)$ and the operator

$$A_n = (a^{ij}(2^n x)\eta_{-n}(2^n x) + (1 - \eta_{-n}(2^n x)\delta^{ij}))D_{ij},$$

where η is as in Remark 2.3. Clearly, $||u_n||_{H_p^{\gamma+1}} \leq N\left(||\mathcal{A}u_n||_{H_p^{\gamma-1}} + ||u||_{H_p^{\gamma-1}}\right)$, and, by (3.1), N is independent of n. On the other hand,

$$\mathcal{A}_n u_n(x) = 2^{2n} \left(\zeta_{-n} \mathcal{L} u + 2a^{ij} D_i \zeta_{-n} D_j u + a^{ij} u D_{ij} \zeta_{-n} \right) (2^n x).$$

It remains to use the inequalities $||Du||_{H_p^{\gamma-1}} \leq N||u||_{H_p^{\gamma}} \leq \epsilon ||u||_{H_p^{\gamma+1}} + N\epsilon^{-1}||u||_{H_p^{\gamma-1}}$ with sufficiently small ϵ , and then sum up the corresponding terms according to (2.1).

If b, c are not zero, then

$$||a^{ij}D^{ij}u||_{H^{\gamma-1}_{p,\theta+p}(G)} \leq ||\mathcal{L}u||_{H^{\gamma-1}_{p,\theta+p}(G)} + N||u||_{H^{\gamma}_{p,\theta-p}(G)} + N||u||_{H^{\gamma-1}_{p,\theta-p}(G)},$$

and the result follows from the interpolation inequality (2.4). \square

LEMMA 5.3. If Assumptions 5.1 and 5.2 hold, then there exists a $c_0 > 0$ depending on d, p, θ , the function ρ , and the coefficients a, b, so that, for every c(x) satisfying $c(x) \geq c_0$ and every $u \in L_{p,\theta}(G)$,

$$||u||_{L_{p,\theta}(G)} \leq N||\rho^2 \mathcal{L}u||_{L_{p,\theta}(G)}$$

with N independent of u.

Proof. It is enough to consider $u \in C_0^{\infty}(G)$. Writing $f = -\rho^2 \mathcal{L}u$, we multiply both sides by $|u|^{p-2}u\rho^{\theta-d}$ and integrate by parts similar to the proof of Theorem 3.16 in [3]. The result is

$$\int_G f|u|^{p-2}u\rho^{\theta-d}dx = \int_G \Big(c(x) + h(x)\Big)|u|^p\rho^{\theta-d}dx,$$

where $|h(x)| \leq N_h$ and N_h depends on d, p, θ , and $||a||_{A^2(G)} + ||b||_{A^1(G)} + ||D\rho||_{A^1(G)}$. It remains to take $c_0 = 2N_h$ and use the Hölder inequality. \square

It follows from Lemmas 5.2 and 5.3 that if $c(x) \ge c_0$ and $\gamma \ge 1$, then

(5.1)
$$||u||_{H^{\gamma+1}_{p,\theta-p}(G)} \le N||\mathcal{L}u||_{H^{\gamma-1}_{p,\theta+p}(G)}.$$

LEMMA 5.4. There exists a $\bar{c} > 0$ depending on p, θ, γ , and the function ρ so that the operator $\rho^2(x)\Delta - \bar{c}$ is a homeomorphism from $H_{p,\theta}^{\gamma+1}(G)$ to $H_{p,\theta}^{\gamma-1}(G)$.

Proof. Keeping in mind that $\rho \in C^{0,1}(G)$ and $\rho(x) = 0$ on ∂G , let $\bar{\rho}$ be a $C^{0,1}(\mathbb{R}^d)$ extension of ρ so that $\bar{\rho} \in C^{\infty}(G - \partial G)$. Consider a family of diffusion processes $(X_t^x, x \in \mathbb{R}^d, t \geq 0)$ defined by

$$X_t^x = x + \sqrt{2} \int_0^t \bar{\rho}(X_s^x) dW_s,$$

where $(W_t, t \geq 0)$ is a standard d-dimensional Wiener process on some probability space (Ω, \mathcal{F}, P) (see, for example, Chapter V of [1] or Chapter I of [8]). Note that, by uniqueness, $X_t^x = x$ if $x \in \partial G$, and $X_t^x \in G$ for all t > 0 as long as $x \in G$. Theorems (3.3) and (3.9) from Chapter I of [8] imply that, with probability one, both DX_t^x and its inverse are in C(G) for all $t \geq 0$. Further analysis shows that, for every p > 1 and every positive integer m,

(5.2)
$$E\|DX_t^x\|_{A^m(G)}^p + E\|D(X_t^x)^{-1}\|_{A^m(G)}^p \le N_1 e^{N_2 t}$$

with constants N_1 and N_2 depending on p, m.

Assume that $f \in C_0^{\infty}(G)$ and define

$$u(x) = -E \int_0^\infty f(X_t^x) e^{-\bar{c}t} dt.$$

By Theorem 5.8.5 in [1], there exists a $c_1 > 0$ depending only on d and $\bar{\rho}$ so that, for $\bar{c} > c_1$, the function u is twice continuously differentiable in G and $\bar{\rho}^2(x)\Delta u(x) - \bar{c}u(x) = f(x)$ for all $x \in G$. On the other hand, after repeating the proof of Theorem 3.2 and using (5.2), we conclude that there exists a c_2 depending on $d, \gamma, \bar{\rho}$ so that, for $\bar{c} > c_2$ and for every $\gamma \in \mathbb{R}$, the function u belongs to $H_{p,\theta}^{\nu}(G)$ and

$$||u||_{H^{\gamma}_{p,\theta}(G)} \le N||f||_{H^{\gamma}_{p,\theta}(G)}.$$

The statement of Lemma 5.4 now follows. \Box

Proof of Theorem 5.1. Take \bar{c} as in Lemma 5.4 and define the operators $\mathcal{L}_0 = \Delta - \bar{c}/\rho^2(x)$ and $\bar{\mathcal{L}}_0 = \rho^2(x)\Delta - \bar{c}$. Lemmas 5.4 and Theorem 4.1(2) imply that, for all $\gamma, \theta \in \mathbb{R}$ and $1 , these operators are homeomorphisms from <math>H_{p,\theta-p}^{\gamma+1}(G)$ to, respectively, $H_{p,\theta+p}^{\gamma-1}(G)$ and $H_{p,\theta-p}^{\gamma-1}(G)$.

Assume first that $\gamma \geq 1$. Then a priory estimate (5.1) and the method of continuous first that $\gamma \geq 1$.

Assume first that $\gamma \geq 1$. Then a priory estimate (5.1) and the method of continuity (using the operators $\lambda \mathcal{L} + (1 - \lambda)\mathcal{L}_0$, $0 \leq \lambda \leq 1$) imply the conclusion of the theorem.

If $\nu < 1$, then assume first that $0 \le \nu < 1$. For $f \in H^{\nu-1}_{p,\theta+p}(G)$, define $u = \bar{\mathcal{L}}_0 \mathcal{L}^{-1}(\bar{\mathcal{L}}_0^{-1}f) - \mathcal{L}^{-1}(\bar{f})$, where $\bar{f} = (\mathcal{L}\bar{\mathcal{L}}_0 - \bar{\mathcal{L}}_0\mathcal{L})\mathcal{L}^{-1}(\bar{\mathcal{L}}_0^{-1}f)$. Direct computations show that

- $\bar{f} \in H^{\nu}_{p,\theta+p}(G)$ and $\|\bar{f}\|_{H^{\nu}_{p,\theta+p}(G)} \le N\|f\|_{H^{\nu-1}_{p,\theta+p}(G)};$
- u is well defined, $u \in H^{\nu+1}_{p,\theta-p}(G)$, $||u||_{H^{\nu+1}_{p,\theta-p}(G)} \leq N||f||_{H^{\nu-1}_{p,\theta+p}(G)}$, and $\mathcal{L}u = f$. This process can be repeated as many time as necessary. Theorem 5.1 is proved. \square

REMARK 5.5. It follows from Theorem 4.3 that, if the conditions of Theorem 5.1 hold with $\gamma > d/p + 2$ and $\theta < p$, then the function u is the classical solution of

$$a^{ij}(x)D_{ij}u + \frac{b^{i}(x)}{\rho(x)}D_{i}u - \frac{c(x)}{\rho^{2}(x)}u = f, \ x \in G; \quad u|_{\partial G} = 0.$$

ACKNOWLEDGMENT. I wish to thank Professor David Jerison and Professor Daniel Stroock for very helpful discussions.

REFERENCES

- [1] N. V. KRYLOV, Introduction to the Theory of Diffusion Processes, American Mathematical Society, Providence, RI, 1995.
- [2] N. V. KRYLOV, Lectures on Elliptic and Parabolic Equations in Hölder Spaces, American Mathematical Society, Graduate Studies in Mathematics 12, Providence, RI, 1996.
- [3] N. V. KRYLOV, Weighted Sobolev spaces and Laplace's and the heat equations in a half space, Communications in PDE, 24:9-10 (1999), pp. 1611-1653.
- [4] N. V. KRYLOV, An analytic approach to SPDEs, in Stochastic Partial Differential Equations. Six Perspectives, Mathematical Surveys and Monographs, B. L. Rozovskii and R. Carmona, ed., AMS, 1999, pp. 185–242.
- [5] N. V. KRYLOV AND S. V. LOTOTSKY, A Sobolev space theory of SPDEs with constant coefficients in a half space, SIAM J. Math. Anal., 31 (2000), pp. 19-33.
- [6] J. L. LIONS AND E. MAGENES, Non-homogeneous Boundary Value Problems and Applications, I, Springer-Verlag, Berlin, 1972.
- [7] S. V. LOTOTSKY, Dirichlet problem for stochastic parabolic equations in smooth domains, Stoch. Stoch. Reports, 68:1-2 (1999), pp. 145-175.
- [8] D. W. Stroock, Topics in Stochastic Differential Equations, Tata Institute of Fundamental Research, Bombay, India, 1982.
- [9] H. TRIEBEL, Theory of Function Spaces II, Birkhauser, Basel, 1992.
- [10] H. TRIEBEL, Interpolation Theory, Function Spaces, Differential Operators, Johann Amrosius Barth, Heidelberg, 1995.