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ON THE CONTINUATION OF PERIODIC ORBITS* 

M. B. H. RHOUMAt AND C. CHICONE* 

Abstract. Using Poincare's method and a Lyapanov-Schmidt reduction, a continuation theorem 
for resonant periodic orbits of periodically forced oscillators is proved that does not require the 
unperturbed manifold of periodic solutions to be normally nondegenerate. This is accomplished with 
the aid of a generalization of the Poincare-Melnikov function that includes second derivatives and 
with the introduction of associated families of differential equations where the bifurcation parameter 
is a power of the original small parameter. Incidentally, a result of J. Cronin [Meth. Appl. Anal, 
Vol. 3 (1996), pp. 370-400] that inspired this work is corrected. 

1. Introduction. Oscillations play a prominent role in many physical and bio- 
logical systems where an important problem is to determine if spontaneous oscillatory 
activity persists when subjected to a small external periodic stimulus. We will discuss 
some methods that can be used to solve this problem. 

Consider the family of differential equations 

(1.1) y = f(y) + eg(t,y,e) 

where y € En, e > 0, and, for each fixed e > 0 and v E ln, the function t H> g(t, v, e) 
is periodic with period T > 0. We will assume that the unperturbed system 

(1-2) V = /(») 

has a resonant period manifold Z C Rn, that is, Z is a manifold consisting entirely 
of To-periodic orbits where To > 0 and there is a pair of relatively prime positive 
integers M and N such that 

(1.3) MTQ = NT. 

The basic problem that we will address is the persistence of the periodic orbits in 
Z. In other words, we will study the existence of periodic orbits with period iVT for 
small e > 0. 

Several authors, for example [1, 2, 3, 4, 11, 12, 13, 14, 17, 21], have treated 
the general persistence problem, albeit from different perspectives, and they have 
all obtained the same basic result under an assumption on the period manifold Z 
that we call normal nondegeneracy. This nondegeneracy assumption is expressible 
as a condition on the linearized unperturbed flow over Z. Indeed, for v E W1 let 
t h-» y(t,v,e) denote the solution of system (1.2) such that y(0,v,e) = v and let 
$(t,v) denote the principal fundamental matrix at time t = 0 of the first variational 
equation 

(1.4) w = Df(y(t,v,0))w 

Of course, in this case the principal fundamental matrix solution is just the partial 
derivative of the solution of the original unperturbed differential equation with respect 
to v, that is, 

*(t,v) =yv(t,v,0). 

* Revised on July 16, 1999. 
tCDSNS, Georgia Institute of Technology, Atlanta, GA 30332, USA (rhouma@math.gatech.edu). 
^Department of Mathematics,  University of Missouri,  Columbia,  MO 65211,  USA (carmen 

@chicone.math.missouri.edu). 

85 



86 M. RHOUMA AND C. CHICONE 

The manifold Z is called normally nondegenerate if for each C G Z the dimension of 
the kernel /C(£) of the linear transformation $(iVT,C) — / (called the infinitesimal 
displacement) and the dimension of the manifold Z coincide. 

A normally hyperbolic period manifold, for example a hyperbolic limit cycle, is 
normally nondegenerate, but normal hyperbolicity is not a necessary condition for 
normal nondegeneracy. For example, in case n = 2, a periodic orbit F in an annulus 
of periodic orbits is normally nondegenerate provided that the derivative of the period 
function with respect to a regular parameter on a transverse section E does not vanish 
at the point where F meets E. 

The normal nondegeneracy property and the implicit function theorem are used 
to reduce the problem of the persistence of resonant unperturbed periodic solutions 
to finding simple zeros of an equation of the form 

(1.5) F(0 = 0 

where F is a function from Z to Em and m is the dimension of Z. In fact, with the 
appropriate choice of F (called the bifurcation function) if Co G ^ is a simple zero 
of equation (1.5), then the unperturbed periodic orbit containing Co persists. More 
precisely, if Co is a simple zero of the bifurcation function for a normally nondegenerate 
period manifold, then there is a smooth curve e »->• 7(e) in En whose domain is an 
open set iVo C E containing the origin such that /3(e) := Co + €7(5) is the initial point 
for a periodic solution of the corresponding system (1.1) for each e e NQ. 

The method we propose in this paper allows us to treat both the nondegener- 
ate and the degenerate case (where the dimension of the kernel of the infinitesimal 
displacement exceeds the dimension of Z) with a unified approach. In particular, if 
the dimension of the kernel /C(C) is constant for C in the period manifold, then the 
bifurcation equation we obtain for the degenerate case is an extension of the bifurca- 
tion equation for the nondegenerate case. For the nondegenerate case, a simple zero 
of the bifurcation function corresponds to a smooth continuation of an unperturbed 
periodic orbit. However, in the degenerate case there may not be any smooth contin- 
uation curves. In these cases we will investigate in detail the existence of continuous 
continuation curves where /3(e) = Co + V^7(v^) and 7 is a smooth function. 

As a byproduct of our analysis, we point out an oversight in [7] where a non- 
degenerate system is treated and a bifurcation equation is obtained. However, the 
corresponding continuation theorem is vacuous because one of the terms in the bifur- 
cation equation turns out to be identically zero. 

This paper is structured in the following way. In Section 2 we define the system 
of differential equation that we will study, we describe a general approach to the 
continuation problem, and we identify the solutions of certain variational equations 
that appear in the analysis. The normally nondegenerate case is discussed in Section 3. 
In Section 4 we study the degenerate case and state our main theorem. It gives the 
bifurcation equation for resonant normally degenerate period manifolds in a form 
that includes nondegenerate period manifolds as a special case. The oversight in [7] 
is discussed in Section 5. In Section 6 we investigate the possibility of obtaining 
continuation curves of the form /3(e) = Co + e1/p7(e1/p) where p > 1 is a rational 
number with p ^ 2. We also discuss the continuation theory for the case where the 
unperturbed system is linear. Finally, a few simple examples to illustrate the theory 
are given in Section 7. In particular, we consider a system of m coupled (limit cycle) 
oscillators and show that there are 2m continuation curves at each continuation point 
of the corresponding m-dimensional period manifold. 
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2. The Bifurcation Equation. Let us assume that the unperturbed system 
(1.2) given in the introduction has an m-dimensional resonant period manifold Z 
that satisfies the resonance condition (1.3). Also, for (>$iZ, let us recall that $(£, () 
denotes the principal fundamental matrix at time t — 0 of the corresponding first 
variational equation 

(2-1) ^=Af(!/(t,C,0))i« 

along the unperturbed resonant periodic solution t »-> y(t, £, 0). 

We are interested in the dimension of the kernel /C(C) of the infinitesimal displace- 
ment map <b(NT,Q — I- Suppose that s \-> a(s) is a curve in Z such that cr(0) = £. 
Since 2/(To, C, 0) = C for all ( G Z, we have the identity y(To, cr(s), 0) - a(s) = 0, and 
therefore 

yv(ro,C,0)<7(0) - a(0) = (^(To.C) - l)&(0) = 0. 

Thus, the tangent space T^Z of the manifold Z at the point £ G £ is a subspace of 
/C(C). As mentioned in Section 1, the period manifold Z is called normally nondegener- 
ate if the dimension of /C(C) is equal to the dimension ofT^Z whenever £ G Z. The pe- 
riod manifold Z is £-degenerate if the integer valued function £ i-> dim /C(C) — dim 7^2 
has a constant value £ on £. Of course, a zero-degenerate period manifold is normally 
nondegenerate. 

The fundamental observation of the method of Poincare is the following proposi- 
tion: If e is fixed and VQ is a zero of the displacement function v ^ y(NT,v,e) — v, 
then t *-+ y(t,v,€) is a NT-periodic solution of the corresponding differential equa- 
tion (1.1). Note that the resonance condition MTQ = iVT implies the unperturbed 
periodic solution t H> y(t, C, 0) is iVT-periodic for each C € Z. We will say that C € Z 
(and the corresponding unperturbed periodic orbit) persists if there is some eo > 0 and 
a continuous function /? : [0, eo) -)• Mn such that /3(0) = ( and 2/(iVT,/?(e), e) - /3(e) = 
0. The curve e »-» /3(e) is called a continuation of initial conditions for periodic 
solutions. 

Note that for f G Z to persist we only require the existence of a continuous implicit 
solution /? of the displacement function such that /3(0) = £• On the other hand, 
we intend to use an analytic method—the implicit function theorem—to establish 
the existence of an implicit solution. Our key idea is to allow for the possibility 
of nonsmooth continuations at the outset of the analysis. This is accomplished by 
replacing e in the perturbed system (1.1) with ep where p is an appropriately chosen 
positive integer, and then by determining an implicit solution /? of the displacement 
function of the form /3(e) = C + e1/p7(e1/p) where 7 : (—eo,eb) -)- En is a smooth 
function. 

There are two main steps in our analysis. We will determine conditions on the 
displacement function and its partial derivatives that ensure the existence of implicit 
solutions, and we will identify these conditions as integrals over the unperturbed 
resonant periodic solutions so that they can be checked directly for the family (1.1). 

In order to obtain a general formula that can be used to determine the desired 
continuations for various choices of the exponent p, let us first consider the following 
Taylor series expansion in powers of ji and e at (//, e) = (0,0) of the displacement 
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function evaluated at the point ( + //£ where C £ Z, £ € Mn, and /z G M: 

y(NT, C + K, e) - (C + rf) = lt(Vv(NT, C, 0)^ - 0 + ej/e(iVr, C, 0) 

(2.2) +/ie»vt(^T,C,0)^ 

+ ie
2j/«(ArT;C)0) + O((|6H-|M|)3). 

In this formula we have used subscripts to denote partial derivatives. Also, the expres- 
sion yvv(NT, CJ 0)(£, £) denotes the value of the symmetric bilinear form yvv(NT, £, 0) 
on the pair of vectors (£, ^). 

A solution of the (two-parameter) determining equation 

0 = V(NT,C + rt,e)-(C + tf) 

corresponds to a periodic solution of the corresponding differential equation in the 
family (1.1). However, to obtain the one-parameter continuations mentioned above, 
let us substitute e = iip in the equation (2.2) where we will assume that fi > 0 and 
p is a positive integer. Then, a solution (£, £, //) of the (one-parameter determining) 
equation 

0 = yv(NT, C, 0)£ - f + if-^iNT, C, 0) 

+ \fiVw(NT, C, 0)(^ 0 + fvvt(NT, C, 0)^ 

(2.3) +^u2p-1ye(NT,(:,0) + O(n2) 

corresponds to a periodic solution with initial condition £ + e1/p^ of the differential 
equation in the family (1.1) where e = fip. The most important special cases are p = 1 
and p = 2. Let us note specifically that for p = 1, it suffices to solve the equation 

(2.4) 0 = yv(NT,£0)£ - £ + jfc(JVT,£0) + 0(M); 

and for the case p = 2, it sufEces to solve 

(2.5) j/„(iVT, C, 0)£ - f + MMATT, C, 0) + ^(iVT, £ 0)£2) + 0(M
2
) = 0. 

In the next two sections we will determine conditions that imply the existence of 
implicit solutions of equations (2.4) and (2.5). However, to express these conditions 
in a useful form, let us identify the derivatives that appear in these equations. As 
mentioned previously, 11-» yv(t, £, 0) is the solution of the first variational initial value 
problem 

w = Df(y(tX,0))w,        w(0) = I, 

or equivalently, this solution is the principal fundamental matrix solution at time 
t = 0 of this time-periodic differential equation. In particular, we have the identity 

(2.6) yv(NT,{,0) = *(NT,Q. 

Since 

Vw(t, £ 0) = Df(y(t, £ O))^*, C, 0) + D2f(y0(t, £ Q))yl(t, £ 0), 
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the function t »-> yvv(t, £, 0) is the solution of the variational initial value problem 

w = Df(y(t, C, 0))ti; + D2f(y(t, C, 0))(*(t, C), #(«, 0), 

ti;(0) = 0. 

Hence, by the variation of constants formula we have that 

(2.7) yvv(NT,C,0) = $(iVT,C) /      ^(^O^/fy^CO))^^^))2A. 

Finally, notice that if we differentiate equation (1.1) with respect to the variable e at 
6 = 0, then 

y€(t, C, 0) = Df(y(t, C> 0))j/e(*, C, 0) + p(*, y(*, C, 0), 0), 

and therefore 

pNT 
(2.8) y<(NT,C,0) = *(JVT,C) /      ^(t.Off^tfo^OiO)*. 

./o 

The next proposition is probably known. However, it is given here in the precise 
form needed in the next two sections to complete our continuation theory. 

PROPOSITION 2.1. Let Z be a manifold and suppose that M(z) is a family of 
n x n matrices depending smoothly on z G Z. If the rank r of the matrix M(z) is 
constant for all z € Z and if ZQ G Z, then there is a neighborhood No of ZQ in Z and 
two smooth n x n matrix families 

K(z) := (Kt(z) • • • K±(z) K^z) • • • Kn-r(z)), 

R(z) := faiz) • • • Rr(z) Rt(z) • • • RtM 

defined on NQ and partitioned by columns such that for each z e No the vectors 
K^-(z),... ^K^z) are a basis for a complement of the kernel of M{z), the vectors 
K\(z),... , Kn-r(z) are a basis for the kernel of M(z), the vectors i?i(z),... , Rr(z) 
are a basis for the range of M(z), and the vectors Ri(z),... , R^_r(z) are a basis for 
a complement of the range of M(z). Moreover, 

R-l(z)M{z)K(z) = U 

where 

rIr      0 

ri 

nr" " 0     0 

and Ir denotes the r x r identity matrix. The complementary subspaces can be chosen 
to be orthocomplements while the bases for a complement of the kernel, the kernel, 
and a complement of the range can be chosen to be orthonormal. 

Proof. There is a permutation matrix P such that the first r columns of M{zo)P 
are linearly independent. Moreover, there is a corresponding choice of r nonzero pivot 
elements for the Gauss-Jordan elimination algorithm applied to the first r columns 
of M(zo)P- By continuity, if \z — zo\ is sufficiently small, then the same sequence 
of pivots can be used to row reduce the first r columns of M(z)P.  It follows that 
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there is a smooth family of invertible n x n-matrices E(z), a smooth family A(z) of 
r x (n — r)-matrices, and a smooth family B(z) of (n - r) x (n — r)-matrices all defined 
on some open neighborhood of ZQ in Z such that 

E(Z)M(Z)P=^   $)) 

By the hypothesis that the rank of each matrix M(z) is r, vre must have B(z) = 0. 
Let ei,... ,en denote the usual basis of Mn and note that the matrix E(z)M(z)P, 
partitioned by columns, has the form 

E{z)M{z)P = (ei ••• erar+1{z) ••• an(z)). 

The set of vectors 

{er+i - ar+i(z),... ,en - an{z)} 

is a basis for the kernel of E(z)M(z)P, and therefore a basis for the kernel of M(z) 
for z near ZQ is given by 

Kxiz) :=P(er+i - ar+i(z)),... ,ifn_r(z) := P(en - an(z)). 

The Gram-Schmidt procedure can be applied to obtain an orthonormal basis if desired. 
To obtain a basis for the complement of the kernel JC(z) of M(z), note first 

that we can extract r elements from the usual basis of Mn whose span is a subspace 
complementary to 1C(ZQ). Let these elements be denoted £i,... ,£r and let L denote 
their span. Clearly, L is a complementary subspace for /C(C) as long as ( is sufficiently 
close to Co- If an orthonormal basis is desired for an orthocomplement, then let /C-L(z) 
denote the orthogonal complement of lC(z) and define the smooth family of linear 
transformations Q(z) : L -> /C-L(^) by 

n—r 

w^w- ^(wiKjiz^Kjiz). 
3=1 

Since L and /C-L(^) have the same dimension r for z G iVi and the kernel of Q(zo) 
is trivial, the linear transformation Q(zo) is an isomorphism. By the openness of 
invertibility, there is an open neighborhood A^2 of ZQ in iVi such that Q(z) is an 
isomorphism for each z E N^. It follows that the vectors 

Q{z)tu...,Q{z)lr 

form a basis for ^{z) and these vectors are all smooth functions of z G A^. Moreover, 
by Gram-Schmidt, there is a corresponding family of smooth orthonormal bases 

as well. 
For 2 = 1,... , r, define 

and note that the vectors 

Kt{z\...,K^{z) 

Riiz) := M{z)Kt(z) 
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span the range of M(z). Complete this set to a basis of Mn by adding a smooth family 
of vectors 

Rt(z),...,RJ;_r(z) 

that span a complement of the range. If orthonormal vectors for an orthocomplement 
are desired, then use a construction similar to the construction for the orthocomple- 
ment of the kernel. In particular, there is some open neighborhood iVo of z G Z such 
that all of the constructed families of column vectors are smooth on iVo. 

Finally, for the last statement of the proposition, let K(z) denote the matrix with 
columns 

Kt(z),...,K^(z),K1(z),...Kn_r(z), 

let R(z) denote the matrix with columns 

R^z),... ,Rr(z),Ri(z),...,RJ;_r(z), 

and note that if z £ No, then 

M(z)K(z) = R(z)ILr. 

D 

3. The normally nondegenerate case. Let us assume in this section that Z 
is normally nondegenerate. We will determine the continuable periodic orbits in Z. 
Though the basic results of this section are by now well known, we will recover the 
standard results for the normally nondegenerate case by using a new method that will 
be extended to the degenerate case in the next section. 

Continuations of periodic orbits corresponding to points in Z exist if and only if 
the displacement equation 

y(NT,v,e)-v = 0 

has implicit solutions. In passing from this equation to the general series representa- 
tion (2.3), we have incorporated the new variables £, £, and fj, as place holders so that 
the computation of this series and the identification of the derivatives that appear 
in it would be a simple as possible. However, to obtain an equivalent determining 
equation, we must be careful that the new variables are given by an invertible trans- 
formation. If this is not done, we might find infinitely many continuations 1 hat all 
project to the same continuation in the original variables. The correct change < •*■ vari- 
ables is accomplished with reference to Proposition 2.1. Indeed, by the assun.ption 
of normal nondegeneracy, the family of matrices M(() := $(NTX) - I for C in the 
m-dimensional manifold Z has fixed rank n — m. We can choose a smooth family 
of vectors Ki(Q,... ,i;fm(C) such that for each ( they form a basis for the tangent 
space T<;Z and a smooth family of vectors K^-fc),... , K^^Q whose span at each 
C is a basis for a vector space complement of T^Z in 7^Mn. Using the notation of 
Proposition 2.1, the transformation 

(C,I/,/X)^(C,^(0(Q),/XP) 
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from Z x En~m x (0, oo) to Z x En x M is a diffeomorphism onto its image. In other 
words, by setting 

i = K(Q ( o ) ,        e = Mp 

with p = 1 in equation (2.4) and premultiplying by the invertible matrix family 
i?~1(C), this determining equation is recast in the equivalent form 

0 = JR-1(C)($(iVT,C)-/)JFf(C) ( o ) +JR-1(C)2/e(^T,C,0) + O(^) 

(3.i)      = ( o ) +^"1(C)2/e(ivr,c,o) + 0(M). 

Again, referring to the notation in Proposition 2.1, let i; E M be expressed in 
components t? = (t;i(C)j--- ?^n(C)) relative to the basis given by the columns of 
i?~1(C). Then, i?~1(C)u is precisely the vector (t>i((),... ,t>n(C))- In other words, 
the first n — m components of R~1(Qv is the projection of v to the range of the 
infinitesimal displacement <&(NT, Q — I while the last m components is the projection 
of v to a complement of the range. Let these two projection families be denoted by 
TTRCC) and 7rc(C) respectively. With this notation, the determining equation (3.1) is 
given by the pair of equations 

0 = i/4-7rH(C)2/e(iVT,C,0) + O(/i), 

(3.2) 0 = 7rc7(C)ye(^r,C,0) + O(Ai). 

THEOREM 3.1. Suppose that the unperturbed system (1.1) has a normally non- 
degenerate, resonant period manifold Z, ^{t^Q is the principal fundamental matrix 
solution of the first variational equation (1.4) at ( € Z, and nciO is the correspond- 
ing projection onto the complement of the range of the infinitesimal displacement 
$(iVT, C) — /. If the subharmonic Melnikov function given by 

(3.3) (»*c{Qvt(NT,C,0), 

where 

WV 1 

Jo 

has a simple zero (& £ Z, then Co persists. 

Proof. The right hand sides of the equations in display (3.2) may be viewed as 
a map F of (I/,C,AO G Kn"m x Z x M to Mn-m x Mm. If Co € Z is a zero of the 
map (3.3), then 

(3.4) i/ = I/Q := -MCotoeWfoO),    z = Co,    /* = 0 

is a zero of F. Also, because Co is a simple zero of the second component of F, 
the derivative of the function given by (i/y Q ^ F(y, C, 0) when evaluated at the point 
(i/) C) = (I/Q, Co) can be represented as an upper triangular block matrix whose diagonal 
blocks are the (n — m) x (n — m) identity and the derivative of the map (3.3). Hence, 
by the hypothesis that Co is a simple zero of the map (3.3), the block matrix is an 
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invertible linear transformation from M71-771 x T^Z to En"m x Em. Therefore, by the 
implicit function theorem there is an implicit solution /JL H> (I/(/X),^(/X)) defined for fi 
in a neighborhood of /i = 0 in R such that F(i/(/i), ((//),/i) = 0 and (J>(0)>C(0)) 

:= 

(^OJCO)- Thus, we have proved that the point Co ^ ^ persists with the required 
continuation given by the curve 

/i^u(/x) = C(M) + ^(C(/i))('/(0
/i) ) 

D 
There are other ways to state the hypothesis of Theorem 3.1 that Co is a simple 

zero of the map (3.3). In particular, a useful restatement is given by the following 
two conditions: 

(1) The vector y€(NT, Co, 0) is in the range of the matrix $(iVT, Co) - I. 
(2) The columns of the matrix yV€(NT,(o,Q) (the derivative of the map v H-K 

ye(NT,v,0) from En to En) generate a basis of a complement of the range 
of the matrix $(Co, NT) - L 

To prove this assertion note first that statement (1) is equivalent to the statement 
that Co is a zero of the map (3.3). Next, note that if T : Em -» Z is a local coordinate 
map given by z \-> T(z), then the corresponding local representation of the map (3.3) 
is given by z »-» 7Tc(T(z))ye(NT1 Y(2),0), and therefore its derivative evaluated at 
ZQ ^T-^Co) is given by 

7rc(Co)^(ArT,Co,0)DT(zo). 

Because T is a coordinate map, its derivative at ZQ has rank m. Thus, the zero is 
simple if and only if the composition 7rc(Co)yve{NT^Q,Q) has rank m. But, this is 
equivalent to statement (2). 

The results of this section, albeit with different proofs, can be found along with 
applications to coupled oscillators in [1], [2], [3], and [4]. 

In the normally nondegenerate case, if condition (1) does not hold for every point 
Co 6 2, then none of the periodic orbits of the manifold Z persist in a smooth way; that 
is, there is no smooth function ft such that /3(e) = £ + e7(e) and y{NT, j3(e)y e) —(3(e) = 
0. However, this leaves open the possibility that nonsmooth continuations exist; for 
example, continuations of the type /3(e) = C + e1^p^(e1/p) where p > 1. 

Finally, we mention two possible degeneracies for our bifurcation problem. (1) The 
period manifold is normally degenerate. (2) Zero is a singular value of the subharmonic 
Melnikov function; that is, the Melnikov function has a zero Co £ Z such that the rank 
of the matrix 7rc(Co)yve(NT,(o^0) is less than m, or equivalently, at least one of the 
columns of the matrix yV€(NT, Co? O)DT(zo) is in the range of the matrix I—$(NT, Q. 
In the next section we will generalize Theorem 3.1 to the case of normally degenerate 
period manifolds. The analysis near a singularity of the Melnikov function is beyond 
the scope of this paper. 

4. The normally degenerate case. In this section we treat the case where 
the resonant period manifold Z is normally degenerate. For definiteness, recall that 
Z is m-dimensional, the tangent space of Z at C is contained in the kernel /C(C) of 
the infinitesimal displacement <I>(7VT, C) — / on En, and that in the ^-degenerate case 
/C(C) is ^-dimensional where k — m -f £ and £ is a nonnegative integer. 

Using the ideas introduced in Section 3, let us note that there is a family of bases 

Ifl(C),..., ^(0,^+1(0, • ••,tf*+m(0 
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for the kernel of the infinitesimal displacement as in Proposition 2.1 such that the last 
m vectors form a basis for the tangent space of Z at £• For a notational convenience, 
let V : M72-* x E£ -+ W1^ x R1 x lRm denote the inclusion given by 

(z/, K) »->• (l/, AC,0). 

The transformation 

viewed as a map from Z x E71-* x E^ x (0, oo) to Z x En x E, or alternatively, as 
a map from iT x Wl~k x E^ x (—oo,0) to Z x En x E, is a diffeomorphism onto its 
image. In other words, if we consider either /x > 0 or // < 0, set 

(i = K{QV{v,K),    e = v? 

with p = 2 in the determining equation (2.5), and premultiply by the invertible matrix 
family JR~

1
(C), then equation (2.5) is recast into the equivalent form 

+ lyvv(NT,<:,0)(m)V(u,K))2)+O(^) 

u\ .     ( KR{Q{yt + \yvv{KVY) 
(41)        -V')+>W^&™r>r'w 

where the arguments of some of the functions in the order // terms of the second 
equation have been suppressed, and the projections KR^) and 7rc(C) as in Section 3 
are the projections onto the range and the complement of the range of the infinitesimal 
displacement corresponding to the matrix R~l(C). 

Let us define the generalized subharmonic Melnikov function M : Z x E^ —> Rk 

by 

(4.2) M(C,K) = irc(O{ye(NT,<;,0) + ^w(iVT,C,0)(^(C)F(0,K))2). 

The integral expressions for the partial derivatives that appear in this expression are 
given by formulas (2.7) and (2.8). We note that in the formula for M only the first 
term depends on the perturbation. Also, we note that 

£ 

(4.3) K(QV(0,K) = Y,KiKi(Q 
i=l 

where K = (ACI, ... , KI) and i^i(C)> • • • > ^(0 is a basis for a vector space complement 
of the tangent space of Z at £ in the kernel )C(Q of the infinitesimal displacement. 
Finally we mention that if I = 0, then Z is normally nondegenerate and the function 
M reduces to the corresponding function (3.3). 

THEOREM 4.1. If Z is an ^-degenerate resonant period manifold for the un- 
perturbed system (1.1) and if (Ccb^o) € Z x E^ is a simple zero of the generalized 
subharmonic Melnikov function M defined in display (4-2), then (o persists. More- 
over, there are two continuation curves both defined for e > 0. 
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Proof. Note that for ji ^ 0 the solutions of the determining equation (4.1) corre- 
spond to the zeros of the function F : JT-* x Z x M* x E -+ W1-* x Rk obtained by 
dividing the second component of the right hand side of equation (4.1) by ^. If fact, 
F is of the form 

F(I/,C,/6,M) = (^MC,«)) + 0(M). 

If .M(Cojfto) = 0* then F(0,Co,^0,0) = 0. Also, because (COJ^O) is a simple zero 
of M, the derivative of the function (i/,C>^) ^ -^(^JCJ^JO) evaluated at the point 
(0, Co, fto) is the invertible linear transformation from W1'1" xT^ZxW- to W1'1" x M* 
represented in matrix form by 

In-k 0 0 
0        A1c(Co,^o)     A^/cCCo^o) 

Thus, by the implicit function theorem, there is an implicit solution 
y, H-> (^(/x),C(^),^(/i)) defined in some neighborhood of /x = 0 such that 
F(V(IJ,),((/J,), K(fj,),y) = 0 and (z/(0),C(0), AC(0)) = (0,Co,^o)- The two required con- 
tinuations are given by 

u = cOi) + /itf(CMWi/(MM/i)) 

with /x = i^/e and e G [0, e*) for some e* > 0. D 

REMARK 4.2. Let us recall that in our original system (1.1), the parameter e is 
assumed to be nonnegative. However, we can easily consider nonpositive e by applying 
our results to the system 

y = f(y)+£9(t,y,e) 

where e = -e and g(t,y,e) = —g(t,y, —e). The important point is that 

j/ff(JVr,i;,0) = -y€(JVT,t;,0). 

Thus, the generalized Melnikov function is replaced by the function M- : ZxB? —> Rk 

where 

M-(C,K) := 7rc(C)( - V<(NT,C,0) + \yvv(NT,C,0)^(0^(0,K))
2
). 

A simple zero of either M or M- corresponds to a continuation of a periodic orbit 
for system (1.2). The domain of the continuation corresponding to M has e > 0 while 
the domain of the continuation corresponding to M- has e < 0. As we will illustrate 
in Section 7, it is very likely that the simple zeros of M and M- are different. 

REMARK 4.3. To apply our results, the fundamental matrix $(NT,Q of the 
first variational equation along the unperturbed resonant periodic solutions must be 
"known". Of course, for most nonlinear systems this requirement is impossible to 
meet. However, we note that the variational equations for a planar system can be 
reduced to quadratures along the unperturbed period solutions. In fact, Diliberto's 
theorem [10] provides formulas for the integration of the homogeneous variational 
equations of a plane autonomous differential equation in terms of geometric quantities 
defined along the unperturbed orbit (see the results in [1, 2, 3, 4]). This fact can be 
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very useful in the analysis of planar systems and weakly coupled planar systems. 
Unfortunately, we do not know how to obtain a substitute for Diliberto's theorem in 
En for n > 2. 

REMARK 4.4. In our analysis we use the assumption that the dimension of the 
kernel IC(Q of the infinitesimal displacement $(iVT, () — I is constant for £ in ?.n open 
neighborhood in the resonant period manifold. Without this assumption, we cannot 
prove the existence of the smooth families of matrices R(Q and K(£). It is easy to 
construct a period manifold where the dimension of the kernel of the infinitesimal 
displacement is not constant. For example, consider the system 

x = y — xz(x2 +y2 — 1), 

y = -x-yz(x2 + y2 -1), 

(4.4) z = 0, 

and note that the set {(#, y, z) : x2+y2 — 1} is a two-dimensional, 27r-period manifold. 
Whereas the kernel of the infinitesimal displacement is two-dimensional at each point 
of the subset 5i := {(#, y, z) : x2 + y2 = 1, z > 0}, the kernel is three-dimensional on 
the subset 52 := {(x,y,z) : x2 -f- y2 = 1, z = 0}. Of course, Si is itself a normally 
nondegenerate, two-dimensional period manifold while 52 is a two-degenerate, one- 
dimensional period manifold. Our general results can be used to analyze continuations 
of periodic orbits for perturbations of system (4.4) by considering three different period 
manifolds corresponding to the periodic orbits with z > 0, z = 0, and z < 0. 

5. Cronin's Theorem. We will point out an oversight in [7] where the con- 
tinuation of periodic solutions is studied for n-dimensional first order systems of the 
form 

(5-1) § = /(*)+S(*,A0 

with the following assumptions: 
(1) The function t H* g(t,/i) is periodic with period T(^) where T(/J,)—T = 0(/i3) 

and T = T(0) is the period of a periodic orbit F of the unperturbed system 

if* = o)- 
(2) There is a smooth function g(t,ix) such that #(£,//) = Li2g(t,ii). 
(3) For £ G F, the eigenvalue one of the principal fundamental matrix $(T, £) 

has algebraic multiplicity one. 
By the first and second assumptions, equation (5.1) can be written in the form 

(5.2) § = /(*)+Ai2s(t,A0 

where t i-» g(t,/j,) is periodic with period T(/i). Assumption (3) states that the 
kernel of the matrix I — $(T, Q is one-dimensional. In other words, F is a normally 
nondegenerate, resonant period manifold. 

The result of the continuation analysis in [7] is a bifurcation equation of the form 

(5.3) Ay2 + B = 0 

where (translating to our notation) y G E, 

A = 7rc(0 /   $(T,O*-Hs,OD2f(x(s,<;,0){$(s,Of(O)2ds, 
Jo 
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and 

Jo 

In [7] the quantities A and B are not viewed as functions of f. On page 378 in [7] 
the author claims that a simple zero of (5.3) (viewed as an equation for the vari- 
able 2/), corresponds to a continuable periodic orbit of the unperturbed system. By 
adding a fourth assumption, namely —B/A > 0, it is observed that the bifurcation 
equation (5.3) does in fact have simple zeros. However, by Proposition 5.1 below, 
A — 0. Thus, the continuation theorem in [7] is logically correct, but vacuous. In 
fact, equation (5.3) always reduces to the equation B = 0. If this equation is viewed 
as an equation for £ G F, then the result in [7] can be reinterpreted to be in complete 
agreement with Theorem 3.1. In effect, if the function ( «-> B(Q has a simple zero 
ZQ £ F, then there is a one-parameter family with parameter JJ, of perturbed periodic 
orbits in the extended phase space and a corresponding family of initial conditions 
v(fij such that v(Q) = Co- In this sense, if B has a simple zero, then F persists. 

The fact that A = 0 is a special case of a more general result that we will now 
formulate and prove. 

Using the notation of Section 4, let us assume that Z is an m-dimensional, res- 
onant period manifold for the n-dimensional, first order system y = f(y) with the 
solution family 11-* y(t,v) defined so that 2/(0,v) = v. By Proposition 2.1, there is a 
smooth family of bases 

for the kernel JC(Q of the infinitesimal displacement / — $(NT, () such that the last 
m vectors are tangent to Z. If u € /C(0, then u = nnor(C) + utan(C) where unor(0 
is in the span of the first £ basis vectors and u = ^an(C) is in the span of the last m 
basis vectors. 

PROPOSITION 5.1. //( e Z, then 

7rc(0^(^,0(^tan(0^tan(0) - 0 

and 

Kc(Oyvv(NT,<;)(utaa(0,unov(0) = o. 

Proof. Because tran(0 is in 7^ Z, there is a smooth curve s ^ f (s) in En whose 
range is in Z such that £(0) = C and £(0) = iran(0. Moreover, for each s in the 
domain of this curve, the function t \-> y(t, £(s)) is a periodic solution of system (1.2). 
In particular, we have that 

(5.4) y(NT,Z(8))-ti8) = 0. 

By computing the second derivative with respect to the variable s, we obtain the 
identity 

(5.5) yvv(NT, ^(s)) (Us), fa)) + yv(NT, 0, £(*))!(«) - fa) = 0. 
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Also, let us recall that 

yv(NT,m) = mT,0- 

Thus, equation (5.5) can be rewritten as 

(5.6) {I-$(NT,0)Z"(s) = Vw(NT,tt8)){foU(s)), 

and we obtain the identity 

;r HOWivr, o («tan(C)^tan(0) 

Recall that for v G W1 the vector 7rc(0v '1S Just ^e vector in Rk given by the last k 
components of R~1(Qv. Since the last k components of the vector nn_&if "^((^"(O) 
all vanish, we have proved the first equality of the proposition. 

To prove the second equality of the proposition, define the smooth curve s *-»■ 7(5) 
in Mn by 

7W:=^n0rttW) 

and note that 7(0) = unOT((). Also, note that the vector 7(5) is in the kernel /C(£(s)) 
of J — $(iVT, £(s)) for all s in the domain of the curve £. Hence, we have that 

(yv(NT,t(s))-Ih(s) = 0. 

Differentiate both sides of this identity with respect to 5 and evaluate at s = 0 to 
obtain the equation 

yvv(NT,0(ut&n(0,unor(0) + {yv(NT,0 - 1)7(0) = 0. 

The proof of the second equality of the proposition is completed exactly as the proof 
of the first equality is completed from equation (5.6). □ 

To prove that A — 0 for the system dx/dt = /(#), note that the vector $(5, C)/(C) 
= f(x(s, C)0)) is everywhere tangent to the period manifold T and then use Proposi- 
tion 5.1. 

6. Discussion. In this section we will briefly discuss the consequences of the 
substitution e = fip in equation (2.2) where p > 1 is a rational number. Also, we will 
describe the main result of the continuation theory in case the unperturbed system is 
linear. 

The restriction p > 1 is important for our analysis of the case where the infinites- 
imal displacement is not the zero map for at least two reasons: We must be able to 
divide equation (2.2) by /i without introducing a singularity in equation (2.3). The 
leading term in equation (2.3) must be yv(NT, (, 0) - I so that the same steps as in 
the proof of Theorem 4.1 can be followed. Also, it is convenient to consider four cases: 
p = 1, 1 < p < 2, p = 2, and p > 2. 

If p = a/6, the integers a and b have no common factors, and 1 < p < 2, then 
equation (2.3) can be studied in the form 

0 = (yv(NT, C, 0) - I)£ + ^a-^bye(NT, C, 0) + 0{fi). 
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For b ^ 1, the right hand side of this equation may not be smooth. But, this problem 
can be overcome by considering a new small parameter p = /j}^b and the substitution 
£ = K(QV(v, K) where K and V are the functions defined in Section 4. Furthermore, 
just as in Section 4, it suffices to find an implicit solution of the determining equations 

v\   .    a-bf  **(C)!/«(MZ\C,0)   \ 

Here, under the assumption that £ H* 7rc(C))2/€(-WT, C,0) has a zero £o> we can solve 
implicitly for i/ in the first component equation. The second equation (after substi- 
tution of the implicit solution and division by /xa~6) has values in E^ where k is the 
dimension of the kernel of the infinitesimal displacement. But £ G Z is locally in Em 

with k = m + L Thus, the implicit function theorem does not apply unless C = 0 in 
which case we revert to the subharmonic Melnikov function obtained for p = 1. In 
fact, we must obtain the same continuations already determined for this case. 

If p > 2, then equation (2.3) can be studied in the form 

0 = (yv(NT, C, 0) - /)£ + \wvv(NTt C, 0)£2 + O(iS). 

Again, with p, z/, and K as for the case 1 < p < 2, we have the determining equation 

This case appears to lead to a "generalized Melnikov function" that is simpler than 
the one obtained in Section 4. Indeed, a simple zero (Co, ^o) of the function 

(C,«) H> 7rc(C)(^(ivr,c,o)(i^cmo,*))2) 
persists. However, because this function is homogeneous in K, if (Co,^o) is a zero, 
then so is (Co,^^o) for a E M. Thus, this function cannot have a simple zero. 

If the unperturbed system is linear, then the second order derivative yvv(NT, £, 0) 
and all higher order derivatives of y with respect to the space variable v evaluated at 
v = £ vanish. Because of this fact, the continuation problem can often be simplified. 
Consider the classic model of the periodically forced planar oscillator 

(6.1) y = Ay + eg(t,yre) 

where A is a matrix of constants (see, for example, [5, 6, 8, 16, 18, 19, 20]). For the 
most important special case 

and the infinitesimal displacement I — $(27r,C) is identically zero. By setting p = 1 
and dividing by a power of /i in equation (2.3), we find immediately that it suffices 
to solve the determining equation 

0 = 2/€(iVT,C,0) + O(e). 

In this case ( E M2, so no projection is necessary. Thus, we recover the following classic 
result: // the function C >-> -2/e(iVT, £,0) has a simple zero, then the corresponding 
unperturbed periodic solution persists. 
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REMARK 6.1. The concept of a "controllably" periodic perturbation has been 
introduced and studied in [12, 13, 14]. The period of the perturbation is allowed to 
vary. In these systems, the perturbation function #, in our notation, can be written 
as 

9(t,y,e)=g(t/T,y,€,T) 

where 

g(8 + l,y,e9T) = g(s,y,e,T). 

The continuation theory for periodic orbits of such systems is developed under the 
assumption that the number one is a simple eigenvalue of $(T, £). Our analysis can 
be used to extend this result to include the case where one is not a simple eigenvalue. 

7. Examples. We will use the first order system 

x = y — x(x2 + y2 - I)2 — e cos £, 

y = -x - y(x2 + y2 - l)2+esin£, 

(7.1) z = z(x2 +y2) + 6smt 

(a modification of a differential equation studied in [3]) to illustrate the continuation 
of periodic orbits for the normally degenerate case. 

The unperturbed system (7.1) has the resonant period manifold 

Z := {(x, y, z) : x2 + y2 = 1, z = 0}, 

consisting of a single periodic orbit. Let us consider the following family of unper- 
turbed solutions on Z: 

t \-> (cos(t -6),- sm(t - (9), 0) 

where 9 is the usual angular variable. To be completely compatible with the notation 
used in the general theory, we would have to write this family as 

t ^ (cos(t - C), - sin(£ -0,0) 

where C = (cos 8, sin #,0). Our first choice amounts to a choice of a local (angular) 
coordinate on Z. 

The principal fundamental matrix at t = 0 of the first variational equation along 
each of the unperturbed solutions on Z is given by 

0 
0 

In particular, this fundamental matrix does not depend on the base point correspond- 
ing to 6. 

The infinitesimal displacement $(27r) - / has a two-dimensional kernel, and there- 
fore Z is 1-degenerate. Here, the kernel of $(27r) - / is the plane defined by the 
equation z = 0. More precisely, we have 

/ 0      0 0 
*(27r,0)-J=      0      0 0 

\ 0     0     e277 - : 
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In accordance with our conventions, we can take 

0 COS0 -sin( 
0 sin0 COS0 

1 0 0 

0 0 1 
0 1 0 

,2n_1 0 0 
K(0):=      0      sin/9        cos9        ,    R(9) := 

To compute the generalized Melnikov function (4.2), recall that the vector 
K(0)V(0, K) is given in this case by the scalar variable hi multiplied times the second 
column of the matrix K(6). (The second column corresponds to the complement of 
the tangent space to Z in the kernel of the infinitesimal displacement.) Also, note that 
the projection nc{0) is independent of 6. In fact, this projection (R~1(0) followed 
by projection onto the second two components of the vector in the usual basis of E3) 
applied to the vector with components (u,v,w) 6 M3 is the vector in M2 given by 
(V,u). 

Using the integral formula for the partial derivative of the perturbed solution with 
respect to e ("t/e(27r,'U,0)") that appears in the generalized Melnikov function, it is 
easy to compute its value to be 

(-27r,0,e27r / 
27r 

-t e    sintdt). 

After projection by 7rc(#), its contribution to the generalized Melnikov function is the 
vector (0, — 27r). 

To apply the integral formula for the second partial derivative of the perturbed 
solution with respect to the space variables ("yvv(27r,v,0)n), we must compute the 
second derivative of the unperturbed vector field / evaluated at the pair of vectors 
each given by 

/   cos(*-0) 
X:=Q(t)K(0)V(Q,K)=K\   -sin(t-0) 

V        o 
One way to do this is to first compute Df(x1y,z)X. Then, the desired derivative 
D2f(x,y,z)(XyX) is the directional (first) derivative of the vector valued function 
(x,y.,z) i-> Df(xJy,z)X evaluated at x = cos(t — 0), y = -sm(t — 9), and z = 0 in the 
direction X. After a computation using the integral formula, we find the projected 
value of one half of the second partial derivative term to be (—STTK

2
 sin 0, —STTK

2
 COS 0). 

By combining the above results, we find the generalized Melnikov function is given 
by 

M(0, K) = (STTK
2
 sin0, -2ir(l + 4AV

2
 COS0)) 

while 

M-(0,K) = (STTK
2
 sin(9, -27r(l - 4K;

2
 COS0)) 

(see Remark (4.2)). 
According to Theorem 4.1 the continuations with e > 0 correspond to the simple 

zeros (0, rc) = (TT, ±|) of M while the continuations with e < 0 correspond to the 
simple zeros of M- given by (0, ±|). For each simple zero there are two continuation 
curves. However for this simple case, these continuation curves likely match to form 
one smooth curve through the continuation point on Z. 
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Our second example is a system of m coupled oscillators; the jth oscillator has 
the form 

ij = VjUj -X
J(

X
J +yj -^j) + mj(t,xi, > - - ,xm,yi, > - - ,ym,e), 

Vj = -VjXj - Vjitf + v) - tf)2 + e92,j(t,a:i,...,xm,yu...,ym,e) 

where /x^ and Xj are nonzero constants. Let us assume that the unperturbed oscillators 
are all in resonance, and therefore they have a smallest common period TQ. Then, 
the unperturbed system has an m-dimensional torus Z as a period manifold; Z is the 
product of limit cycles, one for each of the m uncoupled planar oscillators. Let us 
also consider the family of unperturbed solutions on Z 

given by 

t h+ (xi (*), 2/1 (*),..., xm(t),ym(t)) 

Xjit) = Xj cosfajt - Oj),        yj(t) = -Xj sinfajt - 6j) 

where 6j is an angular variable and 0 := (#i,... ,#m) is the local angular coordinate 
on Z. 

The period manifold Z is m-degenerate. In fact, the kernel of infinitesimal dis- 
placement $(To, 0) - / is all of M2m. The projection 7rc(C) onto the complement of 
the range of the infinitesimal displacement is the identity map. Notice that in this 
case t = m. Hence, the function V maps Mm to Mm x Em and we have that 

$(t,&)K(Q)V(K) = 

—Ki sin(/ii^ — #i) 

K>m COS(/Xm6 — Um) 

\-Km Sm(fJLmt - dm)J 

where K = (ACI, ... ,/cm). If we also assume that each function ^?J- is time-periodic 
with a smallest common period T such that MTQ = NT for some relatively prime 
integers M and iV, then after a straightforward computation we find that 

(7.2) 

where 

(7.3) 

and 

M±(Q,K) = -4NT 

Pifl Jo      Vs1 
COSjljS 

sm/j,jS 

( Af^cos^i ^ 
Af/cf sin0i 

Af/c^cos0n 

VAf^sini9m/ 

— smfijS 

COSfijS 

Pi,2 

Pm,l 
\PrnaJ 

gj,2{s,XQ{s),Y0{s),0) 

XQ{S) = (Ai cosQuis -i9i),...,Amcos(^m5 -<9m)), 

YQ(S) = ( - Ai sindiis - 0i),..., -Am sm(fjLms - 0m)). 
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Thus, if the system of m equations, consisting of the pairs of equations 

-4NT\$K% cos Oj ± pj,! = 0,        -ANTX^^j sin Oj ± pja = 0 

with one fixed choice of sign for j = 1,... , m, has a simple zero (0o, fto) ^ % x ^m, 
then the corresponding unperturbed periodic orbit through ©o persists. 

At a continuation point there can be as many as 2m corresponding continuation 
curves. For example, if we set m = 2 and fij = Xj — 1 for j — 1,2, and if we let 

#l,l(^i,?/i,£2,2/2,e) =0, 01,2(*,Sl,2/l,a2,J/2,e) =»2) 

P2,i(*>a?i>2/i>^2,2/2,c) = 0,        #2,2(^^1,2/1, ^2,2/2, c) = -si +acos£, 

then the generalized Melnikov function for e > 0 is given by 

(7.4) M(0,«) = 

/     — 87rttf cos 61 —TT sin ^2     \ 
-STT^I sin ^1 + TT cos 62 
—STT^ cos ^2 + TT sin #1 

\—STT^ sin 62 — TT cos ^1 + Tray 

When 0 < |a| < 1, the function M(Q,K) does in fact have eight simple zeros corre- 
sponding to two continuation points on the original unperturbed torus, namely, 

(O,K) = (0,-l±iV2,±lvr^) 

and 

(e)K)=(7r>|)±^>/2,±ivT+^). 

Also, when 0 < |a| < 1, the function M-(Q,K) for e < 0 has eight different simple 
zeros, namely, 

(e,K)=(Q,?ri±]y/2,±\y/T^) 

and 

Notice that at each continuation point ©o on the unperturbed torus, there are 2m = 4 
possible directions £ G M4 along which a continuation curve exists. For instance, at 
the point   (^1,^2) = (0, — 7r/2)   continuation   curves   exist   along   the   directions 
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