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THE LEVY CONCENTRATION PHENOMENON FOR SPECIAL 
FUNCTIONS ON RANK-ONE SYMMETRIC SPACES* 

MAUNG MIN-OOt AND JOHN A. TOTH* 

1. Introduction. Paul Levy discovered the surprising phenomenon of measure 
concentration of Lipschitz maps for certain sequences of spaces as the dimension goes 
to infinity. This has been explored further in a geometrical framework by M.Gromov 
and V.Milman [GM][G][MS]. The main objective of this paper is to study in some de- 
tail this measure concentration phenomenon for compact, rank-one symmetric spaces. 
In particular, we will investigate the role of zonal eigenfunctions of the Laplacian and 
show that (see Theorems 1 and 2) the push-forward measures of a wide class of ob- 
servables associated with these functions exhibit a much stronger concentration than 
the estimate one gets from the isoperimetric inequality of Gromov and Levy [G][MS]. 

Let (Mn,g) be a compact, n-dimensional, C00 Riemannian manifold and dfin 

be the associated n-dimensional measure. We will denote the normalized probability 
measure {vol{Mn,g))~1diin by d/xn. Given a map / : Mn -» E, we define: 

ll/ll^.-ll/lloc + SUp ^^        . 

We say that a sequence of functions fn : Mn -* E is in Lipl(Mn) (ie. fn is 1- 
Lipschitz) if fn € Lip(Mn) and there exists K > 0 independent of the dimension, n, 
such that 11/n||Lip < ft for all n. In order to describe our results in greater detail, we 
start with a very simple observation: 

LEMMA 1. Let (Mn,g) be a compact, C00 Riemannian manifold with normal- 
ized measure dpin and let fn : Mn -» C a Lipschitz map with fn G Lip1(Mn) and 
IM fnd/J'n = 0.  Then, for any test function, g G CQ^R), we have: 

Ifn (9) := [ 9 (fn)Jfin = 9(0) + E(n), 
JR 

with error estimate: 

\E(n)\ < ^ 

where Xi is the first non-zero eigenvalue of the Laplacian. 

Proof Make a second-order Taylor expansion: 

9(fn(x)) = 5(0) + p'(0)/n(x) + 0(1) fl{x). 

Since /M /rad/x = 0, it follows that 

/ gUn{x))dixn{x)=g{V> + 0{l)  f f^n. 
JM JM 
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The lemma then follows from the Poincare inequality: 

/    |/n|24n < 4"    /    ||V/n||2^n < -k 
JM M JM M 

Suppose we now also assume that 

(1) Ric(Mn,g)>(n-l)k>0. 

Then, by the theorem of Lichnerowicz, Ai > kn, and combined with Lemma 1 this 
in turn implies that 

(2) [ 9(fn)J»n=9(0) + O(n-1) 
JR 

for an arbitrary 1-Lipschitz map, fn. By choosing fn to be the first 1-Lipschitz Laplace 
eigenfunction on §n (see section 2), it is easily seen that the estimate in (2) cannot 
be improved for general observables. However, when fn is a 1-Lipschitz eigenfunction 
of the Laplacian, —A, with eigenvalue, A&, Green's Theorem implies that, for any 

(3) [ 9(fn)J»n = 9(0) + O(\^). 
JR 

Thus, in particular, for large enough A^ the estimate in (3) is better than (2). 
Such dimensional concentration results are well-known (see [MS,GM,GLP]). Al- 

though Levy-Milman-Gromov results are mainly concerned with large deviation esti- 
mates, and we compute the second moment in Lemma 1, we will nevertheless refer to 
(2) as the LMG-estimate. 

The plan of the paper is as follows: In sections 2 and 3, we show that (see The- 
orem 1) for Lipschitz-normalized, zonal eigenfunctions of the Laplacian on rank-one 
symmetric spaces, the LMG estimate can be improved significantly. This is consistent 
with (3), but the precise estimates involve a detailed study of the second moments 
appearing in the error terms and in fact, turn out to be much better than the naive 
prediction in (3). 

In section 4, we show that (see Theorem 2) the error term in the LMG estimate 
can be improved for a large class of 1-Lipschitz functions including many Laplace 
eigenfunctions that are not radial (Corollary 1). 

Although we will not pursue this here, we should point out that this dimensional 
concentration phenomena for zonals is really a problem in semiclassical analysis. In 
particular, the eigenfunction equations (5), (11) and (19) are all /l-differential equa- 
tions where h~l = n, the dimensional parameter of the base rank-one space. Thus, the 
content of Theorem 1 is an estimate for the second moments of Lipschitz-normalized, 
semi-excited states associated with these equations. The question we are dealing with 
here is dual to the problem one usually studies in semiclassical analysis; namely, we 
consider sequences of 1-Lipschitz zonal eigenfunctions, where the base space (ie. the 
rank-one manifold) varies in dimension. This connection with semiclassical analysis 
seems to extend to more general situations. 

One can also naturally consider dimensional asymptotics for compact, semi-simple 
Lie groups and higher-rank symmetric spaces. It would be of interest to establish sharp 
estimates for the dimensional measure concentration of special observables such as 
spherical functions (the analogues of the zonals) on such spaces. We hope to pursue 
all these questions in future work. 
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2. Explicit calculations for the first eigenfunction. Before we investigate 
the dimensional asymptotics of general zonal eigenfunctions of the Laplacian for rank 
one symmetric spaces, Mn = G/K, we will begin with the first non-trivial zonal 
eigenfunction. The higher zonal functions are polynomials in the first zonal eigen- 
function and we will treat them in the next section. In this section, we will compute 
all moments of the push-forward measure by the first non-trivial eigenfunction for 
compact, rank-one symmetric spaces. 

Case 0. 
5n with the round metric of sectional curvature K = 1 . The volume form in 

geodesic polar coordinates is given by [BGM][H]: 

(4) dfjin = (sinr^drde 

where d6 is the volume form of the unit sphere S71-1 and 0 < r < TT. Since the 
logarithmic derivative of (sinr)71-1 is (n — l)cotr, we have the following expression 
for the Laplacian acting on a radial function 0(r): 

(5) A0(r) = </>"(r) + (n - 1) cotr (//(r). 

It follows that 0i (r) = — cosr satisfies — A</>i(r) = n0i(r) and is a zonal eigenfunction 
for the lowest eigenvalue n which is 1-Lipschitz. The volume form can be expressed 
in terms of <f)i as: 

(6) diin = (l-(j>l)z-1d(t)1d9 

where 0i ranges in the interval [—1, +1]. Therefore, if we normalize the push-forward 
measure (0i)*cfy/n, we get the following measure supported in the interval [—1,-1-1] C 
R: 

(7) dAii^U-tf)*-1^! 

where In = J_1 (1 — x2)^~1dx = B(^,^). This is a probability measure on E with 
mean zero and variance: 

(8) i- [    x2{l - x2)^-ldx = —^- W InJ-i      K J n + 1 

which is of order ©(n-1). 
The estimate in (8) holds for any eigenfunction in the first eigenspace, since, for 

the sphere, they are all zonal with respect to a suitable pole. 
If we compute the higher moments, we find that the odd moments vanish and the 

2p-th. moment is: 

() InJ-x        l j (n+l)(n + 3).--(n + 2p-l) 

which is of order 0{n~p). 

Case 1. 
CPn with the Fubini-Study metric with sectional curvature satisfying 1 < K < 4. 

The volume form of this metric in geodesic polar coordinates is given by [BGM][H]: 

(10) dnn = i(sinr)2n-2 sin2r drd6 = (sinr)271-1 cosrdrd6 
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where d9 is the volume form of the unit standard sphere and 0 < r < f. Since 
the logarithmic derivative of (sinr)2n~2 sin2r is (2n - 2) cotr + 2 cot 2r, we have the 
following expression for the Laplacian acting on a radial function </>(r): 

(11) -A0(r) = 0"(r) + ((2n - 2) cotr + 2cot2r)</>/(r). 

It follows now by a direct calculation that 

(12) ^(r) = —— - (cosr)2 = (sinr)2 - -?— = -(icos2r + ^|) 
n + 1 n + 1 2 n +1 

satisfies 

(13) -A01(r)=4(n + l)^i(r) 

and hence is a zonal eigenfunction for the lowest eigenvalue. Note that, we have 
normalized the eigenfunction </>i to be 1-Lipschitz. 

Since sin2 r = fa + ^pj and dfa = 2sinr cosr, the volume form can be expressed 
as: 

If, n 
(14) dfAn = -  ( fa + —^j dfadO 

where fa ranges in the interval [—^j, ^ij]- Therefore, if we normalize the push- 
forward measure (fa)*diJin to have unit total mass, we get the following measure 
supported in the interval [-^pj, ^j] C E : 

(15) d/ii=nf(/>i + ——J       dfa. 

This is a probability measure on M with mean zero, since / fadfin = 0. The variance 
is: 

(16) " /T ^ (* + ^fl) n  ' #1 = (n+l)"(n + 2)- 
So, the variance is of order 0(n~2) and is much sharper than the case of the 

sphere where it is (^(n-1), even for the first eigenfunction. If we compute the higher 
moments we find that the pth moment is: 

n j        fai [ fa + —^— )       dfa=n       (x ^— ]   xn~1dx 
n + 1 

which is a rational expression in n of order 0(n~p). 
At this point, we would like to remark that the large deviation estimate for this 

pushforward measure trivially satisfies the Levy-type inequality: 

(17) f    ed(xn) = (l-e)n<e-ne 

Jo 

However, e is measured in terms of the values of the first eigenfunction fa and 
not with respect to the distance function r. 
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Case 2. 
MPn with the symmetric metric of sectional curvature 1 < K < 4 . The volume 

form of this metric in geodesic polar coordinates is given by [BGM][H]: 

(18) d^n = -(smryn-*(sm2r)3drd0 = (smr^-^cosrydrde 

where d6 is the volume form of the unit sphere 54n 1 and 0 < r < |. The Laplacian 
acting on a radial function </>(r) is given by: 

(19) -A0(r) = <£"(r) + ((4n - 4) cotr + 6cot2r)<?!)/(r). 

Again, by a direct calculation we find that 

/  / x      /       N9 1 1       ^       n — 1 
01 (r) = (cos r)  = - cos 2r H  Yw     v       ;       n+1      2 n+1 

satisfies 

(20) -A0i(r) = 8(n+l)0i(r), 

and hence, is a 1-Lipschitz zonal eigenfunction. Since sin2 r = </>i + ^j and d^i = 
2sinr cosr, the volume form can be expressed as: 

dMn = g 0i + n + 1 

2n-l 

-Ui + n + 1 

2ri 

d^ide 

where 01 ranges in the interval [-^pj, Ti+il- Therefore, the normalized push-forward 
probability measure is given by: 

(21) djii = 2n(2n + 1) 0i + n + 1 

2n-l 

"01 + 
n 

n + 1 

2ri 

#1 

where 0i is supported in the interval [-^j, ^j] C M.   Here, d/ii is a probability 
measure on E with mean zero and variance: 

n 
(n + 1)2     (n + l)2(2n + 3)' 

(22)        /0241=2n(2n + l) / a:2(x2n-1 -x2n) dx- 
JR JO 

The variance is again of order (9(n_2), sharper than the case of the sphere. As 
in the case of CPn, we find that the pth moment: 

[<!%&!= 2n(2n + l) [   (x-^-)    (x2"1'1 - x2n) dx 
JR JO   \      n +1 / 

is a rational expression in n of order 0(n-p). 

3. Dimensional asymptotics for higher zonal eigenfunctions. Let M be 
a rank-one symmetric space G/K where K is the isotropy group at the point PQ G M. 
Let KQ be the identity component of K and V be a finite-dimensional subspace of 
C00(M) invariant under /(#), where 

%)/(*) := /Or1*) 
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for all g G G and x G M. The space of zonal functions [H] centered at po is then 
defined to be 

Z(V) = {veV'1 l(k)v = v for all A: € ifo}- 

In particular, one can take V to be the eigenspace 

Vx = {u G C^iM); Au = -An}. 

It is well-known that the action 

is irreducible and moreover, the assumption that M is a rank-one symmetric space 
ensures that 

dimZ(Vx) = l. 

Furthermore, it follows readily from the definition of Z(V\) that all functions </> G 
Z(V\) are radial; that is <l>(x) = <l>(\x\) where, |a;| = d(x,po). 

Our objective is to study in some detail the LMG estimate (2) for rank-one 
symmetric spaces, Mn = G/K, where the observable is a zonal eigenfunction of the 
Laplacian. To wit, let </>m(r) be the 1-Lipschitz zonal eigenfunction of the Laplacian, 
-A, with eigenvalue, Am. We will now show that these functions have much sharper 
concentration properties in the dimensional limit than the general LMG estimate 
predicts. 

We begin with the case of §n normalized so that K = 1. Recall, the Poisson 
kernel for the unit ball B = {x G Mn+1; \x\2 < 1} is: 

(23) P(a?,ff) = --1 1~N2 

vol(§n) \x-y\n+1' 

Let Zm(x, y) be the ra-th zonal harmonic on §n centered at y G §n. The reproducing 
property [F] of these functions implies that: 

oo / \ 

(24) P{x,y)=YJ\AmZm{^vy). 
m=0 ^'   '      ^ 

By expanding P{x,y), we get the following explicit formulas for the zonal harmonic 
of degree m centered at yo = (0,,, 0,1) G En+1: 

(25) 2m(x,»o) = YsCk(n)x™-?k \x\2k. 
k=0 

Here, (zi, ...,xn+1) G Mn+1 and 

,   iNifc(n + 2m-l)(n + l)(n + 3)---(n + 2m-2fc-3) 
(26) c*(n) = (-l)    2*fc!(2m-k)! * 

We henceforth assume that m is fixed independent of the dimension, n. Then, 

Cfc(n)~nm-fc. 
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Let (r,0) G E+ x S71"1 denote geodesic polar coordinates centered at (0, ...,0,1) € 
Mn+1. Since xn+i = cosr = <j)i(r), it then follows that the Lipschitz-1 eigenfunction, 
</>m(r), corresponding to Zm(x,yo) is of the form: 

(27)<Mr)=Cm(n) 

where, Cm(n) = Cm + (^(n-1) and 

Cl(n)^  r^m-2   , ,   ^W/^x   /rxxm-2[^] 
co(n) co(n) 

(28) ^g = 0(n-fc). 
co(n) 

Since J§n 0md//n = 0, we must compute the second moment of </>m. To do this, note 
that by our moment computations for 0i in section 2, we have for 0 < kj < [y], 

vcowy vco(n)y yM 

It follows that: 

(30) [ fadm = 0(n-m). 
JR 

Now consider complex projective space, CPn, normalized so that 1 < K < 4. 
Let B = {z e C71"1"1; \z\2 < 1} and denote the space of harmonic polynomials in B of 
degree p in z and degree q in z by W^'9. The zonal eigenfunction in this vector space 
will be denoted by Hp'q. Since we are interested in CPn, we need only consider those 
zonals which are invariant under the circle action: 

e" -(si,...,zn+i) = (eiOzu...,ei0zn+1). 

Consequently, for m fixed independent of the dimension, n, we put p = q = m. 
Then, for fixed C € SB, consider Hm>m(z • C). It is readily verified that [Ko]: 

(31) Hm>™(z-() = C(m,n)-PL*~m(2\z.~(\2-l). 

Here, C(m,n) is a constant and Pm      denotes the Jacobi polynomial [AS] of degree 
m with indices (a,/3): 

(32)     pLa'0Ht) = ± £( mla) (^!f )(*-ir-*(i+*)*. 

Fix C = (0,0, ...,0,1) G C1"1"1 and consider geodesic polar coordinates (r,0) 6 
R^ x S71-1 centered at C- In terms of these coordinates, 

\zn+i\2 = (cosr)2. 

So, the m-th zonal eigenfunction in (31) is, up to multiplicative constant, the function 

(33) Pil~1'0)(2cos2r-1). 
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Next, we must Lipschitz-normalize this function. To do this, note that the expansion 
in (32) gives: 

m 

(34) Pit"1'0)(2cos2r - 1) = ^c*(n)(sin2r)m-* (cos2r)*, 
k=0 

where, Cfc(n) ~ nk as n -> oo. So, to Lipschitz normalize this function, we divide by 
Co(n) ~ nm. Consequently, the m-th, 1-Lipschitz zonal eigenfunction is of the form: 

(35) 4>m(r) = E ^TT (sin2 r)m~k (cos2 r)*- 

Again, we wish to compute the second moment J^^d/xi. To do this, note that, for 
0< k,l <m: 

(36)      (^)(^)L^m-t-,)^(,+',j•' 

<*> <^)(2S)jC(*-^r*"^'- 
The last line (37) follows readily from the estimate | sinr| < 1, the binomial expansion 
and our estimates for the moments of (^i in section 2. So, we have shown that: 

(38) [ (t>lldti1=0(n-2m). 
JR 

Finally, we turn to the case of the quaternionic projective spaces, MPn. Here, one 
can make a direct change of variables in the eigenfunction equation [Ko] to transform 
it to a canonical equation for orhogonal polynomials. The end result is that 

4>m(r) = C(m,n)Pit"1'1)(2cos2r - 1). 

As the estimates are very similar to the case of CPn, we leave the details to the reader. 
Taking into account the Taylor expansion in Lemma 1, we have now proved: 

THEOREM 1. Let </>m(r) be the m-th, 1-Lipschitz, zonal eigenfunction of the 
Laplacian on the rank-one symmetric space Mn — G/K and let g € CQ^M). Suppose 
m is arbitrarily large but fixed independent of the dimension, n.   Then, for Mn = 
CPn

1MPn: 

[ gmMJvnit) = 9(0) + 0(n-2m), 
JR 

whereas, for Mn - §n: 

r 9(t)((t>m)Mn(t) = 0(0) + 0(n-m). I 
JR 

REMARK. It follows readily from the above analysis that the estimates in Theorem 
2 are valid for sequences 0m(n);n = 1,2,... with m(n) ~ na, provided 0 < a < 1. 
Thus, in particular, when m(n) = na, the error terms in Theorem 1 are 0(n~nQ+2a) 
and C)(n_2na4'2Q!) respectively. 
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4. The general estimate. In the last section, we showed that for the com- 
plex and quaternionic projective spaces, the 1-Lipschitz zonal eigenfunctions of the 
Laplacian have stronger dimensional concentration than the LMG estimate predicts. 
Our objective here is to extend this refined concentration estimate to a wider class of 
1-Lipschitz observables containing the zonal eigenfunctions. 

Consider the complex vector space, V^, of eigenfunctions of the Laplacian, A, 
with eigenvalue, Ai. There is a natural space of linearly independent, zonal eigen- 
functions in VA!, which we will denote by 2(Mn;Ai).  For instance, on the sphere, 

(39) Z(§n;A1):={x1,...,a;n+1}, 

where for k = 1,..., n + 1, Xk denote the restrictions to 8n of the standard coordinate 
functions on Mn+1. On complex projective space, 

(40) Z(CP";A1):=(|zfc|
2--M 

I n"T" J- J l<fc<n+l 

where [zk] denote the standard homogeneous coordinates on Cn+1 restricted to §2n+1. 
The space Z(MPn; Ai) is identical to (40), provided we replace complex multiplication 
by quaternionic multiplication. Recall, we say that fn G Lip1(Mn)1 provided fn G 
Lip(Mn) and there exists a constant, K, > 0, independent of the dimension, n, such 
that ||/n||Lip < K- 

DEFINITION. J*(Mn) is defined to be the finitely-generated ideal over Lip1(Mn)i 

generated by the elements of Z(Mn] Ai). 

In the following, we will, without loss of generality, always assume that J fn = 0. 
Moreover, given geodesic spherical coordinates (r, 6) centered at a point p G M, we 
define the spherical mean Mfn by: 

(41) Mfn(r) := /        fn(r,u)du. 

We can now state our result: 

THEOREM 2. (i) Let Mn = G/K be a rank-one symmetric space and g G C,o0(E). 
Suppose fn G X(Mn) is generated by a zonal eigenfunction, (j)(z,z) = |^|2 —(n + l)-1; 
that is fn(z,z) = (j)i(z,z) • /i(z,I;n). Assume moreover, that there exist a constant 
C > 0 independent of n such that 

\\MW2\\oo<C. 

WhenMn = CPn,MPn: 

9(t)(fn),dfin(t) = g(Q) + e>(n-2). 
R 

as n -> oo. On the other hand, when Mn = Sn: 

g{t)(fn)Jvn(t)=g(0) + O{n-1). 
JR 
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Moreover, these estimates are sharp. 

(ii) Let fn e l(CPn) with fn = ^=1 \zj\2'hj{z,z). Suppose that, forj = 1, ...,n + l, 
there exists a constant C > 0 independent of the dimension, such that hj E Lip1(Mn) 
satisfies: 

n+l n-fl 

EllML^C and  ^l|V^I|2oo<Cn. 
j=i j=i 

Then, the estimates in part (i) are valid for these fn 's. 

Proof of (i).   To begin, we will assume that Mn - CPn and without loss of 
generality, it suffices to assume that: 

(42) fn(z,z) = |2n+i|2 • h(z,z;n). 

Given g G CQ
>
(R), we must give an asymptotic expansion for the push-forward inte- 

gral: 

Ig(fn) := / 9(t)(fn)Jvn(t) =  T     /       p(/n(r,0))(cosr)(sinrf^Mr. 
JR JO     J§2n-i 

By a second-order Taylor expansion, we have for each r G [0,7r/2], 

/ <7(/nM))d0 = 9 ( [ fn(r,U>)dLj) 

+Op(l)    / l/nM)-   \ fnMdLJ 
7§2n-l  I J§2n-1 

2 

dO. 

Denoting by E(r; n) the last term on the RHS of the above equation, we have by the 
Cauchy-Schwartz inequality, 

(43) £(r;n) < 2(cosr)4  /       \h(r,6]n)\2 d6 < 2C(cosr)4. 

Note that by the estimate in (43), 

f*/2E(r;n)(cosr)(sinr^^dr < ^ f f*/2(cosr)5(smr)2n-3dr\ = ofn-2x 

JQ    (COS r)(sin r)2n~ldr \ f*' (cosr)(smr)2n~1dr J 

Recapping, we have so far shown that: 

(44) /,(/„) =^^/-(r))(C0Sr)(5'")""d%0(^). 
JQ    (cosr)(smr)2n~1dr 

Next, we integrate over the radial variable, r. To wit, consider the second-order Taylor 
expansion: 

9(Mfn (r)) = 9(0) + g'iO) MSn (r) + Og{l) M)n (r). 



LEVY CONCENTRATION PHENOMENON 161 

Since by assumption, J fn = 0, it follows that: 

fln/2 M2
f (r) (cosOCsinr)^-1^^ 

(45) I9 = g(0) + (9(1) •    Jo     ^ '.   '        ,     + °(n->). 
\       So    (cos r) (sin r)271'1^        J 

Again, by the Cauchy-Schwartz inequality, 

(46) \Mfn(r)|2 < (cosr)4 \Mw(r)\ < C(cosr)4. 

So, it follows that: 

JQ    (cos r)(sin r)2"-1^ \ So    (cosr)(smr)2n~1dr J 

Therefore, 

(47) /,(/„) = ff(0) + 0(n-2). 

The analogous result for MPn with (9(n~2) error term is proved in the same way. On 
the other hand, the corresponding result for §n has an ©(n-1) error. Moreover, it 
follows by our earlier computations for the first, non-trivial, 1-Lipschitz eigenfunctions 
that all these estimates are sharp. 

Proof of (ii). By the Taylor expansion in Lemma 1: 

[ 9(t)(fn)Jl*n(t) = g{0) + E(n) 
JR 

where, 

Clearly, 

\E(n)\ < —±—  f     |V/n|2^n. 
4(n + 1) JCpn 

n+l 

|V/n|2 < 2 £ [|^|4 |V^|2 + 2|/ij|
2(l - l^-l2)^-!2] . 

3=1 

So, it follows that: 

n+l 

\E(n)\ < XT-Vn-E (w^iWl [     M4d/in + 2||AX /     (1 - {z^ztfd»n) . 
An + J-J  ~[ \ Jcpn JCPn J 

Here, 

2 

(48) /     hf 4„ = \ Ux - -^\   hx = 0(n-2) 
Jcpn JR \        n-t i j 

by our computations in section 2. On the other hand, 

(49) f     (1 - l^lz/d/zn < /     |^|2^n = f Ui - -^-r) dm = O^-1) 
Jcpn Jcpn JR \ n+i/ 
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Part (ii) of Theorem 2 follows. D 

REMARKS. (1) Note that part (i) of Theorem 2 shows that, h(z,z]n) need not 
even be uniformly bounded as n -> oo for the 0(n~2) error to hold. All we need is 
that the second spherical mean M^ be uniformly bounded. 
(2) Note that part (ii) of Theorem 1 extends in a straightforward fashion to both MPn 

and §n. We simply replace \ZJ\
2
 by x? in the case of the sphere. 

Suppose we now fix k G Z+ independent of the dimension, n, and consider the 
usual embedding i: CPk -» CPn given by: 

*([*!,..., Sfc+l]) = [*i,...,Zjfc+i,0,...,0]. 

Let ipm e VxTn(CPk) be a 1-Lipschitz Laplace eigenfunction on CPk in the m-th 
eigenspace. We can naturally think of '0m as a 1-Lipschitz Laplace eigenfunction on 
CPn via the embedding, t. The following is an easy consequence of Theorem 2 (ii): 

COROLLARY 1. Suppose m e Z+ and k £ Z+ are fixed arbitrarily large, but 
independent of the dimensional parameter, n. Then, for arbitrary g £ C^iR) and n 
sufficiently large, 

9(t)(il>m)Jnn{t)=g(0) + O{n -2m\ 

R 

Proof We will suppose that ^i € VAIOCP*) C VA^CP
71

). Then, we can write: 

AH-l 

ll)l{z,z) =   ^ cijziZj 

where the Q/S are complex numbers satisfying ^27=1 c« = ^ an(i [^1 ^ §2n+1. The 
error term in the computation of the push-forward integral, I^1 (#), is just the second 
moment, J tpldfin. This consists of linear combinations of (k + I)2 terms of the form: 

(50) Iijki = /      ZiZjzkzidfin. 
Jcpn 

Note that I^ki = 0 unless, either i = j and k = /, or i = / and j = A:. In both cases, 
we are reduced to assuming that cij = 0 for i ^ j and so, the estimate follows from 
Theorem 2 (ii), since the coefficients cu are just constants which are independent of 
the dimension, n. The argument for the higher eigenfunctions, ^;m, is very similar 
and is left to the reader. D 

REMARK. There is a straightforward analogue of Corollary 1 for both MPn and 
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