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STATIONARY PERIODIC PATTERNS IN THE ID GRAY-SCOTT 
MODEL* 

DAVID S. MORGANt, ARJEN DOELMAN*, AND TASSO J. KAPER§ 

Abstract. In this work, we study the existence and stability of a family of stationary periodic 
patterns in the ID Gray-Scott model. First, it is shown that these periodic solutions are born at a 
critical parameter value in a Turing/Ginzburg-Landau bifurcation, and an analysis of the appropriate 
Ginzburg-Landau normal form equation reveals that they exist below the critical parameter. Next, 
we analytically continue this family of periodic solutions in the ordinary differential equation for 
stationary solutions from the regime in which they are born and in which their spatial periods are 
O(l), to the regime where their spatial periods are asymptotically large. Depending on parameter 
values, the family terminates in global bifurcations via homoclinic orbits or in local bifurcations. 

In addition to establishing these existence results, we perform a stability analysis. For parameter 
values near the critical parameter, there is an Eckhaus subband of stable periodic states within each 
existence interval. Moreover, these subbands of stable periodic states are continued into the full 
parameter range in which existence is shown. This numerical continuation is carried out all the way 
down into the regime where the periods of the orbits are asymptotically large and for which we have 
recently published analytical stability results. Taken together, these stability results show that there 
is a Busse balloon of stable stationary periodic solutions in the parameter space. 

Finally, in numerical simulations, these stable periodic states are observed to be attractors for a 
wide variety of initial data, including data consisting of large-amplitude fronts moving into intervals 
over which the concentrations are in a linearly stable homogeneous state, data consisting of small- 
amplitude (Swift-Hohenberg like) fronts moving into intervals on which the concentrations are in a 
linearly unstable homogeneous state, and general oscillatory data. 

1. Introduction. The Gray-Scott model [16, 17], governing chemical reactions 
of the form U + 2V -> 3V and V ->> P, consists of the following coupled pair of 
reaction-diffusion equations: 

^ = DuAU - UV2 + A(l - U) 

(1.1) ^- = DVAV + UV2 - BV. 
at 

Here A and B are rate constants, DJJ and Dy are the diffusivities, U = U(x,t) and 
V = V(x,t) are the concentrations of the chemical species U (the inhibitor) and V 
(the activator), and A is the Laplacian operator. 

It has recently been discovered numerically and experimentally that the Gray- 
Scott model exhibits a wide variety of spatial and time-dependent patterns [27, 24, 23]. 
These works report on the evolution of circular spots in two dimensions. The spots, 
in which the concentration of V is high and that of U is low, were observed to undergo 
a self-replication process in which an initial spot evolved into multiple spots, with 
the time asymptotic state depending on the system parameters, or, for example, the 
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interior of the spot collapsed, leaving behind an annular ring of high V and low U 
concentrations. 

Self-replication was also observed and analyzed in ID simulations, see [29, 28, 30, 
6, 7, 26, 8, 4, 25]. In ID, the regions of high V and low U concentrations are intervals, 
so that the V concentration profile exhibits a pulse in the interval. Depending on the 
system parameters, these pulses can be stationary or they can split into two pulses 
which, after the splitting event, move apart from each other and split again. A full 
stability analysis of the stationary, single-pulse homoclinic states and the stationary 
spatially-periodic states with large spatial periods is contained in [7, 8] for a certain 
family of scalings, and an existence and stability analysis of slowly-modulated pulse 
solutions whose small wave speeds decrease slowly in time is given in [4] for general 
scalings. It was also shown in [6, 7] that stationary, spatially-periodic solutions with 
asymptotically large spatial periods are attractors in the self-replication regime. Fi- 
nally, in [7], two sequences of bifurcation curves are identified. In the first, these 
periodic states with asymptotically large spatial periods undergo subcritical Hopf 
bifurcations and become stable solutions of (1.1). In the second sequence, the bifur- 
cation curves correspond to the boundary of the existence domains (or 'disappearance 
values') of each of the periodic states as stationary solutions of (1.1), and these latter 
bifurcation values agree well with the numerically observed transition values in the 
splitting regime. For example, when the parameters are such that the two-pulse so- 
lution does not exist but 3- and higher-pulse solutions do exist, then two-pulse initial 
data is observed to split into a 3- or 4-pulse solution. 

In other parameter regimes, the Gray-Scott model, as well as a related autocat- 
alytic system, exhibits kink solutions, front solutions and heteroclinic traveling waves, 
see [1, 13, 18]. 

Motivated by the experiments and simulations of Pearson [27], attention is pri- 
marily focused on the case in which the diffusivity of the inhibitor U is greater than 
that of the activator V. In this case, U is able to rapidly reach the localized regions of 
high V concentration and hence sustain the reaction, while the relatively slow diffu- 
sion of V makes it possible for these localized regions to persist. We thus set Du — 1 
and introduce the small parameter 5 by setting Dy — 52a", with 0 < 8 <C 1 and a > 0. 
This choice of the diffusion coefficient Dy will enable us to explore a wide region of 
parameter space. 

Depending on the values of A and B, there are either one or three homogeneous 
stationary states. One such state, U = 1, V = 0, exists and is linearly stable for all 
A, B > 0. In addition, when 4B2 < A, there are two other stationary states at 

(1.2) (U±,V±) = 

The nullclines of the reaction o.d.e.: 

U = -UV2 + A(l - U)     and     V = UV2 - BV. 

1 ■ /, 4R21 A - 1 4/?2" 
1 + \ /   - 1 T\ /   - 2 1 / A '2B ^ \ / A 

are illustrated in Figure 1.1. The U nullcline is given by the graph of ±w ^ — A. 
The V nullcline consists of the [/-axis together with one branch of a hyperbola in 
the first quadrant, asymptoting onto the U and V axes. These nullclines intersect at 
(1,0) for all A and B. In addition, they have a point of tangency at 4B2 = A] and, 
for 4B2 < A, the two additional intersection points {U±,V±) exist. Thus, there is a 
saddle-node bifurcation when 4B2 = A. See Figures l.la-b. 
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FIG. 1.1. a. The plot of the nullclines for of the reaction terms when 4B2 > A. b. The plot of 
the nullclines of the reaction terms when 4B2 < A. 

In this work, we present an existence and stability analysis for a family of sta- 
tionary, spatially-periodic states in the ID Gray-Scott model, with x G IR. Most of 
these periodic states exist in the regime where 4I?2 < A, and they oscillate about 
the state ([/_, V_). This family is born at a critical value Ac of the parameter A 
in a Turing/Ginzburg-Landau bifurcation (see Section 3 for a definition of this bi- 
furcation). For each A less than and sufficiently close to Ac, we show that there 
exists a band of periodic states within some wave number interval, and the length 
of the spatial period is 0(1) with respect to S. Then, using results of Eckhaus [10] 
and Schneider [34], we show that within each of these existence bands there exists a 
subband of wave numbers for which the periodic states are nonlinearly stable. 

Having established these existence and stability results for A less than, but suf- 
ficiently close to, Ac, we turn our attention to smaller values of A well below Ac. In 
this regime, we present a constructive existence proof for stationary, spatially-periodic 
states with successively larger spatial periods as A decreases, ranging from 0(1) to 
asymptotically large periods that scale with inverse powers of 5. These states are 
the continuation of those just described for A near Ac. Moreover, those with the 
asymptotically large periods exist in the other domain where 4£?2 > A, and they are 
singular in nature, because they consist of fast and slow segments. Their existence is 
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established using geometric singular perturbation theory and the adiabatic Melnikov 
function. In addition, we show that these singular periodic orbits limit on certain 
fast-slow homoclinic orbits, whose existence was established for a restricted choice of 
parameters in [6]. 

Finally, we continue the stability results out of the regime in which A is close to 
Ac to the entire range of smaller A values for which existence has been established. 
Through numerical simulations, we observe that the widths of the continuations of the 
Eckhaus subbands decrease to zero eventually as A decreases to a bifurcation value 
^Hopf, and the period of the orbits grows toward infinity, which is the spatial 'period' 
of the homoclinic orbit. At A = ^Hopf 5 the homoclinic pulse loses its stability by a 
Hopf bifurcation, see [7, 8, 4]. This numerical continuation therefore brings us down 
into the domain in which the stability results of [7, 8, 4] are valid. In [7, 8], we have 
used matched asymptotic expansions and a stability index analysis to identify the 
regime in which the singular periodic orbits with asymptotically large spatial periods 
are stable, and in [4], we have extended the asymptotic analysis to a general scaling 
and to include slowly-modulating pulse solutions. Taken together, the stability results 
of the present work and those of [7, 8, 4] may be characterized as a Busse balloon 
(see [3]), and they form a complete, jointly analytical and numerical, picture of a rich 
family of stable periodic states. 

The periodic orbits whose existence and stability we demonstrate here derive their 
importance from the fact that they are seen to be attractors for a wide variety of initial 
data. First, we used data consisting of a localized, large amplitude perturbation of 
the stable uniform stationary state U = 1, V = 0. A large amplitude perturbation 
'kicks' this linearly stable stationary state into the basin of attraction of the periodic 
orbit. In particular, the periodic pattern is formed as the la,rge amplitude pulse (in 
V) moves outward from the center of the pattern, depositing the periodic pattern 
behind it. Second, we examined the evolution of data consisting of a small amplitude 
perturbation of the (unstable) stationary state (£/_, VL) and saw the formation of the 
same periodic orbit. A similar phenomena is also observed in the Swift-Hohenberg 
equation [13], where a front propagates into a linearly unstable medium and deposits a 
stationary, spatially-periodic solution behind it. This second case is an example of the 
method of pattern formation discussed by A. Turing in his 1952 paper [37]. Finally, 
we considered general oscillatory initial data with Neumann boundary conditions that 
also evolved into stationary, spatially periodic states. See Figures 1.2a-b. 

The analysis presented here complements that of [6] in the following way. In 
Theorems 4.2 and 4.3 of [6], stationary, spatially-periodic solutions were found for 
a certain special family of parameter values and the concentration of V was expo- 
nentially small in the intervals between pulses for these solutions. In this paper we 
determine the full family of periodic solutions for general A, B > 0 and Dy < 0(Du)'- 
unlike in [6] we do not a priori impose conditions on the relative magnitudes of A, B 
and D, and unlike [6] we do not focus only on the singular solutions. 

Nevertheless, the relative magnitudes of ^4, B and D do play an extremely im- 
portant role in the analysis in this paper. This is made explicit by writing A = a8a 

and B = bS^ (where we assume that a and b are (9(1) with respect to S < 1, see 
also (2.3)). For any given a (recall that 5 and a < 0 were defined by Dy = S2eT) 
there are 3 important lines in the (a,/3)-parameter space: £TGL = {P = |(a + cr)}, 
£SN = {ft = ±a} and ihom = {ft = |(a - 2cr)}. Note that £TGL and £hom determine a 
'wedge' in the (a,/?)-plane with ^5^ inside and that the 3 lines intersect in one point. 
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FIG. 1.2. a. Simulation of (1.1) using 401 moving grid points for A = 0.09, B = 0.086, Du = 1, 
Dv = 0.01 and Te = 1000, with initial data given by U = 1 - 0.5 sin100

(THE), V = 0.25 sin100
(TTX). 

The boundary conditions were of Dirichlet type, with C/(0,t) = U(l,t) = 1 and V(0,£) = V(l,t) = 0. 
b. Simulation of (1-1) in which the same parameters were used as in frame a, with the exception that 
Te = 750. The initial data used in this case was U = U- 4- 0.1sin100(7rx), V = V_ - 0.1sin100(7ra;), 
and the boundary conditions, though again of Dirichlet type, were U(0,t) = C7(l,t) = U- and 
V(0,t) = V(l,t) = V_. In both cases there is a dynamic process going on that is creating a spatially 
periodic stationary pattern. In a., large amplitude fronts propagate into intervals in which the system 
is in a linearly stable homogeneous state; and in b., a pair of small-amplitude fronts into a regime 
in which the system is in a linearly unstable homogeneous state (the classical Turing instability). In 
both simulations, the fronts 'deposit' a spatially periodic stationary core behind themselves. 

We show in section 3 that there is a family of periodic patterns that is created by a 
so-called 'Turing/Ginzburg-Landau' bifurcation as (a,/?) decreases through the line 
£TGL - We follow this family of periodic patterns analytically through the wedge region 
and find (in section 5) that it 'disappears' by a saddle node bifurcation of homoclinic 
orbits as (a,/?) decreases through d-hom- The line ISN separates the wedge between 
£TGL and ihom into a region with (mostly) regular periodic patterns (sections 3 and 
4) and a region with only singular periodic patterns of the structure studied in [6] 
(section 5). 
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In Section 2, we develop the relevant scaled equations. In Section 3, we establish 
the existence and stability of periodic states for \A — Ac\ < 0(1). The existence 
proof for general A below Ac is given in Section 4. We show analytically in Section 5 
how these periodic orbits can be continued into the regime in parameter space where 
the fixed point (U-,V-) no longer exists. In Section 6 we compare our analysis to 
the results of numerical simulations, and we extend the stability results of Section 3 
by numerically finding the edges of a Busse balloon. There are also two appendices 
containing the outlines of some necessary technical calculations. 

2. Preliminary analysis of the system governing stationary spatial pat- 
terns. Stationary patterns of (1.1) are solutions (u(x),p(x), v(x),q(x)) of the follow- 
ing system of ordinary differential equations: 

u' = p 
pf = uv2 - A(l - u) 

(JV = q 
(2.1) 8a<j = -uv2 + Bv, 

where ' = ^. It will be convenient for the analysis to consider a range of magnitudes 
of the feed and decay rates, and so we write them as: A = 8aa and B = d^b, where 
a, (3 > 0, as noted in the Introduction. 

Using these scalings for A and B, we obtain the relevant leading order scalings 
for u and v, as follows. Since we will find that the periodic states are born in a 
Turing/Ginzburg-Landau bifurcation at the fixed point ([/_, VI), it is useful to scale 
the variables u and v with the sizes of U- and V-, as expressed in terms of the scalings 
of A and B. To leading order, one has for 2/3 > a: 

(2.2) (U-,V-) = (620-°*,5a-fi^\ . 

Therefore, we set u = 52^~au and v = S^^v. 

Substituting these scalings into (2.1), we derive scalings for the other variables 
as follows. For the v-q subsystem, there is a distinguished limit when the linear and 
nonlinear terms in the q component of the vector field are of the same order and when 
the right-hand sides of both equations evolve on the same time scale, which imply a 
natural scaling for q. The same is true for p in the u-p subsystem. Finally, we do a 
rescaling of the independent variable. The scalings are: 

A = 5OLa,      B = S0b,      x = 5a-if} 

(2.3) u = 52P-au1     p = 8Pp,      v = 5a-pv,      q = 5a-*q. 

Defining e = 5a~ 2P+a and using' = ^, we obtain the scaled system 

u = ep 
p = e[uv2 - a(l - S20-au)] 
v — q 

(2.4) q = -uv2 + bv. 

The term S2f3~a in (2.4) may be expressed in terms of e, as follows. From the 
definition of e, one sees that S2f3~a = ep, where 

2/3 - a 
(2-5) P=,-(3/2)/? + a- 
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However, clearly this equation for p only makes sense when the denominator is not 
zero. Many of the results in this work (see Sections 4 and 5) will be for the regime 
/? < (2/3)(a + a), so that the denominator is positive. In the case of /? = (2/3)(a-f a) 
when the denominator vanishes, which will also play an important role in this work 
(see Section 3), we will simply define ep — 52(3~a. Observe, therefore, that it is 
possible, as we will see shortly, to have e = 1 {i.e., (3 = (2/3)((7 + a)) and ep <C 1 (i.e., 
2/3 — a > 0) at the same time. 

We shall see in Section 4 that the v-q subsystem of the scaled system (2.4) has the 
requisite balance of terms to support nontrivial periodic orbits with 0(1) periods. We 
drop hats in the remainder of this section and in Sections 4-6, unless stated otherwise. 
Also, in Section 5, see especially Remark 5.2, we state the explicit connection between 
this scaled system and the systems studied in [6, 7, 8]. 

An observation that will be central to the analysis of (2.4) is that it possesses the 
following symmetry: 

(2.6) {u,p,v,q,rj) -> (u,-p, v,-0,-77). 

This symmetry will be used in proving the existence of periodic orbits, also of the 
singular periodic orbits in Section 5 for which further scaling is used. 

In order for the evolution of the u-p subsystem to be slower than, and no faster 
than, that of the v-q subsystem, one requires /? < |(cr + ot). In addition, for most of 
the analysis in this work (i.e., everywhere except in part of Theorem 4.3, Section 5, 
and parts of Section 6), we work in the regime 4B2 < A for vanishing 5, hence we 
require that 2/? — a > 0, with 462 < a in the case of equality. Summarizing, we have 
the following primary range for our parameters for the analysis in Sections 2-4: 

(2.7) l3<-(a + a) and     0 < 2/3 - a. 

In the scaled system (2.4), the fixed point (u_,0,v_,0) is given to leading order 
by (b2/a,0,a/b, 0). Thus, the linearization of (2.4) there is: 

(2.8) P 
V 

/0 e 0 0 \ / „ \ 
e£+e1+pa 0 €26 0 p 

0 0 0 1 v 

\       -fr 0 -b 0 / V Q ) 

The roots of the characteristic polynomial are of the form 

(2.9) (A2)± = -w ± --e>ab where   w i(»-,»£-«•*.). 

When p > 0, (A2)± < 0 for vanishing e, so that the fixed point (u_, 0, ^-,0) is elliptic- 
elliptic. Then, when p = 0, the fixed point (u-,0,v-,0) is also elliptic-elliptic as long 
as b2 < a. Since p = 0 implies that 2/3 = a, the condition AB2 < A implies that 
462 < a, and hence b2 < a and we see that this extra requirement is automatically 
satisfied. 

The boundary of the domain in which the fixed point (u_,0,?;_,0) is elliptic- 
elliptic occurs when /3 = |(a + cr), where we encounter a reversible 1:1 resonant Hopf 
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bifurcation point (z.e.; two coincident pairs of purely imaginary eigenvalues). In this 
case, p > 0, e = ^-§0+" = l7 and ep = 52(3~a < 1. We then have to leading order: 

2 L 2 

(2.10) (A2)± = -w ± A/ti;2 - ^-,        where        ti; = ~{l - %r). 
V b 2 b6 

The expression under the square root is zero when 

(2.11) a2
c = b\Z-2V2). 

Thus, because w > 0 and a — ac, there are two coincident pairs of pure imaginary 
eigenvalues, and hence a reversible 1:1 resonance Hopf bifurcation, as indicated above. 
Moreover, beyond this bifurcation point, the two pairs of eigenvalues separate and 
move into the complex plane, gaining nontrivial real parts also. This bifurcation will 
be the starting point of the analysis in Section 3. 

For completeness, we note that the expression for the square root in (2.10) is also 
zero when a2

c — 63(3 + 2y/2). For this root, however, we readily see that w < 0 and 
(A2)± > 0, so that all four eigenvalues are real. Hence, the fixed point is of saddle- 
saddle type, and one does not expect to find periodic orbits lying nearby. Also, it is 
toward these points on the real-A axis that the pairs of complex conjugate eigenvalues 
migrate, and afterwards they remain strictly real. 

We conclude this section by examining the phase space of the scaled equation 
(2.4). When e = 0, the plane M = {(w,p,v,^)|v,g = 0} is trivially invariant, con- 
sisting of equilibria. Also, the v-q subsystem is a 1-parameter family of Hamiltonian 
systems with parameter u and Hamiltonian 

(2.i2) K=\f+r3 - V- 
This system has a center equilibrium at (v, q) — (^,0) and a saddle equilibrium at the 
origin, see Figure 2.1. Note that when u — 62/a, the center equilibrium corresponds 
to the leading order stationary state VL. 

For 0 < e C 1, M is still invariant, and the flow on M is linear, with a saddle 
equilibrium at (u,p) = (e_^,0). In particular, the flow on M is slow, and hence M 
is a slow manifold for the full system. See [12] for the theory of slow manifolds in 
singularly perturbed systems. The u-p subsystem on M, may be examined using the 
independent variable ^ = ery: 

v! — p 
(2.13) p' = -a + epau. 

The equilibrium has eigenvalues X± = ±epl<1yfd and associated eigenvectors 

(2.14) Kp)T = (l)±e''/2^)T. 

By linearity, the stable and unstable manifolds (lines) t8 and lu of the saddle fixed 
point are given (see Figure 2.2) as the graph of: 

p = Tcp/2>/a(ti-c"p). 

REMARK 2.1. There are three parameters: A, B, Dy, in the partial differential 
equation (1.1), where without loss of generality Du is set to one.  In the ordinary 
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FIG. 2.1.   The phase plane of the fast subsystem, showing some periodic orbits and the orbit 
homoclinic to (v — 0,gf = 0). 

differential equations (2.4), there are five: a,/3,cr, a, and 6, where a and b are (9(1) 
with respect to 8. The rescaling therefore introduces a redundancy in that stationary 
solutions of the partial differential equation which exist for a given triple of parameter 
values will be found for some set of triples of scaling exponents a, /3, and a (and the 
corresponding values of a and b) in the ordinary differential equations. It will be 
important to recall this fact at several points in the analysis, especially in subsection 
3.1, where we analyze the Turing/Ginzburg-Landau bifurcation that occurs at a par- 
ticular Ac (for each B) in the partial differential equation and that is recovered in the 
ordinary differential equations by using any triple of scaling exponents chosen from a 
set satisfying a = (3/2)/? — a. 

REMARK 2.2. In [6], [7], [8], the existence and stability of one-pulse and multi- 
pulse homoclinic solutions is studied when a = 1, a = 2 and /? G [0,1), and in [7], 
/? = 1 is also analyzed. In addition, in [4], we analyze the existence and stability of 
stationary and slowly-modulating homoclinic solutions for a much broader class of 
scalings. 

REMARK 2.3. We will obtain some existence results for a < 0 in Section 4. 
However, our stability results will not apply to this regime. 

3. Bifurcating periodic solutions: /? = |(cr + a). In this section, we study 
the behavior of the solutions of (1.1) near the reversible 1:1 resonance Hopf bifurcation 
point (2.11). The local normal form theory for reversible vector fields (see [20] and 
references therein) enables us to obtain a detailed description of the phase space of 
(2.4) in the neighborhood of such a critical point for parameters close to the bifurcation 
value. It can be shown by this normal form approach that there exists in (2.4), for any 
a close enough (and in our case below) ac, a 1-parameter family of periodic solutions 
close to the fixed point (u_,0,v_,0). 
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FIG. 2.2. The phase plane of the linear slow subsystem on M., shovnng the stable and unstable 
manifolds £s and £u of the saddle fixed point, as well as a branch of a hyperbola Tc inside these 
lines. 

The reversible 1:1 resonance Hopf bifurcation in the stationary problem associ- 
ated to (1.1) is closely related to the bifurcation in the PDE at which the trivial 
pattern (U = U-,V = VL) loses its stability, [19]. In this context, the elliptic-elliptic 
character (two noncoincident pairs of pure imaginary eigenvalues) of the critical point 
(u_, 0, t;_, 0) after the bifurcation {i.e., for A < Ac) corresponds to the existence of a 
band of unstable wavenumbers centered around a critical wavenumber kc (recall that 
'time' in (2.4) is the spatial variable a; of (1.1)). In hydrodynamic stability problems 
on unbounded domains, this bifurcation has been the main motivation to develop 
the concept of so-called modulation equations. The Ginzburg-Landau equation is the 
most well-known and generic example of such a modulation equation (see [9] for a 
review). The Ginzburg-Landau equation gives a weakly nonlinear description of the 
appearance of a band of stable spatially periodic solutions at near critical conditions. 
Turing studied the linear character of a similar bifurcation in the field of biological 
pattern formation [37]. The stationary patterns emerging from this bifurcation are 
called Turing patterns in reaction-diffusion equations. Therefore, we refer to this 
bifurcation as the 'Turing/Ginzburg-Landau bifurcation' in this paper. 

In this section, we have chosen to approach this bifurcation along the lines of the 
theory of modulation equations since it gives clear insight into the behavior of the 
solutions of (1.1). In subsection 3.1, we study the linearized stability of the trivial 
pattern (U = £/_, V = VL) and recover the reversible 1:1 resonance Hopf bifurcation 
of Section 2. Then, in subsection 3.2, we formally derive a Ginzburg-Landau equation 
that describes the evolution of small perturbations of (U = I7_, V = VL) for parameter 
values close to the bifurcation. From this equation we obtain the existence of a 1- 
parameter family of stationary, spatially periodic solutions (with small amplitude) 
within which lies a subfamily of stable periodic solutions (the so-called Eckhaus band 
[10]).   Finally, in subsection 3.3, the diffusive stability with respect to the PDE of 
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the solutions within the Eckhaus bands will be shown rigorously by appealing to the 
recent results of Schneider [34]. Note that throughout Section 3, we use capital letters 
U and V to denote the variables of the PDE (1.1). 

3.1. Linear stability analysis of (?7_,VL) and the determination of ac. 
We begin by linearizing (1.1) around the stationary state ([/_, VL). Let 

(3.1) (U,V) = ([/_ +lHt)eikz
iV- +V(t)eikx), 

where k is real and where we note that this Fourier decomposition is possible since 
we consider x G IR. The linearization of (1.1) is: 

U \ ( -k2 - Vl - 5aa -2S0b       \     ( U (3-2)      l v)   -   \       vi s^e + sfib)   V v 

where we have used U-V- — S^b. We label the matrix M. 

Using the trace-determinant representation of the eigenvalues, 

(3.3) \± = \ TrM ± VCTrM)2 - 4DetM 

we see that Re(A+) > Re(A_). 

In order for ([/_, VL) to be linearly stable, it must be that TrM = A_ + A+ < 0 
for all k. For 2/3 > a the trace of M is to leading order: 

(3.4) -(k2 + 62(a-V ^ + 5aa + 62°k2 - 50b) < 0, 
b2, 

where we have substituted the leading order expression from (2.2) for VL. In order 
for this relation to hold for all fc, it must be that either 2(a - 0) < 0 (with a2 < b3 

being sufficient in the case of equality), or a < ft (now, with a > b in the case of 
equality). Since a,/3 > 0, the latter inequality is satisfied automatically whenever the 
former holds. Hence, we know that 

(3.5) 2a < 3/3 

is the only new condition that needs to be satisfied in order for ([/_, VL) to be linearly 
stable. 

We now find explicit values, ac and fcC5 of the parameter a and the wavenumber 
k such that ([/_, V_) is marginally stable. We will also see in the course of the proof 
below that the other trivial stationary state ([/+, V+) does not satisfy the conditions 
for marginal stability, and that is why our focus below is exclusively on ([/_, VL). See 
Figure 3.1a. Marginal stability at kc is equivalent to the situation in which Re(A_) < 0 
for all k and Re(A+) < 0 for all k ^ ±kc, Re(\+)\±kc = 0 and ^ Re(A+)|±fcc = 0. 
We have that Det M = A+ • A_. Thus, marginal stability occurs for ac and kc that 
satisfy: 

1. Det M(fe;ac) > 0 for all fc, 
2. Det M(±kc;ac) =0, 
3. ^ Det M(±fcc;ac) =0. 
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MMc) 

FIG. 3.1. a.  The k — A plane in the marginal stability case, where A = Ac. b.  The k — A plane 
when A < Ac, \A — Ac\ <C 1. 

Condition 3 implies that locally (near ±kc) the eigenvalue curve A+ meets the fc-axis 
in a quadratic tangency. We will now show: 

PROPOSITION 3.1. The stationary state (£/_, VL) of (1.1) is marginally stable for 

/?=-(* +a) 

(3.6) 

fc2_   (1-^ 
^ -  2(J2(/?-a) 

a2
c=gb3, 

to leading order, where g = 3 — 2\/2. 

Proof Using condition 3, we obtain 

(3.7) 
2      -(<y2gVrj + <S2g+aac-fl?6) 
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Also, using condition 2, we obtain an expression of the form 

(3.8) k2
cf{k2

c,8,ac,b,V-) = -8Pb{Vl-6aac\ 

for some known function /. Substituting (3.7) for kl in /, we find 

(3.9) * -     -™°W-^ vc     52<TV*+52°+<xac-5Pb' 

Then, the requirement that kc is real implies, using successively (3.7) and (3.9), the 
following additional conditions: 

4. 52(TVl + 52(T+aac-5n<0, 
5. V* - 5*0,0 > 0. 

Since V- only exists for 4B2 < A, and thus either 2/3 > a or 2/3 = a with 462 > a, we 
find by (2.2) and (1.2), respectively, that condition 5 is satisfied automatically. Thus, 
condition 4 is the only 'new' condition. 

We now make a brief digression that is nevertheless part of the reason why the 
proposition is only stated for ([/_, VI). In condition 5, if we replace the leading order 
expression for V_ with that for V+, we obtain the condition:. 

(3.10) 82P-ab>ac, 

which cannot be satisfied when 2/3 > a for 6 < 1, due to (2.7). Also, when 2/3 = a, 
it can be checked that V2 > 8aa. The equality, V± = c^a = A (2.3) occurs at 
the bifurcation a = 4b2 (or A = 4B2) where V+ = V_. Thus, the other nontrivial 
homogeneous state (U+,V+) cannot be marginally stable, and that is why we focus 
only on ([/_, V_) in this proposition. 

Returning to the analysis of the state ([/_, V_), we first restrict our attention to 
the case in which 2/3 > a. The other case 2/3 = a is then treated at the end of the 
proof. Rewriting condition 4 using (2.2), one obtains to leading order: 

(3.11) «LS2{«-0+<r) + s2°+aac - 50b < 0. 
bz 

Now 2p > a implies that 82<T+aac < S2^'^^^. Thus, for the condition (3.11) to 
hold, one needs: 

(3.12) /3<2(a-/3 + c7). 

This, together with (3.5), implies: 

(3.13) <7>0. 

Now, the inequalities in (3.5) and (3.12) imply that, to leading order, (3.7) is 
O(50-2a), while (3.9) is O(82a-20). Thus, since (3.7) and (3.9) must be equal, we 
find: 

(3.14) /3=|(a + a). 

Using this, we see that condition 4, as given by (3.11), becomes: 

(3.15) a2
c < b3. 
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Substituting the leading order expression (2.2) into the right-hand sides of (3.7) and 
(3.9), we find that to leading order 

(3.16) (2j-l)2 =4 

Finally, solving for 0% and using condition (3.15), we obtain the desired formula, (3.6), 
for ac. And, substituting this back into (3.7), we obtain the second line of (3.6). This 
concludes the proof for the case 2/3 > a. 

When a = 2/3 > 0 we see that the leading order term in is the trace of the 
matrix M (3.2) is +S^b: TrM cannot be negative for small k (note that we cannot 
use (3.4) since that approximation uses 2/3 > a). Thus, marginal stability can only 
occur for a = 2/3 = 0. Substituting this in (3.7) and (3.9), we observe that these 
expressions for kc can only be of the same magnitude when also a = 0. Since we 
cannot use the leading order approximation (2.2) of (£/_, VL) in this case, the above 
marginal stability calculations will be much more technical. Moreover, a degeneration 
will occur as A « 4B2 (see Remark 3.1), therefore we do consider the details of this 
case. 

COROLLARY 3.2. For a slightly larger than ac, ([/_, VL) is linearly stable, and 
for a less than ac, ([/_, VL) is linearly unstable. 

Proof. For 2/3 > a we have to leading order: 

(3.17) i-DetM\a=ac = 2^Va-'?+*) + 2 V^ + S^^k2 - Sa+^b > 0, 

since, in particular, 2a — (3 < a + /?. In addition, note that because A+(ac) = 0, the 
product rule directly gives: 

(3.18) ^T>etM\a=ac = ^ [A-(a) • Ma)] = ^U-c • A_(oc). 

Finally, since A_(ac) < A+(ac) = 0, (3.17) implies that 

(3.19) ^±]a=ae<o. 

Therefore, the corollary is proven in the case 2/3 > a. The result for f3 = a = a = 0 
can be obtained along the same lines. 

3.2. The Eckhaus bands of stable periodic states:  \a — ac\ < 1. We now 
turn our attention to the case with a < ac, with |a — ac\ <^ 1. By the results from 
subsection 3.1, there exists a narrow band of wave numbers such that the homogeneous 
state (C/_,VL) is unstable in this regime. See Figure 3.1b. For simplicity, we only 
consider the case 2/3 > a (see Remark 3.1). 

Heuristically, the idea is to derive a tractable equation, the Ginzburg-Landau 
equation, which will govern the behavior of the weakly-unstable solution (C/_, VL), 
for \a — ac\ <£ 1. In particular, we will consider a = ac — 72, where 0 < 72 <C 1 is a 
new small parameter. 

We construct a small perturbation of (t/_,VL). Using (2.2), and recalling that 
we are considering the case 2/3 > a, we define (£/_, VL) implicitly via: 

U- = 52p-aU- 



(3.20) 
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Setting a = ac — 72 in the leading order expressions for (t/_, VL), where ac is given 
in Proposition 3.1, we then substitute 

(3.21) V = da-0(V-+jV(x,t)), 

into the Gray-Scott PDE (1.1) and rescale via x = X613 a and i = S^t to obtain the 
leading order system: 

at      ox2 V 9 

(3.22)    ^ = ^2^0+%[/ + V]+7^ 

25t/y + y2 -r 

2gUV+V2 

UV2-2J^U 

+Y [/y2-21/|i7 

where we have dropped all of the hats and tildes from all variables. Finally, we recall 
that a,P and a satisfy (3.12) (i.e. 2a + 2a — 3/3 = 0), so that the coefficient on 
d2V/dx2 is identically one. Moreover, the coefficient on dU/dt is d2" < 1 and can 
thus be ignored to leading order. 

If we neglect the 0(7) terms, we will recover the rescaled linear stability problem. 
The eigenvalue problem is 

(3.23) det 
-bg -k2- S^-2aX -2b 

bg b-k2-\ 
= 0. 

Note that k2 = |(1 — g)b, which is obtained from (3.6) through the above rescaling 
for x. Define 

(324) M  =( -^1 + 9)    ,   -2 

l3-i4) Mc-\ 9 |(1 + 9) 

and note that Mc is nilpotent. The kernel of Mc is given by 

2 
S = span < 

■1(1+ fl) 
>, 

where we recall that g = 3 — 2\/2.   Thus, since Mc is nilpotent, .Mc* = c has a 
solution if c G S. In this way, we obtain an orthogonality condition: 

(3.25) -(1 + <7)CI+2C2 = 0, 

where c = (ci,C2)T, which will be central to the procedure below for deriving the 
Ginzburg-Landau equation. 

The idea of deriving a modulation equation, such as here the Ginzburg-Landau 
equation, is that the solution (£/, V) of (3.22) must be 'close' to the critical solution 
of the linear (9(1) problem: 

(3.26) 
U y      =M,r) , 

rU + s) 
+ c.c. + h.o.t., 
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where A(€, r) is an amplitude term that depends on the slow time r = j2i and rescaled 
spatial variable £ = yx, and c.c. denotes the complex conjugate. Thus, if one knows 
the behavior of A, then one knows the behavior of the solutions ({/, V) of (3.22). 

The Ginzburg-Landau equation is an equation for A(€, r).   For the Gray-Scott 
problem, we find to leading order, in both 6 and y: 

(3.27) Ar = '^A + 2y/2Aiz - jkl(h/2 - 7)\A\2A. 
yb 9 

The derivation of this equation is given in Appendix A. The so-called Landau coeffi- 
cient in front of the cubic term in (3.27) is negative. Thus, one can explicitly find the 
band of periodic solutions to (3.27) by setting A{^T) = Re1**, where R is a constant. 
Substituting this into (3.27), one obtains a cubic for R. Nontrivial solutions R and K 

are given by the following equation: 

(3.28) K2 + ^(20_7^)i?2 = _^ 

A straightforward linear stability analysis shows that none of the solutions within 
this band satisfying 

(3.29) |*| < (26)1/4V3' 

have spectrum on the right hand side of the imaginary axis (the solutions outside this 
band have a piece of unstable (continuous) spectrum, see [36]). Hence, all of the solu- 
tions within this band that satisfy (3.29) are linearly stable. However, the continuous 
spectrum of the periodic solutions in this subband reaches up to the imaginary axis, 
therefore one cannot expect these solutions to be stable in a very strong sense, as we 
shall see in subsection 3.3. 

REMARK 3.1. There is an additional complication in the case a = /3 = a = 0. 
Since a = A then, and moreover V2 = Fj? when A = 4B2, by (1.2), it follows 
from (3.9) that kc I 0 as a = A I 4B2. As a consequence, one cannot use the 
above standard Ginzburg-Landau approach to study the weakly nonlinear stability 
of ([/_, VL) for A '« 4B2

y since the Fourier decomposition breaks down (see (3.26) 
and (A.l) in Appendix A). This degeneration in the Ginzburg-Landau equation has 
been studied in detail in [32]. It has been shown there that in this case the Ginzburg- 
Landau equation transforms in a rather singular fashion into the so-called extended 
Fisher-Kolmogorov equation. This has a drastic influence on the existence, stability 
and type of the (periodic) solutions that appear at this bifurcation. Note that in the 
context of the linearized stability analysis in the ODE for the spatial dynamics (as in 
Section 2), this degeneration corresponds to an eigenvalue A = 0 of multiplicity 4. In 
this paper, we do not intend to go into the details of this special case. Note that in 
the simulations in Section 6 we will always consider a > 0 (as in most simulations of 
the Gray-Scott model), thus we do not come close to the case a = 0 = a = 0. 

3.3. Nonlinear diffusive stability. The outcome of the asymptotic analysis 
on the stability of the small amplitude spatially periodic solutions in subsection 3.2 
can be validated by applying the results of Schneider [33], [34] to this situation. In 
particular, we show in this subsection that Theorem 1.1 of Schneider [34] may be 
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used to justify the stability result (3.29). This theorem applies to reaction-difFusion 
equations of the form 

(3.30) Ut = ^U + F(U), 

where x e JRd, t > 0, U(a?,t) e JRd, A = diag(aiA,... ,ajA) with aj > 0 for 
j = l,...,d and F is at least C4. The Gray-Scott model (1.1) clearly belongs to 
this class of systems with d = 1 and d = 2. There are two essential assumptions in 
the statement of this theorem: (i) there should exist a spatially periodic equilibrium 
solution U(x,t) = Vp(x) of (3.30) and (it) the periodic pattern Up(x) should be 
spectrally stable, i.e., the linearized stability problem should have no spectrum to the 
right of the imaginary axis. Note that A = 0 must be in the spectrum due to the 
translational invariance. 

The perturbations V(x, t) = U(a;, t) - Vp(t) of the spatially-periodic state Vp(x) 

satisfy the equation 

(3.31) Vt = [A + DuF(up)] V + N(V). 

Theorem 1.1 in [34] then states that, if both assumptions (i) and (ii) are satisfied, suf- 
ficiently small perturbations V(x, t) of the periodic solution Up(x) decay algebraically 
in time (in a particular weighted Sobolev space): 

THEOREM 3.1 (Schneider [34]). Let 5 > 0. Assume that the system (3.30) has 
a spectrally stable, stationary, spatially-periodic solution XJ(x,t) = Up (a:). Let VQ 

be an initial condition of (3.31) with VoP G Hdl2^{m,d), where p(x) = (1 + \x\2)d. 
There exist positive constants Ci and C2 such that if WVopllffd^+i^d^ < Ci, then the 
solution V of (3.31) withV\t=o = Vo exists for allt > 0 and satisfies ||V(t)||Loo(]ad) < 

C2(l + t)-d/2. 

This result generalizes the stability properties of the periodic solutions of the 
Ginzburg-Landau equation (see for instance [22]) to stationary periodic patterns that 
appear at bifurcations in reaction-diffusion systems that can be approximated by a 
Ginzburg-Landau equation, as we did in subsection 3.2 using the asymptotic methods. 
Hence, if we can show that both assumptions (i) and (ii) are satisfied, we may conclude 
by this theorem that the solutions inside the parabola (3.29) are diffusively stable. 

There is a straightforward procedure to check that the analysis in the previous 
subsections implies that these assumptions hold for the solutions described by (3.29), 
however, we do not go into the details here. The existence of the solutions described 
by (3.28) is only shown in an asymptotic leading order sense, the rigorous justifi- 
cation can be established by appealing to the results of [19] and [20]. The linear 
stability analysis of these solutions is performed through the simplification of using 
the Ginzburg-Landau formalism. The linearized stability results found in the previous 
subsection through this asymptotic procedure show that condition (ii) is satisfied for 
those periodic patterns that satisfy (3.29). Thus, we can conclude: 

THEOREM 3.2. Let A = aSa = (ac - j2)5a where ac is given by (3.6) and let 
/3 = 2(<7 + a) > 0. For 0 < 7 < 1 small enough (independent of 5), there exists a 
1-parameter family of stationary spatially-periodic solutions of (1.1) that are close to 
the stationary state ([/_,V_) (1-2): 

(?£:}) - (vi) ^^—"*- (_(J?%.-*)+-+ ^ 
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i- A 

FIG. 3.2. The existence and stability parabolas near A = Ac plotted in the A — k plane, as 
obtained from the leading order perturbation analysis carried out in Section 3. Here the following 
choice of parameters is made in order to graph the analytically obtained functions: Ac = acSa, 
B = bd0, Du = 1.0 and Dv = 0.01, where ac = 0.114, b = 0.4, 6 = 0.1, a = 0, 0 = 2/3, and a = 1. 
The stability parabola marks the upper tip of the Busse balloon that will be found in Section 6. 

where R and K are related by (3.28) and kc is given by (3.6). Moreover, the solutions 
with K, satisfying (3.29) are diffusively stable in the sense of Theorem 3.1. 

REMARK 3.2. The unsealed period of these solutions is given by 27rSa~f3/(kc-{-jK) 
which is 0(1) by (3.6). See Figure 3.2 for plots of the existence and stability parabolas 
in the A- k plane corresponding to these orbits. 

4. Existence of stationary, spatially-periodic solutions: /? < |(cr + a). In 
this section, we establish the conditions under which (2.4) has periodic orbits when A 
is much less than the critical parameter Ac. The precise results are stated in Theorems 
4.1 and 4.3 below. Also, we will set t = fj and refer to t as time, since we work with 
the system (2.4) as a dynamical system, and we recall that we have dropped hats. 

Let (u(0),p(0),v(0),q(0)) denote an initial condition for (2.4). In particular, 
we consider initial conditions with p(0) = 0, q(0) = 0 and v(Q) > b/u(0). Let 
re,i (—T€t2) denote the forward (backward) time taken for the solution with initial 
condition (w(0),0,z;(0),0) to intercept the {q = 0} hyperplane for the first time. In 
view of the symmetry (2.6), it must be the case that: 

(u,p,v,q)\-Te,2 = (u,p,v,q)\Teil, 

in order for the orbit (u(t),p(i),v(t),q(i)) through these initial conditions to be pe- 
riodic. See Figures 2.1 and 2.2. Moreover, since any periodic orbit of (2.4) with this 
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type of initial condition must satisfy the symmetry (2.6), Te^ = T€ji. We denote this 
time by T€. 

The condition that v(-Te) = v(Te) can be reexpressed using the Hamiltonian K 
and the fact that q{±Te) = 0. In particular, a periodic orbit exists if the following 
relations hold: 

AK^O^UOTPO) = /      K(u,p,v,q)dt = 0 

/'T€ 

Au(i;fo,^o,Po) = /      u{u,p,v,q)dt = 0 
J-Te 

fTe 

(4.1) Ap(ifo,wo,Po) = /     p(u,p,t;,g)dt = 0, 
•/ — Te 

where no = n(0) and po = 0 for our choice of initial conditions, and KQ is the value 
of the Hamiltonian at the initial condition (y,q) = (v(0),0). 

To analyze the condition involving Aif, we differentiate the Hamiltonian K, given 
by (2.12), along trajectories of (2.4) and treating u as a constant: 

e   fTe 

AKiKo.uo.Po) = - pv3dt. 

The symmetry (2.6) implies that the solution through an initial condition with p(0) = 
Po = 0 and q(0) = 0 satisfies the relation p(—t) = —p(t), as well as the condition 
!;(—£) = i?(£). Thus, the integrand is an odd function, and the requirement that 
AK = 0 is automatically satisfied by the orbits through (u(0),0,v(0),0) for any 
u(0) > 0 and i;(0) > b/u{0). 

To analyze the condition involving Aix, we use (2.4)(a) to rewrite the integral in 
(4.1) as: 

AU{KO,UQ,PO) =e        p dt. 
J-Te 

Again, symmetry (2.6) implies that the solution through an initial condition with 
p(0) = po = 0 and q(0) = 0 satisfies the relation p(—t) = —p(t). Therefore, since 
the interval of integration is symmetric about t = 0, we see that the requirement of 
Au = 0 for having a periodic orbit is also satisfied automatically by the orbit through 
the initial condition (u(0),0,v(Q),0) for any u(0) and v(0) > b/u(0). 

In the next two subsections, we will analyze the condition Ap = 0 and complete 
the proof of the existence of periodic orbits. In subsection 4.1, we examine the case 
2/3 - a > 0 (p > 0, recall (2.5)), while in subsection 4.2, we treat the case 2/3 - a = 0 
(p = 0). 

4.1. Analysis of Ap for p > 0. 

THEOREM 4.1. For p > 0 (i.e. for 2/3 - a > 0), (3 < 2/3(a + a), for all 
positive and 0(1) values of a and b, and for each 0 < UQ < b2/a, there exists a 
V(0;UQ) > b/uo such that the system (2.4) has a periodic orbit with initial condition 
of the form (uo,0,v(0;uo),0). 

Proof. As we have already shown, the conditions that Au = 0 and AK = 0 are 
satisfied by the trajectories through (i6(0),0,t;(0),0) for all a,6 and u(0) > 0, and for 
all v(0) > b/u(0). Thus, we will complete the proof by analyzing when Ap vanishes. 
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From (2.4) and (2.6), one may directly compute: 

(4.2) Ap(Ko,UOJPO) = 2e /     [uv2 - a + ef)au]dt. 
J — T€ 

In order to estimate u(t), we recall that u = ep. Since p(0) = 0, since T€ is bounded 
above by an 0(log(l/e)) quantity, and since p = O(e), we know that p(t) = 0(e) for 
t e [0, Clog(l/e)), and hence u is constant (= ^o) to leading order. 

Let To be the time taken for the unperturbed solution of the fast system with 
u = UQ and with initial condition (v, q) = (v(0), 0) to intercept the {q = 0} hyperplane 
the first time. It follows that to leading order: 

(4.3) Ap(ifo,uo,po) =2e        (UQV
2
 - a)dt 

J-TQ 

since epau is a higher order term, when p > 0. 

We will show that for a, b = 0(1), there is a unique initial condition of the form 
(t/OjO, t>(0),0) with UQ > 0 and i>(0) > &/uo> such that Ap — 0. We will do this via a 
monotonicity argument which shows that, in the limit e —> 0, Ap varies monotonically 
as ^(0) increases from b/uo, the value at the center fixed point of the fast subsystem, to 
3b/2uo, the value at the point where the orbit homoclinic to (v = 0,q = 0) intersects 
the v-axis. Moreover, zero is contained inside the interval over which Ap varies, 
and this together with monotonicity and a straightforward application of the Implicit 
Function Theorem implies the desired result. 

As a preliminary step to establish monotonicity, we will rework the expression for 
Ap. The procedure we employ follows that also used in [5]. Using the Hamiltonian 
(2.12) and the first equation of the fast v-q subsystem of (2.4) for q > 0, one has: 

(4.4) ^ = ±J2K + bv2 - ?m;3. 

For clarity, let Gft:(v;u,&) = 2K + bv2 - |m;3. Changing variables of integration in 
(4.3) from t to v, we obtain 

UQV
2
 - a 

zdv, 
y/GK(v;uo,b) 

(4.5) Ap(Ko,uo,po) = 2e f™ 

where vmin and Vmax are the points of intersection of the unperturbed periodic orbit 
of energy KQ with the positive v-axis. See Figure 2.1. 

The expression for Ap may be further analyzed by defining: 

(4.6) vmmf    /* 

where the contour is taken in the complex plane around the real interval [vmm, vmax]. 
Then, since the integral of a derivative on a closed contour is zero, one has, for j > 1: 

0 = I A.(vJ-^GK(v;uo,b))dv 

(4.7) =(j-l)<[vj-2y/GK(v;uo,b)dv + bTj - uQTj+1. 
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It follows that when j = 1, the first term of the second equation on the right hand 
side of (4.7) vanishes, and we have 

(4.8) T2 = —TL 

Thus, to leading order, we have: 

(4.9) ^p(KoMo) = UQT2{K) _ aUK) = bTi{K) _ aUK) 

The monotonicity of Ap will now follow from monotonicity of the ratio TI/TQ. 

So, let 

(4.10) r(ir;fl0,a,6) = *^. 

We want to show that for a, b = 0(1), there is an initial condition of the form 
(ito,0,t;(0),0) whose orbit has energy K in the fast subsystem, such that 

(4.11) r(K;no,a,6) = ^. 

In particular, we will show that one can find a v(0) such that (4.11) holds and r 
,2 

is monotonically decreasing as v passes through this value, for every UQ < ^-, by 
establishing: 

PROPOSITION 4.2. Let Kc = -^ denote the energy of the center (|,0) of the 
unperturbed v-q subsystem, and note that the energy of the saddle (0,0) is 0. Then 

(i)   lim T(K) = -, 
KIKC U 

(n) lim rUn = 0, 
KfO 

(m)-^r(K)<0       for  KG(KC,0). 

REMARK 4.1. Note that as uo -> --, from condition (z) we have that limx;^ T(K) 

= |, the requirement of (4.11). Thus, the periodic orbit we find in this limit occurs 
when K = Kc, which implies that v(0) = |, and the periodic orbit collapses to the 
homogeneous state.(£/_, V"_). The other limit, iio —> 0, will be studied in Section 5. 

Proof. First, we evaluate the limits of To and Ti as K —> Kc and as K -» 0, 
the energy at the center and saddle, respectively. Taking the limit inside the integral, 
expanding the resulting expression about v = ^ and integrating with the residue 
theorem, we find 

(4.12) feW)^,    i™^) = 2<4 

Next, by taking the limit inside the integral and evaluating the integral directly, one 
also has: 

(4.13) limTo(K) = oo,    limTi(liO = —. 
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Thus, using the definition of r given in (4.10), (i) and (ii) are proven. 

Finally, we show that T(K; U, a, b) is monotone in K.  This will be achieved by 
showing that dr/dK < 0 for K G (Kc, 0). In particular, 

(4.14) 
dr        d  (T2{K)\      d  (bT1{K)\      b 
dK     dK\To(K)J    dK\uTo{K)J     u 

-To{K).h{K) + Tl{K)Jo{K) 

n{K) 

where 

(4.15) 

and, for i > 0: 

(4.16) 

Ji(K) = I "' dv 
J GK(v;u,b)y/GK(v;u,b) 

dK 
TiiK) = -UK). 

From this we observe that we only need Jo and Jx to calculate dr/dK. However, we 
need equations for Jo,..., J4 in order to evaluate JQ and Jj in terms of To and Ti. 
Through straightforward manipulations one finds that: 

(4.17) 

Also, 

(4.18) 

To = f Gf->;>b] dv = 2KJ0 + bJ2 - 
2-uJ3, 

Ti = 9     v , =dv = 2KJi + 6J3 - -WJ4. 
/  GK(v;u,b)yyGK(v]u,b) 3 

0 
7 dv 

d f      v (i-i) 

VV^G^TM) 
j dv = (j - 1)^-2 - bJj + wJi+i 

for j > 1.  Now take j = 1,2,3 in (4.18) to find three additional equations.  Thus, 
(4.17)-(4.18) constitute a 5 x 5 linear system in the unknowns Jo, •••5 J4' 

(4.19) 

/ 2K 0 b 
0 2K 0 
0 b -u      0 
0 0 b      -u 

\   0 0 0        6 

6      -|u 
0    \      f Jo\ 

Ji 
0 J2 
0 J3 
-«     / V   J4   J 

( To   \ 

0 
To 

V2r1 y 

Solving this system, we find that 

Jo = 

Jl = 

6tf(&3 + GiiTu2) 
&MTO - u2Ti 

Thus, plugging these solutions (4.20) into (4.14), we find that 

dr      b2T2 + 12UKT - 6Kb2 

(4.21) 
dK 6K(b3 + 6Ku2) 

For K € (Kc, 0), note that the discriminant of the quadratic Q(T) = br2 + 12UKT - 
6Kb2 is 0 at K = Kc and at K = 0, and is negative for K 6 (Kc,0). Combined with 
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the fact that Q(0) > 0, this implies that Q > 0 for all r. Since the denominator is 
negative for all K € {KC,Q), we conclude that: 

(4.22) ^<0. 

This concludes the proof of the proposition, and the analysis for 8 = 0 (e = 0). 

A straightforward application of the Implicit Function Theorem shows that, when 
0<<S<Cl(0<e<l), the higher order terms in the asymptotic expansion do not 
structurally alter the results obtained from the leading order analysis. Thus, the proof 
of the theorem follows. 

4.2. Analysis of Ap for p = 0. In this subsection, we consider the case where 
p = 0 (i.e. 2/3 — a = 0), and again we assume f) < 2/3(cr -f a). The analysis proceeds 
in a fashion similar to that used in subsection 4.1. From (2.4) and (2.6) we have 

(4.23) Ap(Ko,uo,Po) = 2e        [uv2 - a + au]dt. 
J-T£ 

The leading order integral is 

,o 
(4.24) Ap(Ko,uo,po) = 2e        [UQV

2
 - a(l - uo)]dt, 

J-TQ 

where we now need to keep the third term in the integrand, since it is no longer of 
higher order. 

Following the same steps as in subsection 4.1, we obtain a condition similar to 
(4.11): 

(4.25) r(if;iio,a,6) = ^(l-iio) 

As with (4.11), if this condition is satisfied for some initial condition (^o,0,v(0),0), 
for which the orbit in the fast subsystem has energy K, then Ap = 0 and a periodic 
orbit exists. Note that the results of Proposition 4.2 carry over without modification 
in this case. Thus, for (4.25) to hold, we have, using the condition (i) of Proposition 
4.2, the requirement that 

(4.26) — >Ul-uo). 
UQ 0 

Since r > 0, we need to require that 0 < UQ < 1. Note that the boundaries of the UQ 

region defined by (4.26) are given by the trivial stationary states UQ = U± (1.2). Thus, 
for 4fo2 < a (or equivalently 4£?2 < A, since a = 2/3), we arrive at the requirements 
that either 0 < UQ < U- or U+ < UQ < 1, while for 462 > a we only need 0 < UQ < 1. 

THEOREM 4.3.   Let p = 0 (i.e.   2/3 - a = 0) and (3 < 2/3(cr + a).   For 0(1) 
a, b > 0 such that 462 < a there exists for all 

uoe(0,C/-)u(C/+,i) 

a v(0]Uo) such that the system (2.4) has a periodic orbit with initial condition of the 
form (uo,0,i>(0;i£o),0), where v(0\Uo) > b/iiQ. For a,b > 0 such that 4&2 > a there 
exist periodic orbits of the same type for all 

uoe(0,l). 
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The relation between Theorems 4.1 and 4.3 of this work may be seen as follows. 
Taking b smaller (i.e.<^ 1) in Theorem 4.3 is equivalent to taking /? larger (i.e. 2(3 > 
a). Using the leading order approximation (2.2) of U- and combining it with the 
scaling (2.3) of u shows that the interval 0 < UQ < U- coincides, to leading order, 
with the interval 0 < UQ < b2/a of Theorem 4.1 in this limit. 

The new interval (£/+, 1) remains 0(1) when b becomes small. Due to the scaling 
(2.3) of u this means that this u interval is not of (9(1) in the u scaling. As a con- 
sequence, we did not find these periodic solutions in the previous sections. However, 
one can recover these periodic solutions in a straightforward fashion by adapting the 
scalings of u and v to those of the state ([/+, V+), instead of that of ([/_, VL) as in 
(2.3): the second interval corresponds to periodic orbits centered around (E/+, V+) (see 
also below). We do not consider this other scaling in any detail, since we have seen 
in Section 3 that the pattern (U = U+,V = V+) cannot become marginally stable: 
there is no local mechanism by which these orbits can become stable. This also agrees 
with the fact that we do not observe any stable periodic orbits around (£/+, V+) in 
numerical simulations. 

The boundaries UQ f U- and UQ I U+ both correspond to periodic orbits that 
'shrink' into the fixed points corresponding to the trivial states (U±,V±). The other 
two boundaries, ^o = 0 and UQ = 1, that persist as a decreases through 462, correspond 
to global bifurcations that have so far not been studied in any detail. In particular, 
the boundary UQ = 0 has to be studied in a completely independent fashion since we 
assumed that UQ = (9(1) in this section. Also, when p < 0, the other boundary UQ = 1 
corresponds to 0 < wo <^ 1. This can be seen immediately by checking formally that 
the condition 0 < T(K) < 1 reduces to 0 < r < e~p when p has become negative, 
see (2.4) and the derivation of r(K) (4.25). Both of these global bifurcations will be 
studied in the next section by assuming that 0 < UQ ^C 1, and we shall see that they 
are singular in nature. See also subsection 5.4 for the case p = 0 and UQ « 1. 

REMARK 4.2. In Section 3, we deduced that the Ginzburg-Landau/Turing bifur- 
cation can only occur for p > 0, and the main result was the existence of a family of 
periodic orbits with 0(1) period that lie near the critical point. However, as we have 
just indicated, one can show (as we do in Section 5) that there also exist (singular) 
periodic orbits for p < 0 that are not close to a critical point. These orbits are inter- 
esting from a singular perturbation point of view, and they can become stable as has 
already been observed in [7]. 

5. Continuation of periodic states into the singular regime. In this sec- 
tion, we prove the existence of a family of 'singular' stationary spatially-periodic 
solutions of (1.1) with 0 < UQ <£ 1. A periodic orbit of (2.4) in this regime of initial 
conditions is labeled singular because it has two distinct components: for 'most' of 
its period, its orbit lies near the slow manifold M = {(u,p,v,q)\v,q = 0}, and for a 
brief time interval it makes an excursion into the fast field. By contrast, the orbits 
studied in Sections 3 and 4 lie exclusively in the fast field. 

Further information, beyond that already given in Section 2, is needed about the 
slow manifold M for the analysis of this section. In particular, in order to prove the 
existence of periodic orbits with initial conditions 0 < UQ <^ 1, we will need to know 
the relative dispositions of the stable and unstable manifolds, W8(M) and Wu(M)i 

of M and about their intersections. Although the periodic orbits clearly do not lie in 



STATIONARY PERIODIC GRAY-SCOTT PATTERNS 129 

Ws(M)nWu(M), we will see that they are exponentially close to Ws(M)nWu(M), 
just as those whose existence was shown in Theorem 4.2 of [6]. 

At the end of subsection 4.2 here, we showed that the singular periodic solutions 
can be found in the regime in which 0 < UQ < 1 for both p > 0 and p < 0. Therefore, 
we introduce an additional scaling of u (= u): 

(5.1) u = euu, 

where i/ > 0 and now u is by definition 0(1). Performing a scaling analysis similar to 
that carried out in Section 2, we obtain a rescaling of (2.4): 

u = e1~1/p 
p = €1-,/[fifi2-a€,/(l-cp+,'ti)] 
v = q 

(5.2) 'q = -uv2 + bv, 

where v — e~vv, q = e-^^, and p remains unsealed. Note that, as in Section 2, the 
scales of v and q are chosen such that the linear term and the nonlinear term are both 
(9(1) in the equation for v = q. This rescaling gives a definite lower bound on the 
magnitude of UQ: 

(5.3) 0 < i/ < 1 or UQ > e, 

since (5.2) can only be considered to be a singular system for these values of u (see 
Remark 5.2). 

REMARK 5.1. If we search in this equation for periodic solutions of the same type 
studied in Section 4, we arrive to leading order at 

(5.4) Ap(Ko^o,Po) = e1-l/bT1(K) 

as the counterpart of (4.9), where K — (q2 /2) + (uv3/3) — (bv2/2) is the rescaled 
version of K. Hence, when 0 < v < 1, there cannot be periodic solutions with 0(1) 
period of the type studied above. 

REMARK 5.2. The case v = 1 is a generalization of the case /? = 1 studied in 
Section 6 of [7]. In this case, there is no longer a separation of time scales, since all 
variables vary at 0(1) rates. In [7], we showed that the boundaries of the existence 
domain of these singular periodic orbits (labeled as 'disappearance bifurcations' there) 
occur precisely in this scaling regime. 

5.1. The slow manifold M and the global geometry of its stable and 
unstable manifolds. The manifold M is invariant with respect to the full system 
(5.2) for each e £ JR. Moreover, when e = 0, M is normally hyperbolic with three- 
dimensional stable and unstable manifolds that are given by the unions over all u and 
p on M of the 1-D manifolds of the saddle points (v — 0, q = 0) of the fast subsystems. 
Hence, by the geometric singular perturbation theory due to Fenichel [12, 21], M is 
again normally hyperbolic for e > 0 sufficiently small. Also, the flow on M is slow, 
and it is governed by: 

u' = p, pf = -aev (1 - epJrl/u) 

in the natural slow time scale. Thus, we see that this slow system is in fact 'super' 
slow, because the evolution of the variables in the slow time is proportional to a 
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positive power of e. It is also linear, and trajectories on M are given by branches of 
hyperbolae: 

(5.5) To : p2 = ae-f* (l - e^uf + C. 

Finally, the asymptotes, which are determined by setting by C = 0 in (5.5), are 
precisely the restricted stable and unstable manifolds (lines) £s and £u of the saddle 
fixed point (fi* = 6-(p+u\p = 0): 

(5.6) es>u:      p=±J-(l-ef)+1/u) 

The Fenichel theory also implies that the stable and unstable manifolds of M, 
present when e = 0, persist in the full system (5.2) when e > 0 is sufficiently small, 
and they are Cr 0(e1~v) close to their unperturbed counterparts for all r. Moreover, 
they consist of the unions over all points on M of 1-D fast stable and unstable fibers. 
We denote these persistent manifolds by WS{M) and WU{M). 

While one branch of the stable manifold coincides with a branch of the unstable 
manifold when e = 0, the perturbed manifolds WS{M) and Wu(M) no longer do so. 
Instead, they intersect each other transversely in two-dimensional intersection surfaces 
when 0 < e <C 1. These intersections, in which all orbits that are biasymptotic to M 
lie, are detected by the adiabatic Melnikov function evaluated along the homo clinic 
orbits 

(5.7) Co(*;fio) = (3&/2uo)sech2(\/fa/2), q0 = 50) 

of the unperturbed fast subsystem. The Melnikov function measures the splitting 
distance between WS(M) and WU(M) along a vector in the {q = 0} hyperplane nor- 
mal to the unperturbed homoclinic orbit. Its simple zeroes (and an Implicit Function 
Theorem argument) imply the existence of transverse intersections of WS(M) and 
WU(M) nearby, see [31]. For the system (5.2), we compute: 

3 Vndt. (5.8) AK(u0yp) = f" Kdt = \r vl 
J—oo " J—CO 

Hence, the simple zeroes occur only on the u—axis where p — 0. Moreover, by the 
symmetry in (5.2) that is inherited from (2.4) and given explicitly by a rescaling of 
(2.6), we see that the manifolds WS(M) and WU(M) intersect transversely precisely 
at p = 0 in the {q = 0} hyperplane. This calculation is similar to those in [6] and [4]. 

As stated above, detailed information about these transverse intersections of 
WS(M) and WU(M) is needed in order to prove the existence of the periodic orbits 
in this regime. In particular, we now focus on the first intersection of WS(M) and 
WU(M) with the hyperplane {q = 0}, since the fast segments of the singular peri- 
odic orbits will lie exponentially close to this first intersection. This intersection is a 
one-dimensional curve in the two-dimensional manifold WS(M) fl WU(M). For any 
point XQ on this curve, there is an orbit r(t;xo) through it, with r(0;a;o) = XQ, that 
is forward and backward asymptotic to M. Now, the Fenichel theory [12] implies 
that, for any such r(t]Xo), there are orbits VJ^^XQ) C M and TJ^^XQ) C M for 
which \\r(t;xo) - Y±(t\x^)\\ is exponentially small for all t > O(^) and -t > O(i), 
respectively.   The two points r^f(0;a:^) are the base points of the 1-D fast stable 
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and unstable fibers on which the point XQ lies. Here, we have taken advantage of 
the fact that the forward and backward evolution of the orbit through XQ may be 
decomposed geometrically into a component along the stable and unstable fibers and 
a component given by the (super) slow evolution of the fibers' basepoints. The latter 
is given precisely by the orbits T^^XQ). 

The sets of basepoints on M of the fast stable and unstable fibers that contain 
the intersection points XQ play a central role in the analysis of this section. These sets 
are given by: 

(5.9) T0 = UX0{xn = 1^(0,so )}        and       Td = Uxo{4 = 1^(0,4)}, 

where the unions are taken over all #o € W3^) fl WU(M) fl {q = 0}. Here, the 
subscripts o and d denote 'take off' and 'touch down', respectively. Following [6] 
and [4], the curves T0 and Td may be obtained explicitly. As we have already seen, 
p(t = 0) = 0 along an orbit that is biasymptotic to M. Then, during the backward 
and forward semi-infinite fast time intervals (—oo,0) and (0,oo), there are jumps in 
the p coordinate that are given by 

^0,00 b3/2 

J-oo,0 u0 

which is Ap/2. Since the accumulated change in u (which is given by Au/2) is of 
higher order, we get to leading order: 

(5.10) TM = {p = =F3e1-1'^}. 

In the following subsections, we will separate the analysis of (5.2) into the geo- 
metrically distinct cases of p > 0, p < 0, and p = 0, respectively. 

5.2. Singular periodic solutions for p > 0. When p > 0, the saddle fixed 
point (u* = e~(p+u\p = 0) on M is far away from the origin, since v > 0 also and 
hence u* ^> 1. In addition, by (5.6), the lines £s and £u are horizontal in a (u,p) 
coordinate system to leading order: 

(5.11) p - ±y/ae-p/2 

in the regime where u = 0(1), and they have asymptotically large p—intercepts. 
These aspects of the geometry on M are sketched in Figure 5.1, as are the take-off 
and touch-down curves (5.10). 

One readily finds that, for each u = (9(1), the line u = constant (say UQ) intersects 
both T0 and Td in unique points, as shown. The coordinates of these points are given 
to leading order by: (UQ, =F3e1_I/(&3/2/uo))- These two intersection points are the base 
points of the fast stable and unstable fibers which lie in the transverse intersection 
of WS(M) and WU(M). Moreover, to leading order, they are connected by the 
homoclinic orbit of the unperturbed fast subsystem with u = UQ. 

These two intersection points are also connected by a segment of a super slow 
hyperbolic orbit Tc, that may be determined directly from (5.5). This segment is 
symmetrically disposed about the line p = 0, and we calculate: 

x     ~ n     x ~      {    Zae^uo     if     0 < i/ < 2/3 
(5.12) C—.V' + C,     where     C = J      ^V     .f     ^J^ 
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u*» 1 

FIG. 5.1. A sketch of the geometry on the slow manifold M when p > 0. 

With this asymptotic information about C in hand, we find the u-intercept of the 
super slow hyperbolic orbit segments, i.e., where they intersect the line p = 0. This 
intercept is the point (tXmaxjO), where umax is the solution of: 

(5.13) 

Hence, we find: 

(5.14) 

-2aevumBX + a^+2^Lx + C = 0. 

UQ     for     0 < i/ < 2/3 

e2-^^     for     2/3 <I/<1. 

Moreover, we double check that indeed ttmax < &*, since p > 0 here. 

The above formal arguments suggest the following Theorem: 

THEOREM 5.1. Let p > 0, (3 < (2/S)(a + a) anda,b > 0, 0(1). For all UQ = euuo 
with 0 < u < 1 there exists a v(0;uo) = e~I/v(0]Uo) = e~v'^- (to leading order) such 
that system (2.4) has a singular periodic orbit with initial conditions of the form 

This result is thus an extension of Theorem 4.1 to the case 0 < UQ ^ 1. See 
Figure 5.2 for a sketch of a family of regular periodic orbits that can be continued 
via this theorem into the regime in which the periodic orbits are singular. Note that 
the orbits described in the above Theorem are singular in a number of senses. The 
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(U ,0,V ,0) 

FIG. 5.2. A sketch of a complete family of periodic orbits of the type whose existence is given 
by the theorems in Sections 4 o,nd 5 for a fixed a, 6 pair, when p > 0. 

v component becomes both exponentially small, since the solution has a component 
close to M, and asymptotically large (C^e-")), although this last degeneration is 
scaled away by the scalings of (5.2). The period is 0(e~v) ^> 1, since the solution 
'travels' a distance of 0(el~'l/) (= the distance between T0 and Td (5.10)) with a speed 
of 0(e) = p (5.2)) along M. Thus, for the largest part of a period, v is exponentially 
close to M. This means for v = V as solution of the PDE (1.1) that V is close to 
V = 0 except for periodically spaced sharp 'pulses' (see Figure 5.5). Furthermore, it 
follows from the above analysis of umB,x (5.14) that the solution remains close to the 
{u = UQ} hyperplane as long as 0 < u < 2/3. When u > 2/3 (but still < 1), the 
periodic orbit deviates from this hyperplane to uma,x = 0(e2~3l/) > 1 (5.14). Note, 
however, that in the unsealed quantities umax = e^max = (9(e3~3z/), thus wmax t ^(1) 
only in the singular limit u —> 1. 

Proof. Although the theorem is formulated for solutions of (2.4), it is by construc- 
tion more convenient to prove the result in terms of solutions to (5.2). Moreover, the 
method of proof requires that we relocate the initial condition with half a period to the 
point (Umax, 0, #1,0), for which vi is positive and exponentially small, i.e., a point that 
lies above and exponentially close to the point (uma.x, 0,0,0) on M. Ast increases, the 
orbits through these initial conditions stay exponentially close to Tc (5.5) until they 
reach a small neighborhood of the point (UQ, -3e1_I/&3/2/wo) where Tc H T0. Then, 
from inside a small neighborhood of this point, they 'take off' (i.e., exit any fixed 
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small neighborhood of M) for a circuit through the fast field, where they are near 
the homoclinic orbit (5.7) of the fast subsystem. The v component has its maximal 
value close to the maximum of (5.7). This is the initial condition mentioned in the 
formulation of the theorem. The orbit through (£max,0,{;i,0) lies exponentially close 
to the curve along which WS(M) and WU(M) intersect transversely during the fast 
time interval. In addition, during this near-homoclinic excursion their p coordinates 
make a jump of size Ap, after which they almost 'touch down' on M near the point 
(uoi3e1~l/b3^2/uo), where Tc H Td, i.e., they approach exponentially close to it, yet 
remain just above it. After this fast, near-homoclinic excursion, they are exponen- 
tially close to Fc, with their v and q coordinates exponentially small and decreasing, 
until they return to their initial conditions (uoiQ,vi,0) completing a periodic orbit. 

The rigorous justification of the above geometric arguments is then almost the 
same as the proof of Theorem 4.2 in [6]. One starts with a one-dimensional segment 
of initial conditions, namely an interval of points (uo,0, #1,0) with vi chosen to lie 
in a sufficiently large interval of positive, but exponentially small, numbers. Let C 
denote the two-dimensional manifold obtained by flowing the initial conditions in this 
segment forward in time. Then, by tracking C through the fast and slow regimes 
using the modified version (see [35]) of the Exchange Lemma with Exponentially 
Small Error, one can readily show that C transversely intersects itself in a locally 
unique curve that contains the desired fast-slow singular periodic orbit, for which the 
leading order asymptotics are those just described. See the proof of Theorem 4.2 in 
[6]. 

REMARK 5.3. This result does not yet give an exact statement on the second 
boundary of the 1-parameter family of periodic solutions established by Theorems 4.1 
and 5.1 (see Remark 4.1). The system (5.2) loses its singular character as u f 1, so 
we cannot consider this limit by the above method. This situation is very similar 
to the 'disappearance bifurcation' of the homoclinic pulse in the Gray-Scott model 
considered in Section 6 of [7] that triggers the process of self-replication (see Remark 
5.2 and subsection 5.4). There, it has been shown by a topological shooting method 
that the intersections of WS(M) and WU(M) disappear completely as e1-^ becomes 
too large. This method also works for the more general problem of the disappearance 
of the periodic solutions described by Theorem 5.1. We do not go into the details 
here. Note that the numerical simulations of [26] suggest that this bifurcation is of 
a saddle-node type: there is a second singular orbit that does not exist in the case 

5.3. Singular periodic solutions for — | < p < 0 and limiting homoclinic 
solutions. In this subsection, we consider the case p < 0. Here, the geometry on M 
is considerably different from that which we saw in the previous subsection, and it 
varies with v > 0. There will be three cases to consider: p + is < 0, = 0, and > 0. 

The location of the saddle-saddle fixed point (u*, 0,0,0) on M is: 

(^        «.=«-«*•>(*=. if
ir a-0 

^        >1        if        p+v>0 

By (5.6), the asymptotic behavior of the lines £u and £s also depends on which case 
one is in: 

J ~ T^ue^2^u      if     p + is<0 

I       ~±Vae-p/2 if       p+^>0. 
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FIG. 5.3. A sketch of the geometry on the slow manifold M when —2/3 < p < 0 and p + v < 0. 

We note for completeness that the curves T0 and Td are here also given by (5.10), 
since they are independent of p to leading order. 

Since we assume p < 0 and we consider v as a parameter that is increased from 0 
to 1 (i.e., the magnitude of UQ = 0(eu) decreases), we first consider the case p+i/ < 0. 
The geometry on M for p + u < 0 is illustrated in Figure 5.3. This figure reveals 
that singular periodic orbits of the type found in subsection 5.2 do not exist here. 
The lines of constant u with u = 0(1) intersect £s and £u above £*, since u* <^ 1. 
Moreover, in the subcase 1 — u > (p/2) + */, the horizontal distance between T0 and Td 
is less than (or asymptotically equal to) that between £s and ^u, as shown in Figure 
5.3. Hence, the relevant super slow hyperbolic orbit segment Tc on M flows from 
left to right, which is the same direction in which p changes/jumps during the near- 
homoclinic excursion in the fast field. Therefore, these fast and slow orbit segments 
cannot be hooked up to form a singular periodic orbit. In the complementary subcase 
1 - v < {p/2) + z/, the curves T0 and Td lie outside of the lines Is and £u for u = 0(1). 
Hence, here also, it is not possible to find singular periodic orbits. 

The root of the problem in the case just considered is that u* <^ 1, so that lines 
of constant 0(1) u intersect the lines £s and £u above u*. We now turn to consider 
the second and third cases p + v > 0, in which the horizontal lines of constant and 
0(1) u with u < 1 can intersect £s and £u below u*, since -u* > 0(1). So, here there 
is hope to find singular periodic orbits similar to those found in subsection 5.2. The 
key ingredient is to find 0(1) values of u such that the horizontal distance between 
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T0 and Td is less than that between ts and l,u. Let us denote these distances by 
/ST0(i(u) and A£su(Ct), respectively. Then, by (5.10) and (5.16), the requirement that 
ATodiu) < Msu{u) implies 

(5.17) *-"*-%• 

Hence, in the second case, when p + v = 0, we see directly that we must impose the 
following restriction: 

(5.18) -|<P<0. 

In the third case, when p -f v > 0, the jump condition (5.17) implies that attention 
must be restricted to -p < v < (p/2) + 1 C (0,1) (and hence also -2/3 < p < 0). 
Note that this z/ region for existence shrinks to v = 2/3 as p —> —2/3. Setting aside 
the boundary case of p = -2/3 for subsection 5.4 below, we are now in a position to 
establish, in terms of the scalings of Section 2 and here: 

THEOREM 5.2. Let -f < p < 0, (3 < (2/3)(a + a) and a,b > 0, 0(1). There 
exist ul

horn^u2
hom > 0 such that for all 

uoe(ulome1+M2),ulome-n 

there exists a singular periodic orbit of (2.4)- Moreover, for 

uo = ^Lme"P and ^o = u2
home1+(pl2\ 

to leading order, there exists a singular orbit homoclinic to the fixed point (ep, 0,0,0) G 
M. 

See Figure 5.4 for an illustration. Thus, in this case, we do have explicit descrip- 
tions of both boundaries of the UQ region in which existence has been shown. Both of 
these boundaries correspond to a singular one-pulse solution of (1.1) that is biasymp- 
totic to the trivial pattern (U = 1, V = 0). Note that this theorem is an extension to 
the case p = 2(3 - a < 0 of the 462 > a case of Theorem 4.3 here. 

Proof The proof of the existence of the periodic orbits is completely similar to 
that of Theorem 5.1 (and thus to that of Theorem 4.2 in [6]) as soon as we know that 
there is, for a given is € (0,1), an intersection of T0id with a line u = UQ (UQ — 0(1)) 
inside the triangle bounded by £s'u, below u = u*. Then, one can formally construct 
a singular periodic orbit in (5.2) that consists of two parts. There is a fast excursion 
outside M near the homoclinic orbit (5.7) by which the orbit can jump from T0 to 
Td. The two intersection points T0,d H {u — i/o} can also be connected by (super slow) 
hyperbolic orbit segment Yc on M (5.5). This singular geometric construction can 
again be justified by the Exchange Lemma for periodic orbits [35]. 

The two limiting homoclinic orbits mentioned in the theorem, that can be seen 
as singular periodic orbits with (spatial) period -> oo, determine the critical values 
{y = —p,uo = u\orn) and (v — 1 + PI2,UQ = u2

horn) for which these intersections exist 
(see Figure 5.4). For v = -p we have u* = 1, thus the u component u1

horn < 1 (by 
definition) of the intersections ^s'unT0,d is of (9(1). These intersections correspond by 
construction to an orbit in WS(M)C\WU(M) that is biasymptotic to (#*, 0,0,0) G M. 
Note that the ^-component of this homoclinic orbit is always (9(e1+p) close to 1 
(therefore one does not expect this orbit to be stable). 
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As one decreases z/, the distance AT0d(u) between T0)d increases. By (5.17), there 
is a critical value, u = 1 + p/2, at which ATod(u) - Msu(u) for u = 0(1). Thus, 
there are again intersections £s,u fl T0jrf with an tt-component Ufl0m (by definition) of 
0(1), and these directly yield the second homoclinic orbit to (&*, 0,0,0) in WS(M) fl 
WU(M). 

REMARK 5.4. The second limiting case, v = 1 + p/2, gives an explicit relation 
between the scaled ODEs studied in [6], [7], [4] and the ODEs studied in this paper. 
In [6], [7], [4] the existence and stability of singular homoclinic solutions (and some 
singular periodic patterns) to (1.1) has been studied. The existence has been obtained 
in an ODE with rather special scaling. This ODE is recovered in the context of this 
paper by setting v — 1 + p/2 in (5.2). In a sense this is natural, since the derivation 
of the scaling in [6] is based on the 'jump condition' AT0d(u) ~ A(,su(u). The crucial 
parameter e1-*" of (5.2) now becomes 8a/2~P = y/A/B (see (2.3)). The dissappeance 
or splitting bifurcation studied in [7], [4] occurs as p = 0 or a/2 — fj = 0, i.e. A ~ B2 

[4] (or in [7] where only A = 0(52) was considered: ft — 1). 

5.4. Remarks on outstanding cases. 

The case p = -2/3. First, we note by (2.5) that p — -2/3 corresponds to 
ft — \{pL — 2cr), i.e. it determines the line Ihom in the (a, ft)-parameter space (see the 
Introduction). It follows from the above analysis that there can only be (singular) 
periodic solutions for v = 2/3, i.e. UQ = 0(e2^3) in (2.4). This situation is completely 
analogous to the special case a = 0 considered in section 4.3 of [6]. In this case 
both homoclinic bifurcations described by Theorem 5.2 appear in the same scaling, 
again defined by the intersections £s>u fl T0jd and labeled by w^m. As long as the 
parameters a and b are such that £s'w fl T0^ ^ 0 there is a 1-parameter family of 
singular periodic orbit bounded by homoclinic orbits (as in Theorem 5.2). However, 
it is a straightforward exercise to show that the intersections £s,u fl T0j(i disappear as 
a > 14463 (to leading order); i.e., u^m merge as a = 14463 (to leading order), where 
there is a saddle node bifurcation of homoclinic orbits (see [6] for more details). 

The case p < —2/3. This case can be considered as the continuation of the above 
case to a > 1 (2.3): it follows immediately that there are no periodic or homoclinic 
orbits, because ATod > Msu for (9(1) values of u. 

The case p = 0. The regular periodic orbits have already been considered in 
Theorem 4.3. Their continuation is completely analogous to that of the case p < 0 in 
Theorems 5.1 and 5.2 as long as 0 < v < 1. The bifurcation as v -> 1 can be seen 
as a combination of the 'disappearance' bifurcation discussed in Remarks 5.3 and the 
homoclinic bifurcation at UQ = u2

home1+p/2 (= O(e) for p = 0) described by Theorem 
5.2 (see also Remark 5.4). The case p = 0 corresponds to the 'splitting bifurcation' 
that is the onset of the self-replication process [7], [4]. The details of this bifurcation 
are still not fully understood, and we do not consider it in any more detail in this 
paper. 

The second (or first) homoclinic bifurcation at UQ = ujlorne~p described by The- 
orem 5.2 for p < 0 cannot be extended immediately since for p = 0 UQ = ^home~P ~ 
(9(1), i.e. one cannot use (5.2). On the other hand, we note that (2.4) and (5.2) are 
identical in the case v = p = 0. Thus, we can apply the arguments in the proof of 
Theorem 5.2 by which the existence of the homoclinic orbit associated to u]lom is es- 
tablished directly to (2.4). It follows that there is an orbit in WS(M) fl WU(M) that 
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FIG. 5.4. A sketch of the geometry on the slow manifold M when p < 0 and p-\-v > 0. showing 
the singular periodic orbits in frame b, and the limiting homoclinic orbits at u = ujiorn in frame a, 

and at u = u2
horn in frame b. 
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100 

FIG. 5.5. a. A singular periodic solution of (1.1) for A = 0.01,6 = 0.060, Du = l,Dv = 0.01. 
b. A singular one-pulse homoclinic solution of (1.1) with u given by w£om for A = 0.01, B = 0.142, 
Du = l,Dv = 0.01. 
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is biasymptotic to (1,0,0,0) € M with a it-component that is almost 1 everywhere 
along the orbit. Thus, this is a regular homoclinic orbit in the sense that it forms the 
boundary at ^o = 1 of the region of regular periodic orbits described by Theorem 4.3. 

The case /? = (2/3)(a-fcr) with a not close to ac. This case is not related to the 
geometric analysis in this section: it forms the continuation of the analysis of Section 3 
(where /? = (2/3) (a+a)) to that of Sections 4 and 5 whereas we imposed (5 < (2/3) (a-f 
G) in all theorems. This was necessary since we needed to be able to consider e = 
j-(3/2)(/?-2/3(a+<7)) as an asymptotically small parameter. The connection between 
these two cases can be made by starting with a close to, but smaller than, ac (3.6), 
and decrease a towards 0 < a <C 1. However, as long as a = 0(1) neither the local 
analysis of Section 3 nor the asymptotic analysis of Sections 4 and 5 can be applied. 

We do not intend to consider this case in any detail in this paper (see also below). 
Still, a combination of the results of Sections 3, 4 and 5 indicates that something 
interesting must happen in this region. When a « ac, there is a 1-parameter band of 
periodic solutions that limits on the critical point (u_,0,v_,0) (or the trivial state 
(U = £/_, V = VL)) at both boundaries of its interval of existence (see Theorem 3.2: 
the boundaries correspond to the limits R -»• 0 and K -» ±l/(26)1/4 (3.28)). When 
a <C 1 we have ft < (2/3) (a + cr), so the results of Sections 4 and 5 can be applied. 
Assuming that we started with p > 0 (as we did in Section 3) we know that still p > 0 
as P has become less than (2/3)(a -f cr). Thus Theorem 4.1 yields the existence of 
a 1-parameter family of periodic orbits. By Remark 4.1 we know that one boundary 
of the region of existence is still given by the critical point (u_,0,v_,0) or trivial 
state (U = U-,V = VL). However, the other boundary is now of a totally different 
nature. As UQ becomes <^ 1 the regular orbits become singular (Theorem 5.1) and the 
'boundary' at UQ = 0(e) is now given by the 'splitting or disappearance bifurcation' 
(Remark 5.3). 

Thus, we are led to conclude that there is a bifurcation value a = a* < ac for 
P z= (2/3) (a + cr) at which the band of periodic orbits detaches at one side from 
the critical point (^-,0, v_,0). The arguments of Remark 5.3 suggest that after this 
bifurcation the new boundary of the interval of periodic solutions is formed by a saddle 
node bifurcation at which the periodic solution now 'disappears'. 

In Section 6 we shall see that this phenomenon is not at all important in prac- 
tice/numerical simulations, since the only stable orbits are those that remain quite 
close to (U = U-,V = VL). Hence, the orbits close to this new (conjectured) sad- 
dle node bifurcation are not stable. However, understanding this saddle node bifur- 
cation in the case 0 = (2/3) (a + cr) might shed some light on the still not com- 
pletely understood process of self-replication in the Gray-Scott model (Remark 5.3, 
5.4, [4, 6, 7, 23, 24, 25, 26, 27, 28, 29, 30])-. 

6. Numerical simulations. In this section, we compare the results of numerical 
simulations with quantities used in the existence analysis in order to corroborate this 
analysis, and we numerically extend the stability results of Section 3 beyond the regime 
0 < \A - Ac\ < 1 to all A < Ac, where we recall that Ac = acS

a = ^gb3/2630^+<T by 
(3.6) and the scalings (2.3) of Section 2. We use the code described in [2], [6], [38] to 
simulate (1.1) with both Dirichlet and Neumann boundary conditions. 

6.1.  Numerical simulations complementing the existence analysis.  In 
this subsection, we compare the results from numerical simulations with the analytical 
existence results of Section 3.  Specifically, we focus on the integral Ap, (4.2), and 
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then show that to leading order, Ap = 0.  For this subsection only, we reintroduce 
hats on the appropriate variables. 

The numerical simulations were run using boundary conditions of Dirichlet type. 
The initial data used were large-amplitude, localized perturbations of the homoge- 
neous state (U,V) = (1,0). The simulations were run until the resulting pattern 
stabilized, and the resulting solutions were used to compute values in the expressions 
below. 

Before we can analyze Ap = 0 numerically, it is necessary to rewrite the expression 
for Ap using the unsealed variables u and v. Using (4.2) and recalling that e = 
fi(T-30/2+a^ we £rS£ wrfte the leading order integral as: 

(6.1) Ap(Ko^o,Po)-2re^-^+aQ^y,^02^   -a). 

Rewriting this in terms of the unsealed UQ and v (recall (2.3)), we then obtain 

(6.2) Ap - S'-i0 2Teuo <v2> -2TeS
aa , 

where 

1    Z*0 1    Z"0 1    Z*0 

(6.3) < v2 >EE — /      v2dx = — /     v2dt = —r /      v2dx. K     ) T?J_T* Tj__Te T?J_Tf 

Tf is the period of a periodic orbit with respect to the independent variable x of (2.1), 
and x is the scale used in numerical simulations [x = 10~2a:). 

In order to analyze the result Ap = 0 numerically, we will express both terms 
in square brackets in (6.2) using the quantities computed numerically from the sim- 
ulations. Using data from the simulations, we found Tf and UQ, and computed the 
integral 

(6.4) <v2>=f!f_Ti
v2di- 

Also, Te
x can be rescaled in terms of Te by using the scaling of the independent variable 

x in (2.3), yielding the conversion factor: 

(6.5) Te = 1025-<T+^Tf. 

We can now rewrite the two terms in (6.2).  We work on each term separately, 
beginning with the first term. Using (6.3) and (6.5), we have 

(6.6) 2T€uo < v2 >= ^^ f     v2(x)dx = (2u0 /     v2(x)dx] 102(r'+£ /     v2(x)dx = (2uo f     v2(x)dx] 102(r^ 
J-Tf \ J-T} J 

We obtain a numerical estimate of the term in parentheses using data obtained from 
the numerical simulations. Similarly, for the second term in brackets in (6.2) we have 

(6.7) 2TeS
OLa = 2 x 102<r*+*T*(5aa. 
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Finally, we see that upon equating the right-hand sides of (6.6) and (6.7), it must be 
that the data from our numerical simulations satisfies: 

(6.8) 2uo /      v% 
J-T£ 

x)dx = 2T*6aa, 

in order for Ap = 0to leading order. The following table presents the results for both 
sides of this equality, as calculated from simulations using the indicated parameter 
values (with a = l,/3 = 2/3, a — 1, so that p = 1/3): 

a b S 2f"Tiuov2(x)dx 2T?8a 
6 0.37 0.13 0.0029 0.0033 
9 0.37 0.1 0.0030 0.0032 
9 0.4 0.1 0.0031 0.0034 
10 0.42 0.09 0.0032 0.0035 

Note that the rightmost two columns of the table, which represent only the leading 
order terms of Ap, are in close agreement. The next order term in the asymptotic 
expansion for Ap is of order e1+p. Thus, the relative error {ep) is J1/3, since p = 1/3 
and a — 3/3/2 -f a = 1. Hence, we have that numerically, Ap = 0 to leading order. 
This agrees well with the analytical results of Section 3. 

6.2. Busse balloon. In [3], a nonlinear stability analysis of the stationary roll 
cell pattern in the Rayleigh-Benard convection is presented. The stability with respect 
to infinitesimal perturbations is determined analytically from the eigenvalue problem 
for the most unstable mode, where this eigenvalue problem is derived via an orthogo- 
nality condition, similar in spirit to what was done here in Section 3 and Appendix A. 
In addition, a fully nonlinear stability analysis, carried out numerically, reveals that 
there is a 'balloon' in the three-dimensional (Rayleigh number, Prandtl number, and 
norm of the wave number vector) parameter space in which they are stable. For each 
value of the Prandtl number within a given range, the cross- section in the Rayleigh 
number-wave vector plane of the balloon is a closed region. Here, we will find a similar 
result in the three-dimensional parameter space B, A, k, respectively. 

For each fixed pair of 0(1) parameters a and 6, we have shown that (1.1) has 
multiple stationary, spatially-periodic solutions. In Section 3 we also analytically 
showed the stability of a subset of these solutions, for a close to the critical ac. In this 
section, we determine bounds on the wave number k for which these stable periodic 
states are found in simulations of the full PDE. As stated above, the results may be 
characterized as a Busse balloon (see Figure 6.1), and can be viewed as a numerical 
extension of the analytical stability results of Section 3 to include a values well below 
ac. For this section, we will consider the unsealed versions A and B of a and b. 

To illustrate the numerical extension, we thoroughly document the case B = 0.086 
(b — 0.4,/? = 2/3 and a = 1) and 8 = 0.1. The upper tip of the balloon was found 
numerically to lie near A = 0.115 and k = 1.9. By contrast, the analysis in Section 3 
yields Ac = 0.104 and kc(A) = 1.89 to leading order. Moreover, in Appendix B, we 
calculate the next order term in the asymptotic expansion of Ac. We therefore have: 

(6.9) Ac ~ Vgb3/2    1 + S^^Vb 
3 + 2^ 

Hence, for b = 0.4 and 6 = 0.1, with a = 0 and 0 = 2/3, we get: Ac : 
agrees extremely well with the data from the numerical simulations. 

0.1138, which 
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FIG. 6.1. Data from numerical simulations plotted in the A — k plane indicating the boundary 
of the region of stable stationary, spatially periodic solutions of (1.1), i.e., of the Busse balloon, for 
DJJ — 1.0, Dy = 0.01, and B — 0.086 (b = 0.1, a = 1). Note that only k corresponding to integer or 
half-integer numbers of pulses on the domain were counted, hence the actual boundary is smoother, 
and also the data near the upper tip of this Busse balloon may be compared to the stability parabola 
shown in Figure 3.2. 

For a sequence of fixed A values below this critical A value, namely for 

A G {0.02,0.05,0.06,0.07,0.08,0.09,0.1,0.11,0.111,0.112,0.113,0.114,0.115,0.116}, 
(6.10) 
we find intervals of k values corresponding to the wave numbers of stable periodic 
solutions. The results are shown in Figure 6.1, and the method used to obtain these 
results is described in the following three paragraphs. 

The initial data used was 

(6.11) 
U 
V 

U- \      / ci£/_cos(27raa;) 
V- J      \ C2V- cos(2irnx) 

where (C/_,V_) is the stationary pattern corresponding to the chosen parameters 
(A, J5), 0 < ci < 1,0 < C2 < 1 are amplitude scaling parameters (and we remark that 
here ci and C2 are different variables from those used in subsection 3.2). Specifically, 
for each fixed n, this initial data has n spikes on a unit interval. With a, b and S 
fixed, we conducted simulations with a range of values of n in order to be sure that 
we sampled the basins of attraction of all of the stable periodic states. (It was not 
always the case however, that iV-spike initial data on [0,1] corresponded to an AT-spike 
solution.) 

The simulations were run with Neumann boundary conditions, and they were run 
long enough in order for the pattern to stabilize. A value for k was then calculated by 
determining the wavelength of the (periodic) pattern, and computing k = ~L. This 
process was repeated for each n, and terminated in the following way. For each fixed 
A and B, the parameter n was increased (decreased) and simulations run until an 
n was obtained such that the resulting pattern was either no longer periodic, or else 
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was periodic, but with a k-value less than (greater than) the previous simulation (cor- 
responding to the stable pattern having a larger (smaller) characteristic wavelength 
than the previous simulation), respectively. For example, for A — 0.1, when n — 20, 
the resulting stable periodic pattern obtained has a corresponding A;-value of 1.91, 
and for n = 21 the fc-value is 1.97, while for n = 22, the fc-value is found to be 1.70. 
Thus, we deduce that the largest wave number for which a stable stationary pattern 
exists is k = 1.97 for A = 0.1. 

For A = {0.05,0.1,0.112,0.113,0.114}, the simulations near the boundary of the 
Busse balloon were run until at least Tend = 20,000, in order to insure that the 
patterns found were stable. In this way, and with the restriction that we only find 
solutions with integral or half-integral numbers of pulses, we obtained the location of 
the boundary with reasonable accuracy, at least for A sufficiently large. 

Numerically, we find that the lower tip of the Busse balloon lies near A = 0.0054. 
At this point, the singular homoclinic orbit given by u2

hom in Theorem 5.2 (see Figure 
5.5) undergoes a Hopf bifurcation. In this range of parameters it is possible to apply 
the stability theory for singular patterns developed in [7, 8]. In the scaling, namely 
A = 0(52) and (7 = 1, assumed throughout those papers, the theoretical (and rigor- 
ous) stability boundary is to leading order &Hopf(a) = (0.66)y/a when /? = 1/2, or, in 
unsealed quantities: 5Hopf(^) = (0.66) y/A/d. It is shown in [4] that this last version 
also holds for more general scalings of A and B. Moreover, we can introduce a and 
rewrite the Hopf bifurcation curve in (A, i?)-parameter space as (see [4]): 

(6-12) AnoPf(B) = ^6* 

Thus, it follows that here ^Hopf should be « 0.0017. The error is well within the 
theoretical boundaries. The asymptotic theory yields that the leading order correction 
to the number » 0.66 in (6.12) is of the order 0(VA/B), [7, 4]. Here we find that one 
has to replace « 0.66 by « 0.37 in (6.12) to find ^Hopf = 0.0054, while y/A/B « 0.85 
(note that this is not really an asymptotically small quantity!). 

Finally, we close this discussion on the Busse balloon by referring to the results 
on the stability of singular periodic orbits as described by Theorem 5.2 for UQ = 
<9(CI+(P/2)) in ^75 35 4] (see aiso Remark 5.4). It has been shown in [7] that for 
A > Auopf there is a band of stable singular patterns, see Figure 5.5. One of the 
boundaries of this band is formed by the homoclinic pattern. Thus, the theory of 
Ginzburg-Landau equations gives an analytical theory for the existence of the Eckhaus 
band of stable solutions [9, 34] at the upper tip of the Busse balloon, while the work 
in [7, 8] gives analytical results on the 'singular Eckhaus band' of stable solutions near 
the lower tip of the Busse balloon. 

A. Derivation of the Ginzburg-Landau equation. In this appendix, we out- 
line the steps in the derivation of the Ginzburg-Landau equation used in the stability 
analysis of Section 3. We refer to [9] and the references therein for more background. 

In order to derive the Ginzburg-Landau equation, we extend the expansion (3.26) 
in powers of 7 and Fourier modes: 
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(A.i) 7 (£»«.;> )e*.+,, + ... 

By substituting this expansion into (3.22) and collecting like powers of 7 and eiA;cX, 
we can solve for the unknowns Xo2,i2,22,i3,... and ^02,12,22,13,... in succession. We first 
note that, after plugging in the expansion, the right-hand side of (3.22) is of O^2). 
Thus, only the equation for (Xi3,Yi3)T involves the right-hand side of (3.22). The 
equation for (Xo2,5/o2)T is 

(A.2) v°2     = <MI E)-W!(i)- 
The equation for (-X^,^) ls 

. a (3 - 2, 

For (XIJ,YIJ)
T, we find equations of the form 

<-» is -WfU--1 

(A.4) *".(y"W£ ii /      \ i2 

where Mc is as defined in (3.24). Note that for (X12, li2)T, no nonlinear terms make 
any contribution. We have: 

(A.5) bMc ( y™ ) = -2ikcAz ( _i(1
2
+^ ) € range(Mc). 

This implies 

(A.6)      (^)=B(M(_|(1
2
+9))+24^(;), 

where B(£,T) is a new unknown amplitude term. 

The equation for (X13, Yi3)T is more complex. The left-hand side is: 

(A.7) bMc ( YH 

The right-hand side has many contributions: 

d ( 5^-2aU \       .   (   25^-2a   \       .   (        0 \ _,_.     . 

(A.8) 
Uxx\      / 2[Aii + 2ikcBi} 

Vxx )      \-\{\ + 5)[^ + 2»&CB€] - ^Ax ) 

Writing 

(A.9)   {Xo2,Y02)
T = \A\2M{x0^yo2)T,      {XM,Y22)

T
 = A2^b(x22,y22)

T, 
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we obtain the relevant nonlinear terms: 

7, Al2 AJn, ^     1, 
UV -> ^|MM[2(|fo2 + !fc2) - 2(1 + fl)(S02 +S22)] 

V2^J-g\A\2A[-{l + 9){yo2 + y22)] 

(A.10) C/F2 -»• \2g\A\2A 

Define 

Luv = [2(2/02 + 2/22) - g0- + ff)(a;02 + 2:22)] 
(A.ll) Lv2 = [-(1 + g)(y02 + 2/22)] 

The right-hand side of the equation is then 

h = 2[.4« + 2JfccB?] - [2gLuv + LV2 + 12g]\A\?-A + AJ^A 

h = i(l + g)Ar -1(1 + 9)[AK + 2ikcBi] - 2(1 - g)Aii 

(A.12) +[2gLUv + LV2 + 12g}\A\2A - iJ^A 

To obtain the Ginzburg-Landau equation, we now impose the orthogonality condition 
(3.25): 

(A.13)    (1 + g)AT - 4(1 - g)Aa + |(3 - g)Ltot\A\2A - 2^(3 - g)A = 0, 

where Ltot = 2gLuv + Ly2 + 12g. Substituting in for g, we find that 

(A.14) Ar = -ysA + 2\/2AK - i(\/2 + l)Ltot\A\2A. 

Finally, substituting Ltot = f (27 - 17^2) yields equation (3.27). 

B. First-order asymptotic correction to Ac. In this appendix, we outline 
the calculation of the first-order term in the asymptotic expansion of Ac, stated as 
(6.9) in subsection 6.2. We begin with the formulae (3.7) and (3.9) for k^. By (3.14), 
we have 2<T = 3/3 — 2a. Also, we will need the first two terms in the asymptotic 
expansion for the location V_ of the homogeneous steady state (1.2): 

(B.l) V2~5Z("-0)^--28aa. 

Hence, (3.7) and (3.9) yield to leading order: 

,a, 
kc~    d 262     2 ^i 

(B.2) k2 = -r^r i- 
(§-b)-6W-<*ac 
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Then, binomially expanding the second formula for k^ in (B.2), equating both expres- 
sions, multiplying the resulting equation by 25~2^a~^ /&, and rewriting the terms on 
the right hand side yields, to leading order: 

(B.3)        -£ + 1 + t2*-"^ = -?- + tfP-"^— (- - -^-z) . 
63 b       ||_i ||_i Vac     a?-63; 

Now, recall that to leading order 0% = 63^ by Proposition 3.1. Therefore, here we 
define q via 

a2 = 63p(l + ^-«) + 0((52(2/3-Q)) 

in order to determine the first order corrections to the result of Proposition 3.1, and 
we also note that this implies ac ~ bs/2-s/g(l + 52(3~aq/2). Now, after first multiplying 
both sides of (B.3) by {a%/bs) - 1 and then substituting in the expressions for a2 

and ac, we arrive at the same equation (3.16) for the leading order behavior of a2 by 
equating coefficients on the 0(1) terms, and at the desired equation for q by equating 
coefficients on all of the 0(S2(3~a) terms: 

-2g2q + 2gq + y/jb(g - 1) = -4gq + 4gVb (^ - -^\ . 

Finally, recalling that g = 3 - 2y/2 and observing that hence -y/g = \/2 - 1, we get 
after lengthy algebra: 

(B.4) g = v/6(3 + 2v/2). 

Therefore, we also directly have 

(B.5) ac ~ Jgf (l + fit-y/b (^±^) ) • 

Therefore, we have established (6.9) as stated in subsection 6.2. 
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