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INTEGRABLE COUPLINGS OF SOLITON EQUATIONS BY 
PERTURBATIONS I. A GENERAL THEORY AND APPLICATION 

TO THE KDV HIERARCHY* 

WEN-XIU MAt 

Abstract. A theory for constructing integrable couplings of soliton equations is developed by 
using various perturbations around solutions of perturbed soliton equations being analytic with re- 
spect to a small perturbation parameter. Multi-scale perturbations can be taken and thus higher 
dimensional integrable couplings can be presented. The theory is applied to the KdV soliton hi- 
erarchy. Infinitely many integrable couplings are constructed for each soliton equation in the KdV 
hierarchy, which contain integrable couplings possessing quadruple Hamiltonian formulations and two 
classes of hereditary recursion operators, and integrable couplings possessing local 2 + 1 dimensional 
bi-Hamiltonian formulations and consequent 2 4-1 dimensional hereditary recursion operators. 

1. Introduction. Integrable couplings are a quite new interesting aspect in the 
field of soliton theory [1]. It originates from an investigation on centerless Virasoro 
symmetry algebras of integrable systems or soliton equations. The Abelian parts of 
those Virasoro symmetry algebras correspond to isospectral flows from isospectral 
Lax pairs and the non-Abelian parts, to non-isospectral flows from non-isospectral 
Lax pairs [2, 3]. If we make a given system of soliton equations and each time part 
of Lax pairs of its hierarchy to be the first component and the second component of 
a new system respectively, then such a new system will keep the same structure of 
Virasoro symmetry algebras as the old one. Therefore this can lead to a hierarchy of 
integrable couplings for the original system. 

Mathematically, the problem of integrable couplings can be expressed as: for a 
given integrable system of evolution equations ut — Kiu), how can we construct a non- 
trivial system of evolution equations which is still integrable and includes ut — K{u) 
as a sub-system? 

Therefore, up to a permutation (note that we can put some components of ut — 
K(u) seperately), we actually want to construct a new bigger integrable system as 
follows 

[     } I Vt = SM, 

which should satisfy the non-triviality condition dS/d [u] ^ 0. Here [u\ denotes a vector 
consisting of all derivatives of u with respect to a space variable. For example, we have 
[u] — (u,ux,uxx,' • •) in the case of 1 -f 1 dimensions. The non-triviality condition 
guarantees that trivial diagonal systems with 5(u,v) = cK(v) are excluded, where c 
is an arbitrary constant. 

There are two facts which have a direct relation to the study of integrable cou- 
plings. First, all possible methods for constructing integrable couplings will tell us 
how to extend integrable systems, from small to large and from simple to compli- 
cated, and/or how to hunt for new integrable systems, which are probably difficult to 
find in other ways. The corresponding theories may also provide useful information 
for completely classifying integrable systems in whatever dimensions. Secondly, the 
symmetry problem of integrable systems can be viewed as a special case of integrable 
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couplings. Strictly speaking, if a system of evolution equations ut = K(u) is inte- 
grable, then a new system (called a perturbation system) consisting of the original 
system and its linearized system 

f ut = K(u), 
\ vt = Kt(u)[v}, 

must be still integrable [1]. The second part of the above new system is exactly 
the system that all symmetries need to satisfy, but new system itself is a special 
integrable coupling of the original system ut = K(u). Generally, the search for the 
approximate solutions UN — X^=o ^^^ N >l,oi physical interest to a given system 
Ut = K{u) can be cast into a study of the general standard perturbation systems 

^ = Tf—ag» ? 0 < i < N. These perturbation systems were proved to form 
integrable couplings of the original system ut = K(u) [4, 5], the simplest case of 
which is the above system associated with the symmetry problem. This fact is also a 
main motivation for us to consider the problem of integrable couplings. 

However the standard perturbation systems above are just special examples of 
integrable couplings. They keep the spatial dimensions of given integrable systems 
invariant and only the perturbations around solutions of unperturbed integrable sys- 
tems have been considered. We already know [6] that it is possible to extend the 
standard perturbation systems and to change the spatial dimensions, in order to make 
more examples of integrable couplings. The question we want to ask here is how to 
do generally, or what related theory we can develop. In this paper, we would like to 
provide our partial answer to this extensive question, by establishing a theory on the 
multi-scale perturbation systems of perturbed integrable systems. An approach for 
extending the standard perturbation systems and for enlarging the spatial dimensions 
by perturbations will be proposed. 

Let us now introduce our basic notation and conception, some notation of which 
comes from Refs. [7, 8, 1, 5]. Let M = M(u) be a suitable manifold possessing 
a manifold variable ix, which is assumed to be a column vector of q functions of 
t G R and x £ Rp with t playing the role of time and x representing position in 
space. We are concerned with coupling systems by perturbations and thus need to 
introduce another bigger suitable manifold M^v = MN^N) possessing a manifold 
variable fjjy = (TJQ ,r]f, • • • ,^)T, iV > 0, where rji, 0 < i < TV, are also assumed to 
be column function vectors of the same dimension as u and T means the transpose 
of matrices. Assume that T(M),T(MN) denote the tangent bundles on M and MJV, 

T*(M),T*(MN) denote the cotangent bundles on M and M^, and C^M), C^MJV) 

denote the spaces of smooth functionals on M and MAT, respectively. Moreover let 
TJ(M) be the s-times co- and r-times contravariant tensor bundle and Ts

r|n(M), the 
space of s-times co- and r-times contravariant tensors at u £ M. We use X{u) (not 
X\u) to denote a tensor of X £ Ts

r(M) at u £ M but sometimes we omit the point u 
for brevity if there is no confusion. Note that four linear operators $ : T(M) —>■ T(M), 
* : T*(M) -» T*(M), J : T*(M) -> T(M), 0 : T(M) -> r*(M) can be identified 
with the second-degree tensor fields T® £ T^M), Ty £ T^M), Tj £ T0

2(M), Te £ 
Tg (M) by the following relations 

T*(u)(a(u),K(u)) =< a(u),$(u)K{u) >, a £ T*(M), K £ T(M), 

T*(u)(a(u),K(u)) =< y(u)a(u),K(u) >, a £ T*(M), K £ T(M), 

Tj(u)(a(u),l3(u)) =< a(u),J(u)/3(u) >, a,/? £ T*(M), 

TQ(U)(K(U),S(U)) =< Q(u)K(u),S(u) >, K,S £ T(M), 
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where < •, • > denotes the duality between cotangent vectors and tangent vectors. 
Of fundamental importance is the conception of the Gateaux derivative, which 

provides a tool to handle various tensor fields. For a tensor field X G TJ(M), its 
Gateaux derivative at a direction Y € T(M) is defined by 

(1.2) X'(u)[Y(u)}=^U + £Y{u)) 

de £=0 

For those operators between the tangent bundle and the cotangent bundle, their 
Gateaux derivatives can be given similarly or by means of their tensor fields. The 
commutator of two vector fields K, S G T(M) and the adjoint map ad^ : T(M) —> 
T(M) are commonly defined by 

(1.3) [if, S](u) = Kl(u)[S(u)] - S'iuftKfa)], ad^S - [K, S]. 

Note that there are some authors who use the other commutator 

[K,S}(u) = S'(u)[K(u)} - K'(u)[S(u)}. 

It doesn't matter of course but each type has many proponents and hence one must 
be careful of plus and minus signs in reading various sources. 

The conjugate operators of operators between the tangent bundle and the cotan- 
gent bundle are determined in terms of the duality between cotangent vectors and 
tangent vectors. For instance, the conjugate operator $^ : T*(M) -4 T*(M) of an 
operator $ : T(M) -» T(M) is established by 

<&(u)a{u),K(u) >=<a(u)Ji{u)K(u) >, a G T*(M), KeT(M). 

If an operator J : T*(M) -4 T(M) (or 0 : T(M) -> T*(M)) plus its conjugate 
operator is equal to zero, then it is called to be skew-symmetric. 

DEFINITION 1.1. For a functional H G C00(M), its variational derivative j±- G 

T*(M) is defined by 

< dJi(u),K(u) >= H'(u)[K(u)], K G T(M). 
ou 

If for 7 G T*(M) there exists a functional H G C00(M) so that 

— = 7, i.e., H'{u)[K{u)] =< 7(«)> K{u) >, K e T(M), 

then 7 G T*(M) is called a gradient field with a potential H. 

A cotangent vector field 7 G T* (M) is a gradient field if and only if 

(1.4) (d7)(u)(K(u),S(u)) 

:= < y(u)[K(u)},S(u) >-< i{u)[S{u)],K(u) >= 0, K,S G T(M). 

If 7 G T*(M) is gradient, then its potential H is given by 

H(u) = /    < j(Xu),u > dX. 
Jo 
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DEFINITION 1.2. For a linear operator $ : T(M) ->> T(M) and a vector field 
K E T(M), tte Lie derivative LK§ : T(M) -> r(M) 0/ $ u/#A respect ^0 if w 
defined by 

(LK$)(u)S(u) 
[1'0)        = ^(u)[K(u)}S(u) - K'(u)[§(u)S{u)} + $(M)iir,(M)[5(u)], 5 G T(M). 

An equivalent form of the Lie derivative is 

(1.6) {LK*)(u)S(u) = $(u)[K(u),S(u)] - [K(u),$(u)S(u)l 

where $ : T(M) -> T(M), if, 5 G T(M), and the commutator [., •] is defined by (1.3). 

DEFINITION 1.3.   A linear operator $ : T(M) ->• T(M) zs ca//ec? a recursion 
operator of ut = if (w), if G T(M), t//or a// 5 G T(M) and u G M, we have 

(1.7) ^^^(w) + V{u)[K{u)}S{u) - K\u)[$(u)S{u)] + i^K^u^Siu)] = 0. 

Obviously a recursion operator $ : T(M) -> T(M) of a system ut = K(u), if G 
T(M), transforms a symmetry into another symmetry of the same system ut = K(u). 
Therefore it is very useful in constructing the corresponding symmetry algebra of a 
given system and its existence is regarded as an important characterizing property 
for integrability of the system under study. 

DEFINITION 1.4. A linear operator $ : T(M) -> T(M) is called a hereditary 
operator or to be hereditary [9], if the following equality holds 

V{umu)K{u)}S{u) - mV{u)[K{u)]S{u) 
1 " ) -$\u)[$(u)S(u)]K{u) + §(u)&{u)[S{u)]K{u) - 0 

for all vector fields if, 5 G T(M). 

For a linear operator $ : T{M) -> T(M), the above equality (1.8) can be replaced 
with either of the following equalities: 

(L^)(tx)*(M) = *{U){LK*){U), if G T(Af), 

$2(u)[if (u), S{u)) + [$(u)K (w), ${u)S{u)] 

-${u){[K{u\§{u)S(u)} + [$(u)K{u),S{u)]} = 0, if,5 G T(M). 

It follows directly from (1.6) that these two equalities are equivalent to each other. 
We point out that hereditary operators have two remarkable properties. First, if $ : 
T{M) -» T(Af) is hereditary and LK§ = 0, if G T(M), then we have [$mif, $nif] = 
0, m,n > 0 (see, for example, [9, 10, 11]). Therefore, when a system ut — K(u), if G 
T(M), possesses a time-independent hereditary recursion operator $ : T(M) —► 
T(M), a hierarchy of vector fields $nif, n > 0, are all symmetries and commute 
with each other. Secondly, if the conjugate operator \I> = & of a hereditary operator 
$ : T(M) -> T(M) maps a gradient field 7 G T*(M) into another gradient field, then 
\I>n7, n > 0, are all gradient fields (see, for example, [12]). 
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DEFINITION 1.5. A linear skew-symmetric operator J": T*(M) -» T(M) is called 
a Hamiltonian operator or to be Hamiltonian, if for all a,/?, 7 G T*(M), we have 

(1.9) < a, J>)[J(u)/?]7 > +cycle{a,p,'Y) = 0. 

1^5 Poisson bracket is defined by 

/iff /iff 
(1.10) {HuH2}j(u) =< ^-(u), JM-g^M >, 

where Hu H2 G ^^(M). i4 pair of operators J,M : T*(M) -* r(M) w ca//ec? a 
Hamiltonian pair, if cJ + dM is always Hamiltonian for any constants c, d. 

When J : T*(M) -> r(M) is Hamiltonian, we have [13] 

J(ti) ^ (u) = [J(u) — (u)9 J(M) —(w)], 

where i?i,i?2 G (^^(M). This implies that the operator J^ is a Lie homomorphism 
from the Poisson algebra to the vector field algebra. Moreover if J, M : T* (M) ->• 
T(M) is a Hamiltonian pair and J is invertible, then $ = MJ-1 : r(M) -* T(M) 
defines a hereditary operator [13, 7]. 

DEFINITION 1.6. A linear skew-symmetric operator 0 : T(M) -> T*(M) is called 
a symplectic operator or to be symplectic, if for all K,S,T e T(M), we have 

(1.11) < K(u),&(u)[S{u)]T(u) > +cycle{K,S,T) = 0. 

If 0 : T(M) ->- T*(M) is a symplectic operator, then its second-degree tensor 
field Te G T2

0(M) can be expressed as 

Te = ^7 with  < 7(u),JK'(u) >= f   < Q(Xu)Xu,K(u) > d\, K € T(M), 
Jo 

where 0^7 is determined by (1.4). It is not difficult to verify that the inverse of 
a symplectic operator is Hamiltonian if it exists and vice versa. We also mention 
that Hamiltonian and symplectic operators can be defined only in terms of the Dirac 
structures [14]. 

DEFINITION 1.7. A system of evolution equations ut = K(u), K G T(M), is 
called a Hamiltonian system or to be Hamiltonian, if there exists a functional H G 
C00(M) 50 that 

£TT 

(1.12) ut = K(u) = J(u) — (u). 
ou 

It is called a bi-Hamiltonian system, if there exist two functionals Hi,H2 G C00(M) 
and a Hamiltonian pair J, M : T*(M) ->• T(M) so that 

(1.13) ut = K(u) = J(u)6-^(u) = M(u)^(u). 
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There is the other kind of Hamiltonian systems, which can be defined by symplec- 
tic operators. However, the above definition has more advantages in handling symme- 
tries and conserved functionals. For a Hamiltonian system ut = J(u)^.(u), the linear 
operator Jj^ maps a conserved functional into a symmetry. For a bi-Hamiltonian sys- 
tem, we will be able to recursively construct infinitely many commuting symmetries 
and conserved functionals for the system, if either of two Hamiltonian operators is 
invertible [15]. 

In what follows, we would like to develop a theory for constructing integrable 
couplings of soliton equations, by analyzing integrable properties of the perturbation 
systems resulted from perturbed soliton equations by multi-scale perturbations. The 
paper is organized as follows. In Section 2, we first establish general explicit struc- 
tures of hereditary operators, Hamiltonian operators and symplectic operators under 
the multi-scale perturbations. We will go on to show that the perturbations preserves 
complete integrability, by establishing various integrable properties of the resulting 
perturbation systems, such as hereditary recursion operator structures, Virasoro sym- 
metry algebras, Lax representations, zero curvature representations, Hamiltonian for- 
mulations and so on. In Section 3, the whole theory will be applied to the KdV 
equations as illustrative examples. This leads to infinitely many integrable couplings 
of the KdV equations, which include Hamiltonian integrable couplings possessing two 
different hereditary recursion operators and local bi-Hamiltonian integrable couplings 
in 2 + 1 dimensions. Finally, some concluding remarks are given in Section 5. 

2.  Integrable couplings by perturbations. 

2.1. Triangular systems by perturbations. Let us take a perturbation series 
for any N >0 and r > 0: 

(2.1) 
N 

uN = Y^£%riii m = 'ni(yo,yuy2,'- ,yr,t), yi = elx, ten, x e Rp, o < i < N, 

where e is a perturbation parameter and rji, 0 < i < N, are assumed to be column 
vectors of q dimensions as before. When r > 1, (2.1) is really a multi-scale perturba- 
tion series. We fix a perturbed vector field K = K(s) G T(M) which is required to 
be analytic with respect to e. Let us introduce 

(2.2)      *«> = KiHm) =(KM){i)(m) = I *K{*J'e) , 0 < i < N, 
e=0 

where TJN = (Voi Wi >''' > VN)
1

^ 
as before, and then define the N-th order perturbation 

vector field on MAT: 

(2.3)        (veTNK)(f)N) = KN(fjN) = (K^T(fjN),K^T(fjN), • • • ,KWr(fjN))T. 

Here the vector fields on M are viewed as column vectors of q dimensions, and the 
vector fields on MN, column vectors of q(N + 1) dimensions, as they are normally 
handled. Since we have 

frKiuus) 
de1 

d^iu^e) 
BF

1 

e=0 ^ 
, in = 5^eV, fii = J^^m, 0<i<j<N, 

£=0 k=0 k=0 



INTEGRABLE COUPLINGS BY PERTURBATIONS I 27 

it is easy to find that 

r2 ^ KN(f,N) = (K^ifjo),Ki^ifj,),■■■,K(N^(7jN))T, 
( ' ) vi = (fi,vT,--,vT)T,   o<i<N. 

Thus the perturbation vector field perwif = Kjy G T(MN) has a specific property 
that the z-th component depends only on 770,771, •• • ,77^ but not on any rjj, j > i. 

Let us now consider a system of perturbed evolution equations 

(2.5) ut = K(u,e), K = K{e) E T(M), 

where K(E) is assumed to be analytic with respect to e, as an initial system that we 
start from. It is obvious that the following perturbed system 

(2.6) UNt - K(UN,£) +O(S
N

)   or uNt=K(uN,e)     (mod eN), 

leads equivalently to a bigger system of evolution equations 

(2.7) 77^ = KN(r)N),   i.e.,  77^ = -- 
i\       dei , 0 < i < N, 

£=0 

where UN is defined by (2.1). Conversely, a solution 77JV of the bigger system (2.7) 
gives rise to an approximate solution UN of the initial system (2.5) to a precision 
o(eN). The resulting bigger system (2.7) is called an iV-th order perturbation system 
of the initial perturbed system (2.5), and it is a triangular system, owing to (2.4). 
We will analyze its integrable properties by exposing structures of other perturbation 
objects. 

2.2. Symmetry problem. Let us shed more right on an remarkable relation 
between the symmetry problem and integrable couplings. Assume that a system 
ut = K(u), K G T(M), is given. Then its linearized system reads as vt = K'(u)[v\. 
What the symmetry problem requires to do is to find vector fields 5 G T(M) which 
satisfy this linearized system, i.e., (S(u))t = K'(u)[S(u)] when ut = K(u). Therefore 
(uT

y (S(u))T) solves the following coupling system 

(2.8) r *=*(«), 
\vt = K'(u)[v], 

if S G T(M) is found to be a symmetry of ut = K(u). This system (2.8) has been 
carefully considered upon introducing the perturbation bundle [1]. It is the first- 
order standard perturbation system of ut = K(u), introduced in Ref. [5]. Since it 
keeps complete integrability, it provides us with an integrable coupling of the original 
system Ut = K(u). Therefore the symmetry problem is viewed as a sub-case of general 
integrable couplings. 

The commutator of the vector fields of the form (K(u), A(u)v)T with A(u) being 
linear has a nice structure: 

r,  K(u)  ,   ,   S(u)   „ = ,   [K(u),S(u)}   v 

A A(u)v /'V B(u)v /-I      V lA(u),B(u)]v '' 

where the commutator [K(u),S(u)] is given by (1.3) and the commutator [A(u), B(u)l 
of two linear operators A(u),B(u) is defined by 

[A(u), B{u)l = A'{u)[S(u)] - B'{u){K(u)] + A{u)B(u) - B{u)A(u), 
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which was used to analyze algebraic structures of Lax operators in [16]. Moreover for 
linearized operators, we can have 

(2.9) lK'(u),S'(u)} = T'(u), T = [K,S], K,Se T(M), 

which will be shown later on. 

2.3. Candidates for integrable couplings. Let us illustrate the idea of how 
to construct candidates for integrable couplings by perturbations. Assume that an 
unperturbed system is given by 

(2.10) ut = K(u), K € T(M), 

and we want to construct its integrable couplings. To this end, let us choose a simple 
perturbed system 

(2.11) ut = K(u)+eK(u), 

which is analytic with respect to e of course, as an initial system. Obviously this 
system doesn't change integrable properties of the original system (2.10). In practice, 
we can have lots of choices of such perturbed systems. For example, if the system 
(2.10) has a symmetry 5 € T(M), then we can choose either ut = K(u) + eS(u) or 
Ut = K(u) H- €2S(u) as another initial perturbed system. According to the definition 
of the perturbation systems in (2.7), the first-order perturbation system of the above 
perturbed system (2.11) reads as 

(2.12) 
rjot =K(rjo), 

r1it=K'(r]o)[7h}+K(rio). 

This coupling system is a candidate that we want to construct for getting integrable 
couplings of the original system ut = K(u). In fact, we will verify that the perturba- 
tion defined by (2.1) preserves complete integrability. Therefore the above coupling 
system (2.12) is an integrable coupling of the original system ut = K(u), provided 
that Ut = K(u) itself is integrable. The realization of more integrable couplings, such 
as local 2 + 1 dimensional bi-Hamiltonian systems, can be found from an application 
to the KdV hierarchy in the next section. 

2.4. Structures of perturbation operators. Rather than working with con- 
crete examples, we would like to establish general structures for three kinds of pertur- 
bation operators. The following three theorems will show us how to construct them 
explicitly. For the proof of the theorems, we first need to prove a basic result about 
the Gateaux derivative of the perturbation tensor fields. 

LEMMA 2.1. Let X — X{e) G TJ(M) be analytic with respect to e and assume 
that the vector field SN = (Sj, Sf, • • • , 5^)T G T{MN), where all sub-vectors Si, 0 < 
i < N, are of the same dimension.  Then the following equalities hold: 

(2-13)     ( 
dtX(uN,e) 

de1 ) MN)[SW] = 
e=0/ de1 

N 

X'(uN, 
e=0 3=0 

REMARK. Note that in (2.13), we have adopted the notation 

(2.14) 
X'(uN,e)[K(u)} = (X{uN,e)y(uN)[K(u)], X = X(e) G T;(M), K G T(M), 
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in order to save space. The same notation will be used in the remainder of the paper. 

Proof. Let us first observe the Taylor series 

N 

X(uN,e) = ]r e
i d^iuN.e) 

i=0 
i\        de* 

+ o(^). 
e=0 

It follows that 

N    i 

(X(uN:s)y(rjN)[SN] = Y,7j( 
i=0 

e* (&X(uN,e) 
dei 

Secondly, we can compute that 

8 
{X(uN,e)y(fJN)[SN] = 88 5=0 

N N 

X{uN + 8Y,^Sj,e) = X'{uN,e)^^SJ\ 
3=0 j=0 

A combination of the above two equalities leads to the required equalities in (2.13), 
again according to the Taylor series. The proof is completed. D 

THEOREM 2.2. // the operator $ = $(e) : T(M} -* T(M) being analytic with 
respect to e is hereditary, then the following operator <5>N ' T{MN) -> T.(Mjv) defined 
by 

(2.15)     (perN§){f)N) - §N(J1N) 

§{uN,£)\e=0 

1 d${uN ,£) 
1! de 

1 dN<P(uN,£) 
V! de» 

e=0 

,N 

r   i    a'-^iuN, 
[(i-j)\        de*-* 

el 
e=0- q(N+l)xq(N+l) 

0    1 
$(uN,e)\£=o 

1   d$(uN,e) 
1!         de i 

n K«N,£)|e=o _ 
6=0 

is also hereditary, where UN is a perturbation series defined by (2.1). 

Proof. Let KN = {K^K?, • • • ,^)T, 5^ - (SQ^S?
1
, • • • ,S£)T G T{MN), 

where the sub-vectors K^Su 0 < i < A^, are of the same dimension. Since ^N{T1N) 

is obviously linear, we only need to prove that 

(2.16) ^N{fiN)[^N{fiN)KN}SN - $N{f)N)frN(fjN)[KN]SN 

-&N(f)N)[&N(fjN)SN]KN + $ivWiv)*ivW^)[5Ar]^N = 05 

according to Definition 1.4. In what follows, we are going to prove this equality. 
First, we immediately obtain the i-th element of the vector field ^JV^AT^JV and 

the element in the (i,j) position of the matrix ^(T^IX/V]: 

{*N{riN)KN)i - L (—7)1        dsi-j Kj, 0<i<N, 
6=0 



30 W. X. MA 

{$'N(flN)[KN]).. = 
1      /^-^(uAr.e) 

ij    (*-i)! \     5ei_j 
£=0 

(m)[KN] 

1       5*-^' 
(i-j)\ da1-! e=0 

N 

fc=0 

the last equality of which follows from Lemma 2.1. 
Now we can compute the z-th element of $^(^A0[$Ar(^Jv)^;v]'5/v as follows: 

($^(r)iv)[^ivWiv)^iv]5iv)i 

1        d*-' = E 
i     a'-^ 

AT fc 

*'(^,e)[E^E(]bfoT 
1        ^-^(fiiv,^ 

2^ /-: ^(i-i)1 &i"J' 

^     ^{k-l)\        dek-1 

fc=0      z=o v J 

£k-l      dk~l$(uN,£) 

Ki 

8=0 

^ U- 
1     d*-* 

j=o 
(i-j)\ det-J 

e=0 

£=0 

e=0 

^ a 
i      d*-* 

f^o^-JV- d^~j 

- E 
e=0 

1 d1-!'1 

Q<j+l<i 
{i-j -1)1 dst-i-1 

1=0      k=l v ; 

N 

*'(«*, e) [E £' ($(^'£) + 0(£JV"'))^] ^i 

N 

$'(uiv,e)[^e(*(uiv,e)^]5i 

K, 

On the other hand, we can compute the i-th element of $N(VN)'&'N(VN)[KN]SN as 
follows: 

(*Af(w)$jv('7N)[-K'N]5jv)i 

a»- 

^ (*-i)!      aei-i 

i       i   j—k 1 

3    j-k - 

AT 

^=0 j=o 

gj-k-l 

5=0 

= EEE ^^^(tijv.e) 
^^^ U - j)Uj - k - l)\        de1 

k=0j=k 1=0 K        J' u 7 

#- 

e=0 9eJ 

f    z—A;       i 

2^1^ 1^ a _ j)\ 
d^^iuN.e) 

k=0 1=0 j=k+l 

i    i—k 

(i - JY-U - k - l)\        de- 
d> 

e=0  ^-fc 

1=0 

^(uNle)[Ki]Sk 

Q'iuNtemSk 

i-k-i 
e=0 

-k-l 

e=0 

2^ 2-/ a _ u _, 
^i—k—l 

^^ (i-k-l)l de1-*-1 

=o i=o v y 

-i fli—k—l 

= E 
0<A;+/<2 

(z-jb-/)! a^-*-' 

e=0 

£=0 

Therefore, it follows from the hereditary property of §{u,e) that each element in the 
left-hand side of (2.16) is equal to zero, which means that (2.16) is true. The proof is 
completed. D 
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THEOREM 2.3. // the operator J = J{e) : T*(M) -> T(M) being analytic with 
respect to e is Hamiltonian, then the following operator JN : T*(MN) -> T{MN) 

defined by 

(2.17)      {perNJ){fiN) = JN{fjN) = UMm))-] 

1 di+i-NJ(uN,e] 

Xi+j-N)l       dei+^-N 

0 

J{uN,e)\e=Q    Y       ~ 

e=Olq(N+l)xq(N+l) 

J(uN,e)\e=0 

J(uN,e)\£=o      h ^r 
e=0 

1! de e=0 

J_    dNJ(uN,£) 
N\ deN 

6=0 

is also Hamiltonian, where UN is a perturbation series defined by (2.1). 

Proof. Let aN = (a^,af,--- ,a^)T, ()N = (Po,PT,-- ^N)
T

^ IN = 
(lo^Ti''' I7N)

T
 ^ T*(MN), where the sub-vectors ai,Pi,ji, 0 < i < N, are of the 

same dimension. It suffices to prove that 

(2.18) < aN, J'N(fJN)[JNpNhN > +cycle(aiv,/?jv,7iv) = 0, 

since there is no problem on the linearity and the skew-symmetric property for the 
perturbation operator JN(VN)> 

First, based on Lemma 2.1, we can calculate the element in the (i,j) position of 
the matrix J^(r)Ar)[Jjv(w)Av] as follows: 

{JNim^JNim)^])^ 

I Qi+j-N 

(i + j-N)l dsi^-N 

I Qi+j-N 

N 

5 = 0 

J\uN,e)y^el(JNf3N)i 
1=0 

(i + j-N)l dei^-N 

N N 

J'{uN,e)\£sl   J^ 
1=0      k=N-l 

I Qi+j-N 

€=0 

1 dk+l-NJ(uN,e) 
{k + l-N)\        dsk+l-N 

e=0 
PH] 

(i + j-N)\ dei+^-N 

J'(uN,e)[£eN-k( f; 
s=0 

N 
ek+l-N      dk+l-NJ(uN,e) 

k=0 l=N-k 

I Qi+j-N 

(k + l-N)\        dek+l-N )fo 
e=0 

(i + j-N)\ det+i-" 

I Qi+j-N 

(i + j-N)l dei^-N 

e=0 

e=0 

N 1 y t 
t-J (i 4- n - 

Qi+j-N 

k=0 
(i + j-N)l dei^-N 

J'(uN, e) [J^ sN-k {J(uN,e) + o(sk))pk 
k=0 
N 

J'(uN,e)\22eN-kJ(uN,e)pk\ 
k=0 

(eN-kJ,(uNye)[J(uNle)pk]) 
6 = 0 
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Qi+j+k-2N 

(i+j + k-2N)\ dei^+k-2N J'{uN,e)[J{uNie)Pk], 0 < i, j < N. 
€=0 k=2N-{i+j) 

In what follows, let us give the remaining proof for the case of 

(2.19) rji = rji(yo,y1,t)=rji(x,ex,t), 0<i<N. 

Suppose that the duality between cotangent vectors and tangent vectors is given by 

(2.20) < a,K >= f    aTKdx, x G Ilp, a G T*(M), K G T{M). 

Let us consider the case of x G R without loss of generality. For brevity, we set 

v      ;       = (afj,(^iv,e)[J(uiv^)^]7j + cycle(ai,^,7i)J, -'J'    " 

where 9^ = 9^ +69^, owing to (2.19), and we assume that the original Hamiltonian 
operator J(u,e) involves the differential operator dx. Then we can have 

< aN, J'N(f]N)[JN 15N]^N > +cyc\e(aN,(3N,'yN) 
I Qi+j+k-2N /oo    poo 

/    £ - OO «/ — OO o Af ^ »• i   „• i 2iV<i+j+A;<3iV 
(z+i+fc-2Ar)! 9£*+i+*-2iV -FijifeioLN,PN,lN, dx) dyodyi. 

£=0 

In order to apply the Jacobi identity of J(u,e), we make a dependent variable trans- 
formation 

2/o = P, 2/i=9 + ep, (2.22) 

frc .n which it follows that 

(2.23) 

Now we can continue to compute that 

dp   =   dy0   +edy1,     Og    =dy1. 

< aN,J'N(f)N)[JN(3N]'yN > +cycle(aAr,Av,7jv) 
I Qi+3+k-2N /OO        nOO 

/      S -oo «/ —oo o Ar^^- i A i 2iV<i+i+A;<3A^ 
(z+i + A:-27V)! dei+J+k-2N 

e=0 

Fijk{0LN,(lN,lN,dp) 

/oo 

-OO     o jvr^.- i  .• i 

det 

1 

dyi       dyi 
dp dq 

dpdq 

Qi+j+k-2N 

(i+j + k-2N)\ de^+k^N 
£ = 0 

F J — c 

«/ —( 

-oo    2iV<i+j+A;<3A^ 

Fijh{6tN,PNIIN, dp) dp) dq 

Odq = 0. 

In the last but one step, we have utilized the Jacobi identity of J(u,e). 
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The method used here for showing the Jacobi identity can be extended to the 
other cases of the perturbations. Therefore the required result is proved. □ 

Similarly, we can show the following structure for the perturbation symplectic 
operators. 

THEOREM 2.4. // the operator Q = ©(e) : T(M) -► T*(M) being analytic with 
respect to e is symplectic, then the following operator ®N ' T{MN) ->• T*(MN) defined 
by 

(2.24)     {perNQ){fiN) = QN(fjN) = [(£*«*)) J 
N 

1       d ̂ -'-^(flAf.e) 

f    l    dNe(uN,e) 
Ni         deN 

e=0 

£=olq(N+l)xq(N+l) 

1    de(uN,e) 
1!         ^        ,=0 

Q(uN,e)\£=o 

1   dN0(uN,e) 
1!          deN 

.     6(^,6)1,= 

e(uN,e)\ 

:0 

e=0 

0 

is also symplectic, where UN is a perturbation series defined by (2.1). 

2.5. Integrable Properties. In this sub-section, we study integrable properties 
of the perturbation systems defined by (2.7), which include recursion hereditary op- 
erators, if-symmetries (i.e., time independent symmetries), master-symmetries, Lax 
representations and zero curvature representations, Hamiltonian formulations and etc. 
Simultaneously we establish explicit structures for constructing other perturbation ob- 
jects such as spectral problems, Hamiltonian functionals, and cotangent vector fields. 

THEOREM 2.5. Let K — K(e) G T(M) be analytic with respect to e and assume 
that $ = $(e) : T(M) -> T(M) is a recursion operator of ut — K(u,e). Then the 
operator <&N : T(MN) —> T(MN) determined by (2.15) is a recursion operator of the 
perturbation system fJNt — KN(VN) defined by (2.7). Therefore if ut = K(u,e) has 
a hereditary recursion operator $(w,e), then the perturbation system ffNt = KN(VN) 

has a hereditary recursion operator ^N^N)- 

Proof. Let SN = (5j,5f,--- ,5^)T G T(MN), where the sub-vectors Su 0 < 
i < N, are of the same dimension. By Lemma 2.1, we can compute that 

dk$(uN,e) 
dek 

e=0 
(m)[KN\ = 

Qk N 

Qk 
<S>'(uN,e)[K(uN,e) + o(£N)] = 

$'(uN,e)[j2£JK{J) 

e=0 j=o 

dk$'(uN,e)\K(uN,e)} 

e=0 dek , 0<k<N, 
e=0 

and 

(K^nm)[sN} = IJ- 
N 

6 = 0 

^   (i- 
3=0 

1       d^K'juN.e^Sj] 

(i-j)l det-i 

K,(uN,e)[£fe
kSk\ 

k=0 

, 0 < i < N. 
e=0 
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Therefore, immediately from the first equality above, we obtain the i-th element of 
$N(WN)[KN]SN as follows: 

(2.25) 

j=0 
de1-! 

, 0 < i < N. 
e=0 

Based on the second equality above, we can make the following computation: 

(2.26)        {K'xim^Nifj^SN}). 

^ a 
1       S*-* 

^ (i - k)\ de1-* 
k=0 

{K'(uN,e)[($N(f)N)SN)h]) 
6=0 

^   (i- 
1       8 i—k 

k=0 

i       i 

(i-k)\ de1-* 

1 

e=0 
^'(^.^[E^- 1       dfi-iQiuNie) 

^(fc-i)!        de"-* 
Si 

£=0 

d 
^^ (i - jfc)!(* - j)\ dei-k K 

j=0 k=j 

1 d*-* 
(i-j)\ de1-* 

6=0 

k-3 

=oHk~J) 

/(^iv^)[ 
dk-'$(uN,£) 

dek-J e=0 

((BnK,^A d
k J

$(UN,£) 

dek-J e=0 '}) 

= E 1       d*-* 
^(*-j)! det-i 

K ''(«Jv,e)[E 
i,   £ft-i    d

k-i§{uN,e) 

2^ a- 
1       ^-^ 

i=o 
(j-j)! de*-' 

K'&Nrf&iuriSj +0(6*-*)] 

e=0 
Sj] 

^A 1 ^-i(^(^,£)[$(^,£)5J]) 
de1-* 

, 0<i<N; 
£=0 

(2.27) {*N(VN)K'N(rjN)[SN]). 

^ (i - A;)!        de*-* 

=EE 
j=0 k=j 

(*-Jb)!(fc-j)!        Se^-^ £=0 

^      1       a^i($(fijv,e)^'(fiiv,e)[^l) 
a^^-^ 

dek-i 

, 0 < i < N. 

£=Q 

e=0 

£=0 

It follows directly from the above three equalities above (2.25), (2.26) and (2.27) that 

^{fiN)sN + *'N{riN)[kN{TjN)]sN - k'N{fjN)[*N{fjN)sN] + $>N{m)k'N{fiN)[sN} 

= 0. 
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According to Definition 1.3, this implies that the perturbation operator <&N(VN) de- 
fined by (2.15) is a recursion operator offJNt = -KjvWiv)- A combination with Theorem 
2.2 gives rise to the proof of the second required conclusion. The proof is finished. D 

THEOREM 2.6. Let K - K{e\,S = S(e) € T{M) be analytic with respect to e. 
For two perturbation vector fields K^, SN € T(MJV) defined by (2.3), there exists the 
following relation: 

(2.28)   [kN{iiN),SN{fjN)] = (KNy(f)N)[SN(fjN)} - (SN)'(f)N)[kN(fjN)] = fN(f]N), 

where T/v G T(MN) is the perturbation vector field of the vector field 
T(e) = [K(£),S(e)], defined by (2.3). Furthermore we can have the following: 
(1) if a = (7(e) € T(M) is an n-th order master-symmetry of the perturbed system 
Ut = K(u,6), then a^ € T(MN) defined by (2.3) is an n-th order master-symmetry 
of the perturbation system fjm — KN^N) defined by (2.7); 
(2) the perturbation system fj^t — ^iv(^Ar) defined by (2.7) possesses the same struc- 
ture of symmetry algebras as the original perturbed system ut = K(u,e). 

Proof. As usual, assume that 

Si = (S<0>T,S<1>V.,SWr)T, rH = (TJg,r,T,-,vT)T, ^ = E£V, 0 < i < N. 
k=0 

(K{uiie)Y(fH)[Si] = Kiui + S^^S^Ke) 

By the definition of the Gateaux derivative, we first have 

d_ 

o=0 k=0 

K(ui + 8S(ui,e) + Soie1)^) 
i 

= K1 {ui,e){S{ui,e)] + o^), 0<i<N. 

Let us apply the equality above to the following Taylor series 

dS 6=0 

K{ui,e) = ^ — 
fc=0 

dek + o{ei), 0<i<N, 
e=0 

Xek (dkK{ui,e) 

k=0 

)'Wi)[5i] + o(ei)J 0<i<Ar. 
£=0/ 

and then we arrive at 

irWHSfo,*)]^^1   d£k 
k=0 

Taking the i-th derivative with respect to e leads to 

(2.29) (A-'(u)e)[5(«,e)])(i)(J7i) =((^(u,e))(i))'(7?i)[5i], 0 < * < N. 

Now it follows from (2.29) that for the i-th element of TAT we have 

(0, \(<)/« (T(u,e))W = (iif'(«,e)[5(«,e)])w(^)- (S'(u,e)[K(u,e)})w(m) 

»(0\' (0\'/ = {{KiurffymSi] - ({S{u,e))w)'(m)[K, 



36 W. X. MA 

= {K'ntirilSN]). - {S'^m^kN})., 0<i<N. 

This shows that (2.28) holds. All other results are a direct consequence of (2.28). The 
proof is completed. D 

The relation (2.28) implies that the perturbation series (2.1) keeps the Lie product 
of vector fields invariant. In particular, the second component of (2.28) yields the Lie 
product property (2.9) of linearized operators. In what follows, we will go on to 
consider Lax representations and zero curvature representations for the perturbation 
system defined by (2.7). In our formulation below, we will adopt the following notation 
for the perturbation of a spectral parameter A: 

N 

(2.30) AAT = 22e%lJ'ii VN ~ (voiVir- I^N)
1 

i=0 

which is quite similar to the notation for the perturbation of the potential u. Here 
/ij, 0 < i < iV, will be taken as the spectral parameters appearing in the perturbation 
spectral problems. A customary symbol VaA a; G Rp, will still be used to denote 
the gradient of the spectral parameter A with respect to x. 

THEOREM 2.7.   Let K = K{e) 6 T{M) be analytic with respect to e.  Assume 
that the system Ut = K{u,e) has an isospectral Lax representation 

(2.31) 
L(u,e)(j) = Xcj), 

(/)t =A(u,e)<l>, 
(V*A = 0, x e Rp), i.e., (L(u,£))t = [A(u,£:),L(u,e)], 

where L and A are two s x s matrix differential operators being analytic with respect 
to u and e. Define the perturbation spectral operator L^ and the perturbation Lax 
operator AN by 

(perNB)(fjN) = BN(fjN) 

d^BiuN.e) 

B{uN,e)\£=o 
1 dB(uN,e) 
1!        de 

M=0,l,-,iV       [(i- j)l 

B(uN,e)\e=o 

de*-' £=0J s(N+l)xs(N+l) 

0 

£=0 

1   dNB(uN,e) 
£=0 

I dB(uNie) 
II de 6=0 

B(uNle)\£=:o 

B = L,A, 

where UN is given by (2.1).  Then under the condition for the spectral operator L that 

(2.32) ifL'(uN)[S(uN)] = o(eN), S G T(Af), then S(uN) = o(eN), 

the N-th order perturbation system f}Nt — KNifJN) defined by (2.7) has the following 
isospectral Lax representation 

(2.33) (LN(rJN))t = [AN(fjN),LN(TjN)], 

which is the compatibility condition of the following perturbation spectral problem 

( LN(f}N)(f)N = A^, 
(2.34) 

<j>m - AN{f}N)(t)N, 
iS/y^^   Vyi^= •" = V2/rA = 0), 
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or the following perturbation spectral problem 

{LN{flN)4>N = A^iv, 

(frm = AN(fjN)<t>Ni 

where the matrix A reads as 

/Ills      floh 

37 

(2.35) 

(2.36) A = , Is = diag(l,l,-- ,1), 

with the spectral parameter //*, 0 < i < 7V7 satisfying 

(2.37) Y, Vyk»i - 0, 0 < i < N. 
k+l=i 

Proof We first observe that the perturbed system 

(2.38) uNt = K(uN,e)+o(eN), 

which engenders precisely the perturbation system fjm = KwivN) defined by (2.7). 
Noting that L(u,e), A(u,e) are analytic with respect to u and e, it follows from (2.31) 
that (2.38) is equivalent to the following 

(2.39) 
dk 

6=0 

((L(uN,e))t - [A(uN,e),L(uN,e)]) = 0, 0 < k < N, 

by use of (2.32). 
What we want to prove next is that (2.39) is equivalent to (2.33). Let us compute 

the elements of the differential operator matrix [AN^N), LN^N)]- It is obvious that 
[A/vWjv^ijvWjv)] is lower triangular, that is to say, 

([iivWiv)5LivWiv)])ii =Q,Q<i<j<N. 

For the other part of [Ajv(?7Ar),-£/jv(?7iv)], we can compute that 

1       di-kA{uNje) 1       dk-iL(uN,e) 
{ANifj^LNifJN))^ =J2JT 

-^(i-k)\        de1-* 
k=j 

n)\   2^\i- 

=0(k-j)\        dek-J 

i-j\ di-kA{uN,e) dk-iL{uN,e) 

k—2 

1       dl~iA(u]y,e)L(uN,£) 

£=0 dek-i 

£=0 

e=0 

(i-i)! de*-* 
, 0 < j < i < N, 

e=0 

where the (*.) are the binomial coefficients. In the same way, we can obtain 

(LN(fjN)AN(fjN))ij = 
1       d1 iL(uN,e)A{uN,e) 

{i-j)l de1-! 
, 0<j<i<N. 

£=0 
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Therefore we arrive at 

, 0<j<i<N. 
•=0 

Now it is easy to find that (2.39) is equivalent to (2.33). Therefore the perturbation 
system defined by (2.7) has the Lax representation (2.33). 

Let us now turn to the perturbation spectral problems (2.34) and (2.35). Ob- 
viously, the compatibility condition of the perturbation spectral problem (2.34) is 
the Lax equation (2.33), since the spectral parameter A doesn't vary whatever the 
spatial variables change. Therefore let us consider the compatibility condition of the 
perturbation spectral problem (2.35). First, we want to prove that 

(2.40) AANim) = AN(rjN)A, 

if the spectral parameters //;, 0 < i < iV, satisfy (2.37).  Notice that the condition 
(2.37) on the spectral parameters //*, 0 < i < N, is required by 

r N 

\7X\N = o(£N), Vx = XVVw, Aiv = $V/ii, 
i=0 i=0 

which is a perturbation version of \/xX = 0. Therefore we have 

A(uN, e, \7X)XN = XNA(UN, e, V J + o{£N). 

This guarantees that 

1        d1"! ( -   \ 1        S^--7 /- -    \ 

(i-j)l de*- £=0 6=0 

for 0 < j < i < N, which exactly means that the equality (2.40) holds. Now we can 
compute from (2.35) that 

(LN(fjN))t$N + LN(fiN)AN(fjN)^N = AAN(f]N)^N 

= AN(fjN)A4>N = AN(fjN)LN(f)N)(f)N. 

It follows that the compatibility condition of the perturbation spectral problem (2.35) 
is also the Lax equation (2.33). The proof is completed. D 

The perturbation spectral operator Ljy is very similar to the perturbation recur- 
sion operator <IJV, in spite of different orders of matrices. Actually, we may take any 
recursion operator $ as a spectral operator and the system Ut = K(u) can have a Lax 
representation §t = [^iK']- This Lax representation is usually non-local, because 
most recursion operators are intego-differential. We also remark that two perturba- 
tion spectral problems above are represented for the same perturbation system defined 
by (2.7), which involve different conditions on the spectral parameters. For the case 
of 

N N 

(2.41) UN = JV^foS/'*) = ^^V^O^M)' x € R. 
i=0 i=0 

the condition (2.37) can be reduced to 

(2.42) pox = 0, fjLix + fii-i^y = 0, 1 < i < N. 
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In the following theorem, a similar result is shown for zero curvature representations 
of the perturbation systems defined by (2.7). 

THEOREM 2.8.   Let K = K(e) G T(M) be analytic with respect to e.  Assume 
that the initial system ut = K(u,e) has an isospectral zero curvature representation 

(2.43) 
(j)x = U(u,\,e)(j), 

(j)t = V(u,A,e)0, 
(Ax =0, xeR), 

(2.44) i.c, (tf (u, A, e))t - {V{u, A, e))x + [U{u, A, e), V(u, A, e)} = 0, 

w;/iere C/ and V are two s x s matrix differential (sometimes multiplication) operators 
being analytic with respect to u, A and e. Define two perturbation matrix differential 
operators UN and VN by 

(perNW)(fjN) = WN(fjN,jjLN) = WN(f}N) 

1      di-'WiuNiXNle 
= \{WN(VN))ij}.. ni      M = 

I ^Jij=0,l,--- ,N 

W(fjN,\N,e) 

(i-JV- de1-! 
6=0J s(JV+l)xs(JV+l) 

0 
U=0 

1  dW(uN,\N,e) 
1! de 

e=0 
W(f}N,\N,£) 

e=0 

1   dNW(uN,\N,e) 
N\ deN 

e=0 

1 dW(uN,\N,e) 
1! de 

e=0 
W(fjNlXN,e) 

£=0 

where W = UorV, and ujq and XN are given by (2.41) and (2.30).  Then under the 
condition for the spectral operator U that 

(2.45) if U'iuN^SiuN)] = o(eN), S G T(M), then S{uN) = o^), 

^e N-th order perturbation system rj^t — KN^N) defined by (2.7) has the following 
isospectral zero curvature representation 

(2.46) 
yJll(j)Nyi  - UN{flN,P>N)(f>N, 
2=0 

(2.47) i.e., (UN(fjN))t - j^n^VjvWivJJy,- + [^iv(r)iv), VVWiv)] = 0, 
i=0 

w/iere the matrix U is defined by 

0      0 

IsN    0 
(2.48)     n , ISN = diag(Is, • • • , 7S) = dm^(l, • • • ,1), 

Js(Ar+i)xS(iV+i) N sN 
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and the spectral parameters fii, 0 < i < iV, satisfy 

(2.49) J^ dykm=0, 0<i<N. 
k+l=i 

Proof. Note that by use of (2.45), the zero curvature equation 

((U(u, A, e))t - (V(u, A, e))x + [E/(ti, A, e), ^(tx, A, e)} = 0 

for the system ut = K(u,e) yields an equivalent representation 

r 

(2.50) (U(uN,\N,e))t -^^(^(uiv^Aiv^))^ + [c/^, AJV^),^^, A^e) 
2=0 

r 

^[/'(u^)^^^)]-^^^^,^^))^. + [t/(^,Aiv^),^(^iv,Aiv,e)] 
2=0 

= o(^)     (mod eN) 

for the perturbation system fjm = J^JVWN). In order to recover tijv* = K(UN,S) + 
o^) from (2.50), we need to keep the spectral property A^ = ^A = 0 under the 
perturbation up to a precision o(eN). This requires 

r N 

dxxN = ©(e^), 4 = 5Ze*^' ^N = 11,^^ii 
2=0 2=0 

which generates (2.49). Similar to the proof of Theorem 2.7, differentiating the above 
equation (2.50) with respect to e up to iV times leads to the zero curvature equation 
(2.47), and conversely, we have (2.50) if (2.47) holds. Therefore the perturbation 
system fjm = ^iv(^Ar) has an isospectral zero curvature representation (2.47). 

The other thing that we need to prove is that the zero curvature equation (2.47) 
is exactly the compatibility condition of the perturbation spectral problem (2.46). 
From the first system of (2.46), we have 

/llP^Nyit = Um&N + UN^NI' 
2=0 

From the second system of (2.46), we obtain 

<l>Ntyi = Vjsfyi^N + VN^Nyn   0 < i < r. 

A combination of the above equalities yields 

r 

(2.51) ^n^VWy^iv + VNfay.) = Um&N + UNVN^N. 
2=0 

On the other hand, we have 

N N 

(2.52) Y, rtVNtovi = E ^nV"y* = VNUN4>N, 
2=0 2=0 
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by using UVN = V/vII and the first system of (2.46). It follows from (2.51) and 
(2.52) that the zero curvature equation (2.47) is the compatibility condition of the 
perturbation spectral problem (2.46). The proof is completed. D 

If we consider the specific case of the perturbation defined by (2.41), then the 
perturbation spectral problem and the perturbation zero curvature equation, defined 
by (2.46) and (2.47), will be simplified to 

~  .   .   - 
<t>Nt = VN(fjN,flN)(j)Nj 

and 

(2.54)        (uN(TjN))t - (VN(fjN))x - n(vN(fjN))y + [uN{fjN), vN(fiN)] = o, 

respectively. The involved spectral parameters /ij, 0 < i < N, need to satisfy a 
reduction (2.42) of the general condition (2.49). 

THEOREM 2.9. Let K = K(e) G T(M) be analytic with respect to e. Assume 
that the initial system ut = K(u,e) possesses a Hamiltonian formulation 

SH 
ut = K(u,e) = J(u,e) — (w,e), 

where J : T*(M) -> T(M) is a Hamiltonian operator and H G C00(M) is a Hamil- 
tonian functional Then the perturbation system fiNt = -^^(^AT) defined by (2.7) also 
possesses a Hamiltonian formulation 

(2.55) rim = KN(fjN) = JN(m)—jz (w), 

where the Hamiltonian operator JN^N) is determined by (2.17) and the Hamiltonian 

functional perNH = HN G C00(Miv) is defined by 

(2.56) {perNH)(f)N) = ^^(7?^) = ^ ^^^ 

The corresponding Poisson bracket has the property 

(2.57) {perNHuperNH2}jN = perN{HuH2}j, ^1,^2 6 C^M). 

Moreover the perturbation systems fjjsft = KN^N) defined by (2.7) possesses a multi- 
Hamiltonian formulation 

r>  t*   \      7    /-   JiperN&i)       . 9     _   x8{perNHm) 
VNt = KN{riN) = JiNiVN) VZ (m) = '" = JmNKJlN) T7 (^iVJ, 

or)N orjN 

if Ut — K(u,e) possesses an analogous multi-Hamiltonian formulation 

ut = K(u,e) = Ji(u,e)-^{u,e) = ••> = Jm(ix,e)-^(u,e). 



42 W. X. MA 

Proof. Assume that 7(e) = ^(e) G T*(M). Let us observe that 

£=0 

_ ^       1        d1 jJ(uN,e) 

e=0 
0<i<N. 

e=0 

Thus, noting the structure of JJV, we can represent the perturbation system as follows 

(2.58) f)Nt = KN(rjN) = JNim^Nim), 

where the cotangent vector field 7iv £ T*(MN) reads as 

7iv {m) = IM —a^— 
_!_ djT(uN,e) 

'"'1! ae 

1     a^-^7^^) 
^0'(iV-l)! de"-i e=0 

e=0 
,jT(uN,e)\£=o)   • (2.59) 

Let us check whether this cotangent vector field JN is a gradient field. If it is gradient, 
the corresponding potential functional has to be the following 

/    < 7Ar(A77iv),^iv > dX 
Jo 

r1 ^ 1      ^(XuN.e) 
.     i\ dei 

i=0 

r1       1 is 
1   dN 

e=0 
iVN-i > dX 

m deN f   <7(A; 
=0"'O 

1   dNH(uN,e) 
MN,e),uN>dX = ——^N 

e=0 

The cotangent vector field 7^ is indeed a gradient field, because we can show that 

(2.60) 
6(perNH) 

7N(VN) = —jz (TIN)- 

According to Definition 1.1 and using Lemma 2.1, for any Si £ T(M(r]i)) we can 
compute that 

_5_ /_!_ dNH(uN,e) 
< Srji \N\        deN 

1   dNH(uN,e) 

£=0 £-0 

1 d IN 

Nl deN 

QN-i 

■=0 

~ • I (1 

9N-t 

1        5^-* 
(AT-j)! ae^v-i 

< 77—(wjv.e),^^) > 
r=0     OUAT 

£=0 

<l{uN,£),Si(r)i) > 

1        a^-^tw.e) 
£=0 

,5i(7?0>, 0<i<N. 
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This equality implies that (2.60) holds. It follows that the perturbation system (2.58) 
is a Hamiltonian system. 

Let us now turn to the property (2.57) for the Poisson bracket.   Set 71 (s) = 

^■(e),72(e) = *$L(e) e T*(M). In virtue of (2.60), we can make the computation 

r         TT           TT -.     /-   x        SCpeiNHi) ,^   .   ±  ,„   N J(perivi?2)/.   x 
{veiNHi,i?eiNH2}jN{TiN) =< £r^ (rjjv), JW^JV) ^r^ (m) > 6fj_ 
N 1 

= f-j "^ (iv^7)!      5^^-^ 
9^ S^Ar,^) 

Jr). 'N 

■ E 
1 

£=0   j=JV- 
(i + j-iV)! 

Qi+j-iVj^^) 

dei+J -N 
dN j'y2(uN,e) 

=0(N-j)\       deN-i £=0 

> 
£=0 

N 
dN ^liiiN.e) 

i=0 

1   dN 

(N-i)\        deN- £=0 

j- di(J(£jv,e)72(tiiv,g)) 
ae^ > 

£=0 

Nl d£N < li(uN,£), J(uN,£)72(uN,e) >= (x>eTN{Hi,H2}j)('nN)' 
£=0 

This shows that the property (2.57) holds for the Poisson bracket. 
Further, noting the structure of the perturbation Hamiltonian operators, a multi- 

Hamiltonian formulation may readily be established for the perturbation system. 
Therefore the proof is completed. D 

We should realize that two formulas (2.56) and (2.59) provide the explicit struc- 
tures for the perturbation Hamiltonian functionals and the perturbation cotangent 
vector fields. The whole theory above can be applied to all soliton hierarchies and 
thus various interesting perturbation systems including higher dimensional integrable 
couplings may be presented. In the next section, we will however be only concerned 
with an application of the theory to the KdV soliton hierarchy. 

3. Application to the KdV hierarchy. Let us consider the case of the KdV 
hierarchy 

(3.1)       ut=Kn = Kn(u) = ($(u))nux, $ = *(u) =8% + 2uxd-1 + 4u, n > 0. 

Except the first linear equation ut = ux, each equation ut = K(u) (n > 1) can be 
written as the following bi-Hamiltonian equation [15] 

(3.2) 
6Hn 5Hn-i 

ut = Kn - J—— = M- 
Su 5u 

The corresponding Hamiltonian pair and Hamiltonian functionals read as 

(3.3) J = dx, M = M(u) = dl + 2{dxu + udx\ 

(3.4) Hn = f Hn dx, Hn = Hn{u) = f ufn{Xu) dA, fn = *nu, n > 0, 

where \I> = & = dl + Au — 2d~1ux. Therefore each equation in the KdV hierarchy 
(3.1) has infinitely many commuting symmetries {Krn}

<^=0 and conserved densities 

{Hm}m=0' 
The second equation in the hierarchy (3.1) gives the following KdV equation 

(3.5) ut = Uxxx + 6m/x, 
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which serves as a well-known model of soliton phenomena. Its many remarkable 
properties were reviewed by Miura [17]. In our discussion, we are concerned only with 
bi-Hamiltonian formulations and consequent symmetries and conserved densities. The 
bi-Hamiltonian formulation of the KdV equation (3.5) can be written down 

ut = J—- = M—- 
du ou 

(3.6) 

with two Hamiltonian functionals 

(3.7)        Ho=     Hodx= / -u2 dx, Hx =  / iJi dx =  / (-uuxx + u3) < 

It has also an isospectral zero curvature representation Ut - Vx + [Uy V] = 0 with 

)dx. 

(3.8) U = 
0 -u-X 

, v = 
ux 

1 0 2u-4X 

-uxx - 2u2 + 2Xu + 4A2 

where A is a spectral parameter (see [18] for more information). These two properties 
will be used to construct bi-Hamiltonian formulations and zero curvature representa- 
tions for the related perturbation systems. 

In order to apply the general idea of constructing integrable couplings to the KdV 
equations, let us start from the following perturbed equation 

(3.9) Ut = tfPer(U) = ^a^K), 
i=0 

where ai are arbitrary constants and the Si are taken from zero function and Kn, n > 
0, so that the series (3.9) terminates. To obtain integrable couplings of the n-th order 
KdV equation ut = Kn, we need to fix So = Kn- Various integrable couplings can 
be generated by making the perturbation defined by (2.1). In what follows, we would 
only like to present some illustrative examples. 

3.1. Standard perturbation systems. First of all, let us choose the n-th order 
KdV equation itself as an initial equation: 

ut = K^(u) = Kn{u) 

^N for each n > 1. In this case, the single scale perturbation uw = J2i=Q£7"ni(x1t) leads 
to a type of integrable couplings: 

(3.10) fjNt = KnN(fjN), N > 0, 

which are called the standard perturbation systems of Ut = Kn and have been dis- 
cussed in [19, 20]. These systems have the following bi-Hamiltonian formulations 
[20] 

^i-n           A         ir     <*   \     &ri~      _ f   S(peTNHn) _   -    ^per^n-i) 
(3.11) rim = KnNKVN) = ^NVNX = JN F^ = MN- 

Si). 'iV SfjN 

where the Hamiltonian functionals per^v^n, the hereditary recursion operator ^AT 

and the Hamiltonian pair { JAT, MN} are given by 

peiNHn = 
1 dNHn(uN) 

N\      deN 

e=0 
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$i(r?i)     *o(^o) 

JiV = 

with 

(3.12) 

$N(r)N) 

0 

^i(^i)    ^o(^o) 

dx 

dx 

0 

, MJV^ 

0 

Mo(r]o)    Afi(7yi) 

Mi = Mifa) = <5<o52 + 2(&»/i + rudx), 
$i = QiiVi) = Siodl 4- 2(dxr]id-1 + rji), 

Mo(77o) 

MQ^O)     Mi (771) 

MN(r)N) 

0<i< N. 

Moreover they have infinitely many commuting symmetries {i?mjv}m=o and conserved 
densities {HmN}^=Q. 

We list the first two standard perturbation systems of the KdV equation (3.5): 

(3.13) 

(3.14) 

Vot = Voxxx +677o77ox> 

Vit = mxxx + 6(770^1)0:; 

rjOt = VOxxx +67/07/00;, 

mt ^Vixxx + Girtomh, 

mt = ^xxx 4- 67/177ix + 6(77o772)a;. 

The first-order perturbation system (3.13) has the following bi-Hamiltonian formula- 
tion 

(3.15) 

0     dx 

dx     0 

^(periffi) 

dfji 

0 dl + 2r)ox + A7iodx 

dl 4- 27/0^ 4- Ar)odx        2r)lx 4- 47/iax 

(^(peri^p) 

with 7)1 — (T/O,771 )T and the Hamiltonian functionals 

peri#o 

peri ill 

■/ 
-ffoids, #01 = Wi, 

/* 
11 da;, Hn = -{rjomxx +r)oxxVi) +^VoVi' 

The second-order perturbation system (3.14) has the following bi-Hamiltonian formu- 
lation 

(3.16) 
9 (S(per2#i)       y S(pev2Ho)    .       , .T 

mt = J2 JZ— = M2—12—-> ^2 = (7/0,^1,7/2) 
^7/2 ^7/2 

with the Hamiltonian functionals 

pe^^o 
■/ 

£02 dx, H02 = 7/07/2 4- -rjl, 
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■/■ 
per2i?i = / #12 dx, H^ = -(rjo'n2xx + ViVixx + ^oxx^) + Srjorjl 4- ST/Q^- 

Another example that we want to show is the first-order standard perturbation 
system of the fifth order KdV equation ut = K2(u): 

(3.17) 

Wot = Vo^x + IOVOVOXXX + ZOrjOxVoxx + SO^iyox, 

^it = fji.sa; + lOvoxxxVi + lOryo^ia^xx + ZOrjoxxVix 

+20'noxVixx 4- GOriorjOxVi + 307y5:7yix, 

where 7/0,5^ and 771,53;, as usual, stand for the fifth order derivatives of 770 and 771 with 
respect to x. It has the following bi-Hamiltonian formulation 

(3.18) f Sjvenfy)       y ^(peri^i) 

Sfji Sfjx 

where the Hamiltonian function perii^i is given as before and the Hamiltonian func- 
tion peri H2, given as follows 

peri #2 -id 20 10 
VoxxxxVi + -^VoVixxxx + irrjo'noxx'ni + -^-rjQTjxxx 

10 40 bo 1U 4U  o    \ , 
+ ^Voxm + -^r}or]QXr)ix + y^o^i J^ 

3.2. Nonstandard perturbation systems.  Secondly, let us choose a per- 
turbed equation 

ut — Kper(u,e) = Kn + aeiiTn, a = const., a ^ 0, 

as an initial equation for each n > 1. This equation can be viewed as 

(3.19) ut = K^(u,e) = jWn + aeHn) = ^(6^ +aeHn_1) 
Su Su 

SHn-l = (J + aeJ)^- = (M + aeM)     r 

Therefore the corresponding perturbation systems also have quadruple Hamiltonian 
formulations. We focus on the first-order perturbation system under the single scale 
perturbation. It has the quadruple Hamiltonian formulation 

_ rtpflperjgW) _ SJpe^H^ _ ^(penffff*) _ ^djpenH^) 

(3.20) 

Vit = Ji 

namely. 

(3.21)  fjlt = 

Sfji 

0   d 
d   0 

= M: 
&7i 

Ji J771 
M^ 

Sfji 

5(periHn+aHn(r]o)) 
Sfji 

0    a 

d   ad Sfji 

0    Mo 
Mo   Mi 

0 

Sfji 

S(peiiHn-i) Mo 

Mo    Mi + aMo Sfji 
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where the functionals peri^, peri£rn_i and the operators Mi are defined by (3.12) 

and (3.12), respectively. Since two Hamiltonian operators Jf ■ and j{ ^ are invertible, 
we can obtain five hereditary recursion operators for the equation (3.20): 

MV = 

MPiJ™)-1 = 

?(l)/f(2) , wwr1 = 1     0 

-a    1 

$o 0 

$i — ai$o    $o 

M[i\j[iyi = Mi2\j[2))-i 
$o     0 

$o 0 

where the operators $; are defined by (3.12). These operator structures suggest two 
classes of hereditary recursion operators for the equation (3.20) 

(3.22) *i1)(/J) = 
A)     0 

Pi    Po 
*i2)(/3) = 

/?o$o 0 

A)$l+/?1*0     /?o^o 

where /? = (Po,Pi)T with the ^ being arbitrary constants. They are really hereditary 
operators and recursion operators for the equation (3.20), which can be verified by 
direct computation or by viewing them as the first-order perturbation operators of the 
initial operators Po+Pi£ and /?o$ + /3i£$. Therefore the integrable coupling (3.20) of 
the n-th order KdV equation ut = Kn(u) possesses two classes of hereditary recursion 
operators defined by (3.22). These two classes of operators have the property 

(3.23) 

^1)(/3)^2)(7)=*i2)()8)*i1)(7) = 
/?o7o$o 0 

A)7o$i + (A)7i + /3i7o)$o    Polo^o 

for any two constant vectors P = (/?o,/3i)T and 7 = (7o57i)T, which also shows that 
their product can not constitute completely new recursion operators. 

We   aii also start from the perturbed KdV type equation 

(3.24) ut — KpeT(u,e) = Kn + ae^Ki., a = const., a ^ 0, 

where ij is a natural number. Let us illustrate the idea of construction by the following 
specific example 

(3.25) ut = KpeT(u,s) = Kn + ae2Kn+l (n > 1), 

which can be viewed as a tri-Hamiltonian system: 

(3.26) 

ut = K»eT = J^'~,L ' r '"^^ =(J + ae'MY-^ = M S(Hn + ae2Hn±i)_ = a£2M)
5Hn _ ^s(Hn-i + as2Hn) 

5u Su Su 

Therefore, according to Theorem 2.9, the second-order perturbation system of the the 
perturbed system (3.25) 

(3.27) 

770* = Kn(rio), 

Vit = Kn(rio)[rii], 

„     _ 1   d2Kn{u2) 
Wt - 2 —op—^ 

e=0 
+ aKn+1(rjo) 
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possesses the following tri-Hamiltonian formulation 

H-(I) 
(3.28) — ^2        c-       — ^2       s*       — ^2        r-      J 

or}2 0r}2 0712 
m = (T]O, vum)'2 

with a triple of Hamiltonian operators 

(3.29) 

fd) _ 
0 0 dx ■ 0 0 dx 0 0     Mo 

0 dx 0 7(2) _ 
> ^2   — 0 dx 0 )   ^2     — 0 Mo    Mi 

dx 0 0 dx 0 aMo Mo Mi    M2 

X 

and the corresponding three Hamiltonian functionals 

-ffn '(172) = (peT2Hn)(fJ2) + ai?ra+1(77o), 

(3-30) j   Hi2\fJ2) = (pei2Hn)(fJ2), 

k ^
3)(%) = (per2ffn_i)(^) +a^n(77o). 

Similarly, the perturbation system (3.27) has also two classes of hereditary recursion 
operators: 

(3.31) 

^1)(/3) = 

^2)(/?) = 

A. 0     0 

A /3b J 

02 A    0o . 

A)$o 0 

/3o$i + 0 L$0 /?0$0 

/?0*2 +/?l*l+ /32^0     i9o*l + /Jl$0     A)*0 

where the operators $i are defined by (3.12) and /? = (Po,0i, P2)T is a constant vector. 
Let us fix n = 1 and then the system (3.27) gives an integrable coupling of the 

KdV equation (3.5), which possesses the following tri-Hamiltonian formulation 

KD frP) _i(1)^r_i(2)^r_j(3)^ (3) 

(3.32) 

with three Hamiltonian functionals 

H^Hm) = f[^(voV2xx + ^iT^i^^ + 770**772) + 377o77l + 377^772 

(3.33) 
+®(^VoVoxxxx + ^VoVoxx 4- l^o^L + T^O)]^* 

^i(2)(772) = / [770772 + ^Vi + a(±r)oVoxx + ri%)]dx, 

Hf\fi2) = / [^(770772** + 771771^^ + 770^^772) + 377077? + 377^772]^. 

In order to distinguish the standard perturbation systems defined by (3.10), the 
integrable couplings of the n-th order KdV equation m = Kni defined by (3.20) and 
(3.27), are called the non-standard perturbation systems. Interestingly, each of these 
systems has both a local multi-Hamiltonian formulation and two classes of hereditary 
recursion operators. 
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3.3.  2+1 dimensional integrable couplings. Thirdly, let us consider a case 
of bi-scale perturbations (2.41), i.e., 

AT 

uN = ^V^, Vi =riiix.y.t), y = ex. 
i=0 

In order to present explicit results for integrable couplings, we take the KdV equation 
(3.5) as an illustrative example, due to its simplicity. We recall that the KdV equation 
(3.5) has the bi-Hamiltonian formulation (3.6) and the Lax pair (3.8). 

Let us introduce the bi-scale perturbation series above into the KdV equation 
(3.5) and equate powers of e. As an iV-th order approximation, we obtain a 2 + 1 
dimensional perturbation systems of evolution equations 

VOti  = VOxxx +677o77ox5 

Viti = Vixxx + 3rioXXy + 6(rjorii)x + GVoVoy, 

(3.34) I   Wzti - ^xxx + ^Vixxy + ST]oXyy + 6(?7o772)x + ^ViVix + 6(770771)2,, 
'Hjti  — Vjxxx + drjj-i^xy + or)j-2,xyy H" Vj-3,yyy 

+6 (ELo ViVj-itX + Ei=o VWj-i-itv), 3 < j < N. 

This system has been already presented in [20]. It follows from our general theory 
that it gives an integrable coupling of the KdV equation (3.5). 

In what follows, we would like to propose a bi-Hamiltonian formulation and the 
consequent hereditary recursion operator for the system (3.34). To the end, we first 
need to compute a perturbation Hamiltonian pair by Theorem 2.3: 

(3.35) JN 

0 

(3.36) MN = 

dx     dy 

dy      0 

dx 

P(£)U=o 

£=0 

JL  dP(e) 
1!      de 

i.  d2P(e) 
2!      de2 

e=0 

£=0 

£=0 

1 d2P(£) 
2!     de2 

£=0 

1    dNP(£) 
m    d£N 

£=0. 

where the differential operator P(e) represents 

P{e) = (dx + edy)3 + 2[(dx + edy)uN + uN(dx + edy)]. 

The explicit expressions for various derivatives of P(e) with respect to e can be ob- 
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tained as follows: 

f P(e)\£=o=d3
x+2(dxrio+Vodx)1 

: Sdldy + 2(0*171 + 771 dx) + 2(^770 + rjody), 

(3.37) 

1 dp(£) 
i!    as 

JL ^2^) 
2!      ae2 

X  93P(e) 
3!    a^3 

1   ^Pfg) 
i!      de* 

e=0 

e=0 
= 3dxd* + 2(^772 + 772^) + 2(^77! + rndy), 

= dl + 2(^773 + 7730^) + 2(^772 + 7725^), 
e=0 y 

e=0 
= 2(3^ + 77A) + 2(^77^1 + rii-xdy), 4 < i < N, 

which gives rise to an explicit expression for the Hamiltonian operator MN. Secondly, 
we need to compute the Hamiltonian functionals for the system (3.34). Note that 
dx-+dx+ edy, and thus, under the perturbation (2.41), we have 

JV 

uxx -+ ^e^rnxx + 2er)iXy + £277^y). 
2=0 

Further, by Theorem 2.9, we obtain two perturbation Hamiltonian functionals: 

1 dNHo(uN) n^   N 

(3.38) perAr^o = jj ^ ^ 

(3.39) peiNH1 = Jj U "' 

e=0 
dxdy 7iN-i dxdy, 

e=0 
dxdy 

J J 2=0 

i+j=N N\      deN 

+     Y.     rlir)ixy + \     Yl     1™™+     S     WjV^dxdy. 
i+j=N-l i+j=N-2 i+j+k=N 

Now the following bi-Hamiltonian formulation for the system (3.34) becomes clear: 

(3.40) 
9   ^(periv^i)      ,>   6(pevNHo) 

VNt = ^iV F^  = MN 7^ : SriN or]N 

where JN,MN,peiNHo and perA^i are defined by (3.35), (3.36), (3.38) and (3.39), 
respectively. It should be realized that the 2 + 1 dimensional bi-Hamiltonian system 
(3.40) is local, because the Hamiltonian pair {JN,MN} involves only the differential 

operators dx and dy. 
Theorem 2.5 guarantees the existence of a hereditary recursion operator for the 

system (3.34). It is of interest to get its explicit expression. Note that the first 
Hamiltonian operator JJV has an invertible operator 

(3.41) (JN)-
1
 = 

PN     PN-I 

PN-I 

Po 

Po 

where the operators Pi are defined by 

(3 42) 
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Therefore, the corresponding hereditary recursion operator is determined by $iv = 
MNJN

1
, but it can also be computed directly by Theorem 2.2: 

(3.43) $iv = 

$(£;v)|£=o 
1 d3>(uN) 
1! de 

1 dN<S>(uN) 
N\ de" 

e=0 

e=0 

<&(UN)\e=0 

1 d3>(uN) 
1!       de e=0 

0 

^(uN)\£=o 

Here the operator $(UN) is defined by 

$(V>N) = {dx + edy)2 + 2(uNx + euNy)(dx + £dy)~l + 4fljv, 

and thus its iV + 1 derivatives with respect to e are found to be 

(3.44) 
f  HuN)\£=0=d2

x+2r]oxd-1+4r](h 

1 d&(uN) 
1!      ae 

1 d2$(uN) 

k\      dek 

e=0 
= 2dxdy + 2(r)ix + T/OJ/)^    " 2r}oxdx 

2dy + 4771, 

e=0 

e=0 

= d2
y+ 2(772, + ^ly)^1 - 2(mx + ryo^S-2^ + 2rjoxd-3d2

y + 4772, 

= Ei+^^-lJ^a^fa + Vi-i^d-^dl + 477,, 3 < k < AT, 

where we accept r?_i = 0. 
Let us now show the corresponding zero curvature representation for the 2 + 1 

dimensional perturbation system (3.34). By Theorem 2.8 or (2.54), the zero curvature 
representation for the system (3.34) can be given by 

(3.45) Um - VNx - UVNy + [UN, VN] = 0, 

where three matrices II, UN and VN read as 

0     0 

hN     0  J2(Ar+i)X2(Ar+l) 

U0 0 

Ul       U0 

(3.46) n = 

(3.47) UN = 

UN    ■■■    Ux    Uo 

with the Ui,Vi being determined by 

(3.48) Ul=^U{iiN,Xs) 

, hN = diag(/2, • • • ,h) = diag(l, •••,!), 

N 2N 

Vo 0  " 

VN = 

V!        Vo 

VN VI    V0 

(3.49) V^ \»V<*»^ 
de1 

e=0 

£=0 

, 0 < i < N, 
0     -77^ - m 

Sio 0 

Tjix   i   TJi—i^y ioji 

2rji - 4fii      -r}iX - rji-i^y 
, 0 < i < N, 
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(3.50) Qi = -rjiXX - 2rii-liXy - rn^w " 2 5Z ^^ ~ ^kVi - tym), 0 < i < iV, 
k+l=i 

where we accept that rj-i = rj-2 ='0, and U,V are defined by (3.8). Of course, we 
require the condition (2.42) on the involved spectral parameters fii, 0 < i < N, in 
order to guarantee the equivalence between the system (3.34) and the zero curvature 
equation (3.45). 

In particular, the first-order bi-scale perturbation system 

(3.51) 
rjot ='noxxx + 6770770a; > 

mt = 'nixxx + Srioxxy + 6(770771)2 + 6770770^, 

has a local 2 + 1 dimensional bi-Hamiltonian formulation 

0     dx 
Vit = Ji FT = Mi — , 771 - 

Srji Sm m 
Jl 

dx    dy 

Mi = 
0 dl + 27702 + 4770a, 

dl 4- 2770^ + 4770(9*    3d*dy + 2771* + 2770^ + 4771 dx + 4%9y 

periiJ( 
■-// 

rjoriidxdy, peiiHi m VoVixx + VoVoxy + TZVIVOXX + 377o77i) dxdy. 

Here the extended variables rio(x,y,t) and r]i(x,y,t) are taken as a potential vector 
771. Moreover the above Hamiltonian pair yields a hereditary recursion operator in 
2 + 1 dimensions 

(3.52) 

$1(771) = 
d2

x + 277o^-1 + 4770 0 

2dxdy - 2rjoxd-2dy + 2(77^ + rjoy^-1 + 4771    a| + 27702a-1 + 4770 

The system (3.51) was furnished in [20], its Painleve property and zero curvature 
representation were discussed by Sakovich [21], and its localized soliton-like solutions 
were four d in [22]. All these properties show that the system (3.51) is a good example 
of typical soliton equations in 2 + 1 dimensions. 

4. Concluding remarks. We have developed a theory for constructing inte- 
grable couplings of soliton equations by perturbations. The symmetry problem is 
viewed as a special case of integrable couplings. The general structures of heredi- 
tary recursion operators, Hamiltonian operators, symplectic operators, Hamiltonian 
formulations etc. have been established under the multi-scale perturbations. The per- 
turbation systems have richer structures of Lax representations and zero curvature 
representations than the original systems. For example, in the higher dimensional 
cases, the involved spectral parameters /i;, 0 < i < iV, may vary with respect to the 
spatial variables, but they need to satisfy some conditions, for example, 

Vox = 0, HiX + A*i-i,y = 0,' 1 < i < -W, 

in the 2 + 1 dimensional case of the perturbation 

N N 

2=0 z=0 
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The resulting theory has been applied to the KdV soliton hierarchy and thus various 
integrable couplings are presented for each soliton equation in the KdV hierarchy. 
The obtained integrable couplings of the original KdV equations have infinitely many 
commuting symmetries and conserved densities. Linear combinations of the KdV hi- 
erarchy containing a small perturbation parameter may yield much more interesting 
integrable couplings. For example, the KdV type systems of soliton equations pos- 
sessing both multi-Hamiltonian formulations and two classes of hereditary recursion 
operators have been presented and what's more, local 2+1 dimensional bi-Hamiltonian 
systems of the KdV type with hereditary structures have also been constructed. 

Our success in extending the standard perturbation cases to the non-standard 
cases and the higher dimensional cases are based on the following two simple ideas. 
First, we chose the perturbed systems as initial systems to generate integrable cou- 
plings for given integrable systems. The method of construction is similar to that 
in [5]. Only a slight difference is that new initial systems themselves involve a small 
perturbation parameter, but importantly, such initial perturbed systems take effect in 
getting new integrable couplings. In particular, our result showed that the following 
non-standard perturbation system 

^ 1 vt=K'(u)[v] + K(u), 

keeps complete integrability. Therefore, this also provides us with an extension of 
integrable systems. Secondly, we took the multi-scale perturbations, by which higher 
dimensional integrable couplings can be presented. Indeed, the multi-scale perturba- 
tions enlarge the spatial dimensions and keeps complete integrability of the system 
under study. A concrete example of integrable couplings resulted from the multi-scale 
perturbations is the following system 

{Vot = VOxxx + 6r/o^Orc, 

Vit = nixxx 4- Zrioxxy + 6(770771 ^ + 67707702,, 

which has been proved to be a local bi-Hamiltonian system. 
A kind of reduction of the standard multi-scale perturbations defined by (2.1) 

may be taken, which can be generally represented as 

N 

UN = Yl6**7!** vi = Vi(yo,yi,y2r- ,2/r,*)» VJ = ^x, ten, x eRp, o<i<N, 
3=0 

where the ij,i'- can be any two finite sets of natural numbers. This kind of pertur- 
bations can be generated from the standard perturbations (2.1), if some dependent 
variables 77^ are chosen to be zero and the other dependent variables are assumed to 
be independent of some dependent variables yi. They yield more specific integrable 
couplings. There is another interesting problem related integrable couplings. Could 
one reduce the spatial dimensions of a given integrable system while formulating inte- 
grable couplings? If the answer is yes, it is of interest to find some ways to construct 
such kind of integrable couplings, i.e., to hunt for the second part S(u,v) with v be- 
ing less dimensional than u to constitute integrable systems with the original system 
ut = K{u). 

There exist some important works to deal with asymptotic analysis and asymp- 
totic integrability [23, 24, 25, 26], to which the study of the perturbation systems 
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may be helpful. It is also worthy mentioning that our 2 + 1 dimensional hereditary 
recursion operators, for example, the operators defined by (3.43) and (3.44), are of the 
form described only by independent variables involved. Thus they are a supplement 
to a theory of recursion operators in 2 + 1 dimensions discussed by Zakharov and 
Konopelchenko [27], and a theory of the extended recursion operators in 2 4-1 dimen- 
sions including additional independent variables, introduced by Santini and Fokas [28] 
and Fokas and Santini [29]. The other properties such as Backlund transformations, 
bilinear forms and soliton solutions might be found for the resulting perturbation sys- 
tems. A remarkable Miura transformation [30] might also be introduced for the 2 + 1 
dimensional perturbation systems (3.34), which will lead to new 2 + 1 dimensional 
integrable systems of the MKdV type. All these problems will be analyzed in a further 
publication. 
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