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SOBOLEV ORTHOGONAL POLYNOMIALS: THE 
DISCRETE-CONTINUOUS CASE* 

M. ALFAROt, T. E. PEREZ*, M. A. PINAR*, AND M. L. REZOLA* 

Abstract. In this paper, we study orthogonal polynomials with respect to the bilinear form 

B^if.g) = F{c)AG(c)T + (u,/<%<">), 

where u is a quasi-definite (or regular) linear functional on the linear space IP of real polynomi- 
als, c is a real number, AT is a positive integer number, A is a symmetric N x N real matrix 
such that each of its principal submatrices are regular, and F(c) = (/(c), /'(c),...,/^JV~1HC))> 
G(c) = (g(c)igf(c),...,g(N~1\c)). For these non-standard orthogonal polynomials, algebraic and 
differential properties are obtained, as well as their representation in terms of the standard orthogonal 
polynomials associated with u. 

1. Introduction. It is well known (see [12]) that the monic generalized Laguerre 
polynomials {Ln}n satisfy, for any real value of a, the three-term recurrence relation 

xLW(x) = L'n%(x)+l3^L^(x)+^Lial1(x), 

LM(x)=0,        Lia\x) = l, 

where 

/?£*) = 2n + a + 1,        7<>> = n(n + a). 

Whenever a is not a negative integer number, we have 7^ 7^ 0 for all n > 1 
and Favard's theorem (see [2], p. 21) ensures that the sequence {14 }n '1S orthogonal 
with respect to a quasi-definite linear functional. Besides, if a > — 1 the functional is 
definite positive and the polynomials are orthogonal with respect to the weight xae~x 

on the interval (0, +00). For a a negative integer number, since 7^ vanishes for some 
value of n, no orthogonality results can be deduced from Favard's theorem. 

In the last few years, orthogonal polynomials with respect to an inner product 
involving derivatives (the so-called Sobolev orthogonal polynomials) have been the 
object of increasing interest and in this context, the case {Ln }n with a a negative 
integer number has been solved. More precisely, Kwon and Littlejohn, in [5], estab- 

lished the orthogonality of the generalized Laguerre polynomials {Ln }ni k > 1, 
with respect to a Sobolev inner product of the form 

r+00 

(/, 9) = F(0) AG(0)T + /       /«(x)gW (x)e-xdx 
Jo 

with A a symmetric k x k real matrix, F(0) = (/(0), /'(0),..., /^"^(O)), and G(0) = 
(<7(0), ^'(O),..., g^-1) (0)). The particular case k = 1 had been considered by the same 
authors in a previous paper, (see [6]). 
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In [10], Perez and Pifiar gave an unified approach to the orthogonality of the 
generalized Laguerre polynomials, for any real value of the parameter a by proving 
their orthogonality with respect to a Sobolev non-diagonal inner product. So, they 
obtained the following result: 

THEOREM ([10]). Let (.,.)s       be the Sobolev inner product defined by 

r+oo 
(/,0)f,o) = /      F(x)AG(x)Txae'xdx, 

Jo 

where the (i,j)-entry of A is given by 

min{i,j} iiuoiu^b)j r /AT \      /AT \ 

•»«(*)= E (-'>*' (l-;) (":;). misH. 

F{x) = (f(x),f(x),...,/<")(«)), G(x) = (g(x),g'(x),...,g<N>(x))- Then, for every 
a G R, the monic generalized Laguerre polynomials {Ln}n are orthogonal with re- 

spect to (.,.)s ,a ^^ ^ = max{0, [—a]}, ( [a] denotes the greatest integer less 
than or equal to a). 

In the case when a is a negative integer, the inner product (.,.)s '" is ^^ie 

same as the one considered by Kwon and Littlejohn. 

The above results justify the interest to consider such a kind of inner products. 
In a more general setting, our aim is to study polynomials which are orthogonal with 
respect to a symmetric bilinear form such as 

(1.1) Bf\f,g) = (/(c),/'(c),..., /(""^(c)) A 

/     9{c)     \ 
9'{c) 

WwJl)(c)/ 
+ (U,/W^)), 

where u is a quasi-definite (or regular) linear functional on the linear space P of real 
polynomials, c is a real number, TV is a positive integer number, and A is a symmetric 
N x N real matrix such that each of its principal submatrices is regular. By analogy 
with the usual terminology, we call it a discrete-continuous Sobolev bilinear form. 
Recently some properties of the polynomials orthogonal with respect to &$ (••> •) ^^ 
been considered in [4]. 

We will emphasize some cases in which the functional u satisfies some extra con- 
ditions, namely, u is a semiclassical or a classical linear functional (see [3], [7] and 
[9]). A quasi-definite linear functional u is called semiclassical if there exist polyno- 
mials (f> and ip with degcj) > 0 and deg^ > 1 such that u satisfies the distributional 
differential equation T>((j)u) = ifm. Whenever deg^ < 2 and deg^ = 1, the functional 
u is called classical. It is well known that the only classical functionals correspond to 
the sequences of Hermite, Laguerre, Jacobi and Bessel polynomials. 

In Section 2, we give a description of the monic polynomials {Qn}n which are 

orthogonal with respect to Bg (.,.) in terms of the monic polynomials {Pn}n or- 
thogonal with respect to the functional u. In particular, for n > iV, we have that 

QnN\x) = i^Nypn-N^) and Q{
n
k\c) =0fork = 0,1, ...,iV- 1, while {Qn}^1 are 
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orthogonal with respect to the discrete part of the symmetric bilinear form (1.1) and 
they are determined by the matrix A. 

By using these results, in Section 3, we give some examples of polynomials orthog- 
onal with respect to (1.1), with an adequate choice of c, namely, Laguerre polynomials 
{Ln    '}n with c = 0, Jacobi polynomials {Pn }n with c = 1, (3 + N not being 
a negative integer, and {Pn ~ }n with c = — 1, a + iV not being a negative inte- 
ger. Note that these sequences of polynomials are not orthogonal with respect to any 
quasi-definite linear functional. 

In Section 4, we give a new characterization of classical polynomials as the only 
orthogonal polynomials such that, for some positive integer number AT, they have 
a iV-th primitive satisfying a three-term recurrence relation. In particular, this re- 
sult is applied to discrete-continuous Sobolev polynomials which satisfy a three-term 
recurrence relation and then it follows that u is classical with distributional differ- 
ential equation V((j)u) = tpu, and the point c in (1.1) is such that 0(c) =. 0 and 
^(c) = (j)'{c). Hence, the only monic discrete-continuous Sobolev polynomials which 
satisfy a three-term recurrence relation are the ones described in Section 3. 

The link between Sobolev orthogonality and polynomials satisfying a second order 
differential equation is analyzed in Section 5. It is proved that if the sequence {Qn}n 
satisfies the equation 

(t)(x)Ql(x) + a{x)Q'n(x) = pnQn(x), 

where </> and a are polynomials with degree less than or equal to 2 and 1, respectively, 
and pn are real numbers, then the functional u is classical with distributional differ- 
ential equation V((j)u) = ipu, a(x) = ip(x) — Nfifa) and the point c in (1.1) verifies 
0(c) = 0 and ^(c) = 0'(c). Hence, the only monic discrete-continuous Sobolev poly- 
nomials which satisfy a second order differential equation are again the described in 
Section 3. 

As a consequence of the results in Sections 4 and 5, we have that if u is not a 
classical linear functional then the sequence {Qn}n does not satisfy neither a three- 
term recurrence relation nor a second order differential equation. In order to avoid 
this lack in our study, in Section 6, we introduce a linear differential operator .^W 
on P symmetric with respect to the bilinear form (1.1). The basic property of this 
operator is a relationship between the Sobolev bilinear form and the bilinear form 
associated with the functional u. Handling with J7^ we can deduce explicit rela- 
tions between {Qn}n and {Pn}n as well as a differential substitute of the algebraic 
recurrence relations. This is done in Section 7. 

2. The Sobolev discrete-continuous bilinear form. Let F be the linear 
space of real polynomials, u a quasi-definite linear functional on P (see [2]), N a 
positive integer number, and A a quasi-definite and symmetric real matrix of order 
iV, that is, a symmetric and real matrix such that all the principal minors are different 
from zero. For a given real number c, the expression 

(2.1) BiN\f,9) = (f(c),f(c),...,f(N-^(c)) A 

defines a symmetric bilinear form on P. 

/     9(c)     \ 
9'(c) 

WN-l\c)) 

+ <«,/<%<*>), 
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Since expression (2.1) involves derivatives, this bilinear form is non-standard, and 
by analogy with the usual terminology we will call it a discrete-continuous Sobolev 
bilinear form. 

In the linear space of real polynomials, we can consider the basis given by 

(2.2) 
1        m!        Jm>0 

For n < N — 1, the associated Gram matrix Gn is given by the n-th order principal 
submatrix of the matrix A. For n > iV, the associated Gram matrix is given by 

Grn — 
0 

0 
Bn_jv 

where Bn_Ar is the Gram matrix associated with the quasi-definite linear functional 
u in the basis (2.2). 

In both cases, Gn is quasi-definite (that is, all the principal minors are different 
from zero) and therefore, we will say that the discrete-continuous Sobolev bilinear 
form (2.1) is quasi-definite. Thus, we can assure the existence of a sequence of monic 
polynomials, denoted by {Qn}m which are orthogonal with respect to (2.1). These 
polynomials will be called Sobolev orthogonal polynomials. Our first aim is to relate 
this sequence with the monic orthogonal polynomial sequence (in short MOPS) {Pn}n 
associated with the quasi-definite linear functional u. 

THEOREM 2.1. Let {Qn}n be the sequence of monic orthogonal polynomials with 

respect to the bilinear form B^ '. 
i) The polynomials {(5n}^r0

1 are orthogonal with respect to the discrete bilinear form 

(2.3) E^\f,g) = (/(c),/'(c),...,/(^^(c)) 

/     9{c) 
Sf{c) 

\g<Nll\c). 

ii) If n > N, then 

(2.4) 

(2.5) 

QW(c)=0,    fc = 0,l,...,iV-l, 

Q^(x) = 
ni 

(n-N)l 
Pn_N(x). 

Proof i) If 0 < m,n < iV, then Q(n\x) = Q(m\x) = 0, and the value of 
the Sobolev bilinear form on (QmQm) can be computed by means of the following 
expression 

tW W/ 
fc>s     \QmQm) — &£>    (QmQ 

(     Qm(c)     \ 

'   Q'm(c)   x 

= (en(c),^(c)>...,Q^-1)(c))^ 

VQ^^C)/ 

and therefore they are orthogonal with respect to the discrete bilinear form (2.3). 
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ii) Let n > iV, then from the orthogonality of the polynomial Qni we deduce 

i 
i 

w 
(2.6)   0 = B(p(Qn(x),-(x-c)k) = (Qn(c),Q'n(c),...,QlN-1Hc))A 

for 0 < k < N - 1. Thus, the vector 

(QnM.QUc),...,^-1^)) 

is the only solution of a homogeneous linear system with N equations and N un- 
knowns, whose coefficient matrix A is regular. Then, we conclude Qn '(c) = 0, k = 
0,1,..., TV — 1, that is, Qn contains the factor (x — c)N. 

In this way, if n, m > N, the discrete part of the bilinear form Bg (Qn, Qm) vanishes 
and we get 

B{
s
N\Qn, Qm) = (u, QWQW) = ~kn5n,m,    kn # 0. 

That is, the polynomials {Qn }n>iv are orthogonal with respect to the linear func- 
tional u, and equality (2.5) follows from a simple inspection of the leading coefficients. 
D 

Reciprocally, we are going to show that a system of monic polynomials {Qn}n 
satisfying equations (2.4) and (2.5) is orthogonal with respect to some discrete- 
continuous Sobolev bilinear form. This result could be considered a Favard-type 
theorem. 

THEOREM 2.2.   Let {Pn}n be the MOPS associated with a quasi-definite linear 
functional u, and N > 1 a given integer number. Let {Qn}n be a sequence of monic 
polynomials satisfying 
i) deg Qn-n,    n = 0,1,2,..., 

ii)Q{n\c)=0, 

Hi) (?!   (x) - 

0< k<N-l 
nl 

n>N, 

Pn-N(x),    n>N. (n-Ny. 
Then, there exists a quasi-definite and symmetric real matrix A, of order N, such 

that {Qn}n is the monic orthogonal polynomial sequence associated with the Sobolev 
bilinear form defined by (2.1). 

Proof. By using the same reasoning as above it is obvious that every polynomial 
Qn, with n > N, is orthogonal to every polynomial with degree less than or equal to 
n — 1 with respect to a Sobolev bilinear form like (2.1) containing an arbitrary matrix 
A in the discrete part and the functional u in the second part. 

Next, we show that we can recover the matrix A from the N first polynomials 
Qfc,fc = 0,l,...,7V-l. 

Let us denote 

Q = 

/   Qo(c) 

Qi(c) 
Q'o(c) 

Q'i(c) 
ori)(c)\ 

W-i(c)   Q'tfL^c)   ...  QKW 
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then Q is a lower triangular and invertible matrix. Let D be a diagonal matrix with 
non zero elements in its diagonal. 

Define 

A = Q-1B(Q-1)T 

Obviously A is symmetric and quasi-definite and since 

QAQT = D, 

the polynomials QQ, ..., QN-I are orthogonal with respect to the bilinear form (2.1), 
with the matrix A in the discrete part. Besides, the elements in the diagonal of D 
are the values B{

s
N\Qk, Qk) for k = 0,..., iV - 1.     D 

REMARK.   Observe that the matrix A is not unique, because its construction 
depends on the arbitrary regular diagonal matrix D. 

3.  Classical examples. 

3.1. The Laguerre case.  Let a G M, the n-th monic generalized Laguerre 
polynomial is defined in [12], p. 102, by means of its explicit representation 

(3.1) LW(x) = (_irn!^(l^^+^^5        n>0j 

where I ,  J denotes the generalized binomial coefficient 

(3.2) .-^(a-A + l)* 

and (a — k+ 1)^ stands for the so-called Pochhammer's symbol defined by 

(3.3) (6)o = l,    (b)n = b(b + l)...(b + n-l),       for b e R,    n > 0. 

In this way, we have 

(LW)(*)(0) = (-l)»+*n!(^ + ^),    n>k. 

If a is a negative integer number, say a = — iV, for n > N, we have 

(4-^)(*)(0) = 0I    k = 0,l,...,N-l, 

and, for n < iV, we get 

(4-w))(*)(o)=»!(^*;1), *=o>i>...>n. 

On the other hand, since the derivatives of Laguerre polynomials are again Laguerre 
polynomials, we have 
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Therefore, from the previous Section, we conclude that Laguerre polynomials Lrn 

are orthogonal with respect to the Sobolev bilinear form 

/*+oo 
B(

s
N)U,g) = F{0)KG{0)T + /       fW{x)gW{x)e-*dx, 

Jo 

with F(0) = (f(0),f(0),...,f(N-1\0)), G(0) = (ffW.fl'CO),...,^-1)^)), the ma- 
trix A is given by 

A = Q-1D(Q-1)r, 

Q is the matrix of the derivatives of Laguerre polynomials Lh       evaluated at zero 

/ 

Q 

0! 

1! 

N-l 
0 

N-l 
1 

1! 

0 

N-2 
0 

w-nt-l vMZ-l 

o 

0 

(AT-1)! 

\ 

0 

and D is an arbitrary regular diagonal matrix. Similar results have been obtained 
with different techniques in [5] and [10]. We recover the results in [5] by using a 
diagonal matrix D whose elements are (0!)2, (I!)2, ..., ((N - I)!)2. 

3.2. The Jacobi case. For a and /? arbitrary real numbers, the generalized 
Jacobi polynomials can be defined (see [12], p. 62) by means of their explicit repre- 
sentation 

rt'0\x) = £ 
m=0 

n + a 
m 

n + f3 
n — m 

X - 1 \ / X + 1 
n>0. 

When a, /? and a + /? +1 are not a negative integer, Jacobi polynomials are orthogonal 
with respect to the quasi-definite linear functional u^^. This linear functional is 
positive definite for a > — 1 and f3 > — 1. 

For a = —N, with iV a positive integer, and /? being not a negative integer, the 
n-th monic generalized Jacobi polynomial is given by 

pt-^Kx) 

(3.4) 
2n - N + 0 

m=0 

n-N 
m 

n + (3 
n — m 

(x-i)n-m(x + iy 

In this case, for n > iV, x = 1 will be a zero of multiplicity N ([12], p. 65). 
On the other hand, since the derivatives of Jacobi polynomials are again Jacobi 

polynomials, we have 

(PtN'0))W(z) - J^yP^W'     for n * N- 

Therefore, from the previous Section, we conclude that Jacobi polynomials Pn ' , 
when /? + iV is not a negative integer, are orthogonal with respect to the Sobolev 
bilinear form 

B{
s
N)(f,g) = F(1)AG(1)T + {uM+WjOOgW), 
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where the matrix A is given by 

A = Q-1D(Q-1)T
! 

Q is the matrix of the derivatives of Jacobi polynomials 

Q=((P™)(ft)(i)) frn   vi 

which are given by 

(p(-N,0)\(k)(-t\       on-fe       n! (-N + k + i)n-k 
[ n )    [ ) (n-k)!(n-N + (3 + k + l)n^ 

and D is an arbitrary regular diagonal matrix. 
Of course, a similar result can be stated in the case when a + iV is not a negative 

integer, (3 = -TV, and c = —1. 

4. Sobolev orthogonal polynomials and three-term recurrence rela- 
tions. Laguerre and Jacobi polynomials satisfy a three-term recurrence relation even 
for negative integer values of their respective parameters (see [12]). In the previous 
Section, we have seen that Laguerre polynomials with a a negative integer and Jacobi 
polynomials with either a or (3 a negative integer are Sobolev orthogonal polynomials. 
In this way a natural question arises: do the Sobolev orthogonal polynomials satisfy 
a three-term recurrence relation? As we are going to show, the answer is very re- 
strictive, the existence of a three-term recurrence relation for the Sobolev orthogonal 
polynomials implies the classical character of the linear functional u associated with 
the bilinear form (2.1). 

DEFINITION 4.1.   We will say that a family of polynomials {Qn}n>o ^ a monic 
polynomial system (MPS) if 

i) deg(<2n) = n,    n > 0; 

w) QO(Z) = 1?     Qn(x) = xn + lower degree terms,    n > 1. 

Obviously, every MPS is a basis of the linear space P and every MOPS is a MPS. 

DEFINITION 4.2. A monic polynomial system {Qn}n>o satisfies a three-term 
recurrence relation if there exist two sequences of real numbers {6n}^o and {dnj^Li^ 
such that 

xQn(x) = Qn+i(x) + bnQn(x) + gnQn-i(x),    n > 0, 

Q-i(aO=0,    Qo(x) = l. 

From Favard's theorem (see [2], p. 21) we can deduce the existence of monic poly- 
nomial systems satisfying a three-term recurrence relation which are not orthogonal 
with respect to any linear functional. This case appears when some of the coefficients 
gn are zero. For instance, Laguerre polynomials with parameter a a negative integer 
and Jacobi polynomials with parameters either a or /? or a + /? -f 1 a negative integer. 

PROPOSITION 4.3. Let {Qn}n>o be a monic polynomial system satisfying a three- 
term recurrence relation and let N be a positive integer number such that the system 
of monic N-th order derivatives 

Pnix) := ^TA0!O"+)jv(:r)'    n-0' 
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constitutes a monic orthogonal polynomial sequence.   Then, the polynomials {Pn}n 
are classical. 

Proof. Since {Pn}n>o is a MOPS, it satisfies a three-term recurrence relation 

xPn(x) = Pn+i(» + 0nPn{x) + Tn-Pn-lO),      Tl > 0, 

P_i(a?)=0,    Po(a:) = l, 

with jn ^ 0,n > 0. 
In this way, 

(4.1) xQiN
+UX) = -I^QW^O*) + MW^z) + In^C^-iW- 

On the other hand, the monic polynomial sequence {Qn}n>o satisfies a three-term 
recurrence relation 

xQn+N(x) = Qn+N+l{x) + K+NQn+Nfa) + ^n+ArQn+AT-l (x). 

Taking AT-th order derivatives in this relation, we get 

(4.2>Q £>„(*) + NQ^ix) = Q^N+ii") + bn+NQZUx) + g^NQ^N-i^)- 

By eliminating the term xQ]n^N(x) between (4.1) and (4.2), we obtain 

^K)(*) = ^TIoffiv+1(a!)+ 

(4.3) + (bn+N - pn) Q^N{x) + [gn+N - !i^7n) Q^Jv-i(*)• 

Taking again derivatives in this relation we deduce that each polynomial Pn can be 
expressed as a linear combination of the derivatives of three consecutive polynomials 
in the sequence {Pn}n and, therefore, we conclude that they are classical by using 
the characterization of classical orthogonal polynomials obtained by Marcellan et al. 
in [7].     D 

REMARK. This result characterizes the classical orthogonal polynomials as the 
only system of orthogonal polynomials having a JV-th order primitive (AT > 1) which 
satisfies a three-term recurrence relation. 

THEOREM 4.4. Let {Qn}n &e the monic orthogonal polynomial sequence associ- 
ated with the Sobolev bilinear form (2.1). If the polynomials {Qn}n satisfy a three-term 
recurrence relation, then the linear functional u is classical and the point c in (2.1) 
satisfies 

(4.4) 0(c) = 0, 

(4.5) <Kc)-<//(c) = 0, 

where (j) and ip are the polynomials in the distributional differential equation V^u) = 
ipu satisfied by u. 
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Proof. Let {Pn}n be the monic orthogonal polynomial sequence associated with 
the linear functional u. Prom Theorem 2.1, we have 

(4.6) Qlfc)(c) = 0)    * = 0,l,...,iV-l, 

(4-7) Q^ix) = J^)\Pn-N{x), 

for all n > N. Therefore, using Proposition 4.3, we deduce the classical character of 
the polynomials {Pn}n and then the classical linear functional u satisfies a distribu- 
tional differential equation 

V{(j>u) = ipu, 

where </) and ip are polynomials with degcj) < 2 and deg^ = 1. From Bochner's 
characterization of the classical orthogonal polynomials, (see [2]), we deduce that the 
polynomials {Pn}n satisfy the second order differential equation 

(t>{x)P,
7l{x) + ^{x)P,

n{x) = \nPn(x), 

for all n > 0. 
Thus the polynomials {Qn}n satisfy the differential equation 

4>(x)Qi%2\x)+^x)QiN
+
+

N
1\x) = XnQZUx), 

for n > 0. This differential equation can be written in a more convenient way 

(4.8) (<KX)QZNHXJ)'+ («>(*) - <l>\x))Q(£!N{xJ)' = K„Qi%(aO, 

where Kn = An + ip'ix) — </>"(x). Integrating (4.8) we get 

4>(x)Qi
n
N

+
+

N
1)(x) + (</>(*) - t'ixVQllUx) = KnQZJHx) + /X„, 

where fin is a constant. 
For n > 2, let p be a polynomial with degp < n — 2, then 

{u,p [tQi^ + (V - <f>')Q^N]) = (u^Qil^) - (u, (^PQSJV)') 

= -(U,(JP4>)'Q
{
£N) 

= _(!i±A0! 0_ 
n\ 

Thus, the polynomial ^Q^+Jv + W> - fi)Qn+N = ^nQn+N + Lln is orthogonal, with 
respect to ^, to every polynomial of degree less than or equal to n — 2, and then it 
can be written as a linear combination of three consecutive polynomials Pn 

^nVn-|_7V     '  ftn ~ ^n-Ln+l   i~ Snrn + tnJrn—\. 

Prom (4.3) we have that the polynomial Q^+^v is a linear combination of the three 
polynomials Pn+i? Pn and Pn_i, and, since the sequence {Pn}n constitutes a basis of 
the linear space of the polynomials, we conclude that //n = 0, for n > 2. 
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In this way, the polynomials {Qn+N}n satisfy the differential equation 

(4.9) 4>(x)QZ^)(x) + Mx) - <l>\x))QWN(x) = KnQZ'jHx), 

for n > 2. 
Replacing x = c in (4.9), from (4.6) we conclude 

603 

(4.10) 0(c)^(c) + (^(c)-0/(c))Pn(c) = O, 

for n > 2. 
From recurrence relation 

xPn(x) = Pn+l(x) +/3ni:>n(^) +7n-Pn-l(«)J 

satisfied by {Pn}n and (4.10) written for n + 1, n and n — 1, we obtain 

(4.11) c^cji* (c) + [0(c) + c(^(c) - ^(c))] Pn(c) - 0,        n > 3, 

and subtracting (4.10) from (4.11), we get 

0(c)Pn(c) =0,        n > 3. 

Therefore, we conclude </>(c) = 0 and using again (4.10), ip(c) — (j)'(c) = 0.     D 

COROLLARY 4.5. The only sequences of monic polynomials which are orthogo- 
nal with respect to a Sobolev bilinear form (2.1) and satisfy a three-term recurrence 
relation are 

a) The generalized Laguerre polynomials Ln    ', 

b) The generalized Jacobi polynomials Pn , with /3-\-N not a negative integer, 

c) The generalized Jacobi polynomials Pn '"    , with a + N not a negative inte- 
ger. 

Proof. Suppose that the monic polynomials {Qn}n orthogonal with respect to 
(2.1) satisfy a three-term recurrence relation. Theorem 4.4 assures that u is a clas- 
sical linear functional. If V^u) = I/JU is its distributional differential equation, the 
polynomials (/> and ^ are given by the following table 

Name 0 V Restrictions 

Hermite 1 -2x 
Laguerre X (a + l)-x a ^ —n,n > 1 

Jacobi 1-x' (P - a) - (a + (3 + 2)x a^-n,/3^ -n, 
a + /3 + l^-n,n>l 

Bessel X* (a + 2)^ + 2 a ^ —n,n > 2 

Then, conditions (4.4) and (4.5) exclude Hermite and Bessel cases. Moreover, in 
Laguerre and Jacobi cases the only possibilities are the following: 
- Laguerre case with a = 0 and c = 0. 
- Jacobi case with a — 0, /3 ^ —m, m > 1 and c = 1. 
- Jacobi case with /? = 0, a ^ —m, m > 1 and c = —1. 

Taking into account the results of Section 3, we conclude.     D 
Note that a reduction of the degree of Pn       could occur when either both a 

and /3 + nora: + /3 + l are negative integers (see [12], p.64).   An interesting open 
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problem is to give some kind of orthogonality relations valid for these polynomi- 
als. For the particular case a = (3 negative integers, this problem has been solved 
in [1]: the corresponding Gegenbauer polynomials are orthogonal with respect to a 
discrete-continuous Sobolev bilinear form, where the discrete part is concentrated in 
two points, namely, 1 and —1. 

COROLLARY 4.6. The monic orthogonal polynomials associated to the Sobolev 
bilinear form (2.1) satisfy a three term recurrence relation if and only if the linear 
functional u is classical and the point c in (2.1) satisfies 0(c) = 0 and ij)(c) = 0'(c). 

Proof. It follows from Theorem 4.4 and Corollary 4.5 taking in mind that Laguerre 
and Jacobi polynomials satisfy a three-term recurrence relation for all values of their 
parameters.     D 

5. Sobolev orthogonal polynomials and second order differential equa- 
tions. As it is well known (see [12]) Laguerre and Jacobi polynomials satisfy a second 
order differential equation for every value of their respective parameters. 

In this Section, our aim is to characterize the sequences of monic Sobolev orthog- 
onal polynomials satisfying a second order differential equation. We can observe that 
if, for every n, the polynomials {Qn}n satisfy a second order differential equation 

<l>(x)QZ(x) + a(x)Q'n(x) = PnQn(x), 

where (j) and a are fixed polynomials and pn € M, then 

deg0 < 2,    degcr < 1. 

Moreover, if pi ^ 0 then degcr = 1. 

THEOREM 5.1. Let {Qn}n be the monic orthogonal polynomial sequence associ- 
ated with the Sobolev bilinear form (2.1). If, forn > N, every polynomial Qn satisfies 
a second order differential equation 

(5.1) <t>(x)Qn(x) + vitiQ'nix) = PnQn(x), 

where (j) and a are fixed polynomials with degree less than or equal to 2 and 1 re- 
spectively, and pn E M, then the linear functional u is classical with distributional 
differential equation V((pu) = ifm, a(x) = ip(x) — N(j)'{x) and the point c in (2.1) 
satisfies 

(5.2) 0(c) - 0, 

(5.3) (iV-l)0,(c)+£7(c)=O. 

Proof. Taking A;-th order derivatives in (5.1), from Leibniz rule, we get 

<t>{x)Q^+2\x) + {Wix) + a{x)) Q£+1Hx) 

(5.4) - (pn - W^±<l>»(x) - ka'ix)^ QW(x). 

Let k = N in (5.4), then we deduce that the polynomials Pn orthogonal with 
respect to the linear functional u satisfy the second order differential equation 

<l>(x)PZ(x) + ^{x)P,
n{x) = XnPn(x):    n > 0, 
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where 

il)(x) =N(l),(x)-{-a(x), 

Xn = Pn+N - ^"VW - Na'ix). 

Therefore u satisfies V((j)u) = i/m and deg^ > 1. Now, since degcj) < 2 and degcr < 1, 
from Bochner's characterization of the classical orthogonal polynomials, (see [2]), we 
deduce the classical character of the linear functional u. 

Writing equation (5.4) for n = N and k = N — 1 we get 

/          (iV-l)(iV-2)^ 
= [PN  (l)"(x)-(N-l)af(x)^Q^-1\x), 

PN - 

2 

and by substitution in c, since Q^N ~   (c) = 0, we deduce 

(JV-l)^(c)+(7(c)=0. 

Finally, if iV = 1 writing (5.1) for n = 2, we get 0(c) = 0 and when N > 2, writing 
equation (5.4) for n = AT, fc = JV — 2, we get 

^aOQJ^oO + ((iV - 2)0'(a;) + a(x))Q^-1)(a;) 

^-y-3)^(8) - (iV - 2)a'(,)) Qr2) (*) 

and by substitution in c we deduce (j)(c) =0. D 

Using the same reasoning as in Corollary (4.5), we obtain 

COROLLARY 5.2. The only sequences of monic polynomials which are orthogonal 
with respect to a Sobolev bilinear form (2.1) and satisfy a second order differential 
equation (5.1) are 

a) The generalized Laguerre polynomials z4_   ^, 

b) The generalized Jacobi polynomials Pn , with fi+N not a negative integer, 

c) The generalized Jacobi polynomials Pn~    , with a + N not a negative inte- 
ger. 

COROLLARY 5.3. The monic orthogonal polynomials associated to the Sobolev 
bilinear form (2.1) satisfy a second order differential equation like (5.1) if and only 
if the linear functional u is classical and the point c in (2.1) satisfies (j)(c) = 0 and 
V>(c)=^(c). 

Proof. It follows from Theorem 5.1 and Corollary 5.2 taking in mind that Laguerre 
and Jacobi polynomials satisfy a second order differential equation for all values of 
their parameters.        □ 

6. A symmetric differential operator: Properties. In order to obtain ex- 
plicit relations between the sequences {Qn}n and {Pn}n associated with Bg ' and it, 
respectively, we introduce a linear differential operator J7^ closely related to u. To 
do this, u must satisfy an extra condition. This is why, from now on, the functional 
u in (2.1) will be a semiclassical one. 
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DEFINITION 6.1 ([3], [9]). A linear functional u on P is called semiclassical, if 
there exist two polynomials </> and ip, with deg^ = p>0 and degip = q>l) such that 
u satisfies the following distributional differential equation 

(6.1) 

or equivalently 

(6.2) 

V{(j)u) = i/m, 

(jyDu = (ip — (t)')u. 

Equation (6.2) can be generalized in the following way: 

LEMMA 6.2 ([8]). Letu be a semiclassical linear functional, then for every n we 
have 

(6.3) 0n(^n^ = ^(^;nK 

where the polynomials tpfan) are recursively defined by 

(6.4) il>(xin) = (l)(x)<il)'(x',n- 1) + ^{x^n - l)[^{x) - n^{x)],    n > 1. 

Observe that, now, (6.2) adopts the form (/)(x)Vu = iP(x; l)u. Taking derivatives 
(n - l)-times in this formula, we get 

n-l 

(6.5)     (/)(x)Vnu = J2 
i=0 

Tl      1  \ jyn-l-i^. JJ _  (   .;       x   j pn-i^ n-l 
i-1 V1^ 

for n > 1, where f ^ j = 0 whenever m < 0. Multiplying by 4>n-1 and using (6.3), 

we obtain another recursive expression for ip(x;n): 

ip(x;n) 
n-l 

"-1 \ ~yi-i-i.,./    ,N     fn-1 ©"-'-V^iJ-f ".iJ^-VCx) r-^ix^^i) = E 
i=0 

(6.6) 

valid for n > 1. 

LEMMA 6.3. In the above conditions, we have 

(6-7) <f>n-j(xMx'J)Vnu = *P(x;n)Viu,    n>j, 

and consequently 

(6.8)       4i(x)iP(x;N-i)VN-iu = <f>J(x)i>(x;N-j)VN-iu,    0<i,j<N. 

Proof. We will show the result by induction on n. The case n = l,j = 0 comes 
from (6.3), while the case n = j = 1 is trivial. Suppose that 

r-'-HxMvJW^u = ^{x;n- 1)2?%, 
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holds for all j, 0 < j < n - 1. Then, 
i) For 0 < j < n — 1, taking derivatives, multiplying by (j>, using (6.4), and the 
induction hypothesis, we have 

(i)n-j(x)^{x]j)Vnu = (t>(x)^{x,n - l)Vju + (f){x)i;{x',n - l)Vj+1u- 

-{(n - 1 - j)<l>'(x)il>(xi j) + ^(rc; j + 1) - 

-^(a:; j)^(x) - (j + ^'(x)}}^1^(x^-'u 

= <l>(x)il>'(x, n - l)Vju + <l>{x)il)(xi n - l)^+1u - 

-{^(x;i + 1) - 1>(x',j)[il>(x) - n^ix)}}^1^^)^-^ 

= {QixWix, n - 1) + ^(x; n - 1)[^(^) - n^^)]}!)^ + 

+<l>{x)il){x\n - l)Vj+1u - ^(z; j + l)^"1"^^^"1!/ 

= ^(^5 n)Vju + (t>{x)<il)(x\ n - l)Dj+1u - (j){x)^{x) n - ^V^u 

— il;(x;n)Vju. 

ii) If j — n — 1, multiplying (6.5) by ^(x; rz — 1), and using the induction hypothesis, 
we obtain the result taking into account (6.6). 

Now, from i) and nj, we conclude, since the case j = n is trivial.     D 

We define a linear differential operator JF^) on the linear space of real polynomials 
P in the following way 

(6.9) j:(N) = ^1)N{x_c)NJ2fN\ <t)i{xmx.N_i)vN+i^ 

where X> denotes the derivative operator and the polynomials il){x\ri) are defined as 
in Lemma 6.2. 

REMARK. In the particular case of a semiclassical linear functional u defined from 
a weight function, expression (6.9) can be written in a very compact form 

jrW = (.^ _ c)Nf!M_N ^{x)VN) 
p[x) 

where p denotes the weight function associated with the semiclassical linear functional 
u. 

In the next Lemma, we recall a very useful formula involving derivatives. 

LEMMA 6.4 ([8]). Let f and g be n-times and 2n-times differentiable functions, 
respectively.  Then, 

/(BVB)=i;(-i)'(")(/ff(w+i))( 

In the following Proposition, we show how the linear operator J7^) allows us to 
obtain a representation for the Sobolev bilinear form (2.1), in terms of the consecutive 
derivatives of the semiclassical linear functional u. 
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PROPOSITION 6.5. Let Bg ' be a Sobolev bilinear form with u semidassical and 
fj g arbitrary polynomials.  Then, for 0 < i < N, we have 

B{
S
N) {(x - c^PlxWfrN- i)f,g) = {vN-iuJ&Vg). 

Proof From Lemmas 6.2, 6.3 and 6.4, we get 

4")((s-c)V(aO#s;tf-O/>0) 
= («, ((x - cf^ixMx; N - i)f){N) gW) 

= E(-I)j (J) (u,((x-c)Np(xMx;N-i)fg(N+rt)iN~3)) 
3=0 

jr(-l)N (J^j (VX-lu^x-cFPixMxiN -i)fglN+fi) 
3=0 

N 

- Ef-l)^ (*![) mxM* ^ - i)VN-Ju, (x - c)NfglN+fi) 

N /       v 

3=0 

N 

= (VN-i
UJ[^l)N(x--c)NJ2(Ni) <P(*Mx',N-J)9lN+j)]) 

3=0  V J   ' 

THEOREM 6.6.  The linear operator T^ is symmetric with respect to the Sobolev 
bilinear form (2.1), that is 

Bf\^S,g) = Bf\f,^9). 

Proof. From Proposition 6.5 and Lemma 6.4, we can deduce 

Bf\^f,g) = f>ir (N) It* ((x - crnx)i>(x;N- i)fW«>,g) 
i=0 

N 

=i;(-i)i(T)<«'(/(JV+0^N(Ar"l>> 
i=0 ^       ^ 

= (ujW(^9)(N))=BiN\f,^9).   D 

Now, we study the degree of the polynomial F^x71 for every n. Observe that F^ 
vanishes on every polynomial with degree less than N. 
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PROPOSITION 6.7. For every n > 0, we have 

deg(y(iV)£n) <n + iVmax{p-l,g}, 

where p — degcf) and q = deg^. 

Proof. By using the induction method it is very easy to see that deg^{x'1n) < 
n + max{p — l,g} for all n > 0. Taking into account the definition of the linear 
operator !F^N\ the conclusion follows.     D 

On the other hand, the linear operator .^W never reduces the degree for all 
polynomials. 

PROPOSITION 6.8.  There exists no > N such that 

degT^xno >no. 

Proof. Suppose that degT^x™ < n, for all n > N. Then, we can expand 

n-l 

i=Q 

Thus, since J7^ vanishes on every polynomial of degree less than N: using its sym- 
metry property, we have 

4^ (F{N)Qn,Qi)   _  gf) (Qn,^N)Qi)        n        ._n1 
Q"n,i — / iyj\ — (i\r\ — U,     z — U, 1,..., n     1, 

B^iQ^Qt) B^XQuQi) 

and the result follows.       D 

To study the degree of F^x71, we need to know the degree of the polynomials 
il>(x] N — i), i = 0,..., N in formula (6.9). The following Lemma provides us some 
combinatorial identities, that will be useful for our purpose. 

LEMMA 6.9. Let a and b arbitrary real numbers. Then for every non negative 
integer n, we have 

i)    (a)n = (-l)n(-a-n + l)n, 
n 

*; E 
i=0 

a\(     b    \ _ (a + b 
i } \n — i I       V     n 

» E<-i)i(°)( 
a\ f b — i\ _ i b — a 

n — i )      \    n 

where f ,  J  and (a)k are given by (3.2) and (3.3). 

Proof, i) It is a direct consequence of the definition of the Pochhammer's symbol. 
ii) It can be derived from the power series expansion of the identity 

(l + z)a(l + a;)6 = (l + £)a+6, 

comparing the coefficients. 
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Hi) This formula can be deduced from i) and ii).   D 

REMARK. For a and b positive integer numbers, formulas ii) and in) can be found 
on page 8 in [11]. 

Let assume that the explicit representation for the polynomials (/> and ip is given 
by 

P Q 

<t>{x) = ^2 aiX%>     aP^Q'    P > 05    ifrfa) - ^ bix\     bq ^ 0,     q>l, 
i=0 i=0 

and without loss of generality, we can suppose that ap = l. 
Next Lemma gives us the degree of the polynomial ^(rc; n) and its leading coeffi- 

cient in terms of p, q and bq. 

LEMMA 6.10.  The following assertions are true: 
i) tf P ~ 1 < QJ then 

ip(x;n) = bqXnq + lower degree terms, 

and     deg^(x'1n) — nq,    n>0. 
ii) If p— 1 > q, then 

ip(x;n) = (—l)n(p)n^n^~1^ 4-lower degree terms, 

and     degip(x;n) = n(p — 1),    n > 0. 
Hi) If p — 1 = q, then 

ip(x;n) = (—l)n(p — bq)nxn(p~1^ + lower degree terms. 

Therefore, 
iii.l) If p — bq ^ 0, —1,..., — (n — 1) then degip(x;n) = n(p — 1),     n > 0, 
Hi.2) Ifp — bq = —k, k > 0, then degip(x]n) = n(p— 1), 0 < n < k, and degip(x;n) < 
n(p — 1), n > k. 

Proof These results can be obtained by induction on n.     □ 

As we are going to see, the equality in Proposition 6.7 is true for almost all n, that 
is, the action of J7^ on a polynomial of degree bigger than or equal to N increases 
its degree exactly in Nt being t = max{p — 1, q}. Therefore, we can write 

J*N)xn = F(n',N,t)xn+Nt + ..., 

where F(n]N^t) denotes the leading coefficient of the polynomial F^x71. We want 
to notice that this coefficient can be zero for some specific values of n and in particular 
for every n < N. 

To prove this, we decompose the operator J7^ in N + 1 differential operators 
defined by 

(6.10) jf0 = (-l)N(x - c)N (NA PixMx-, N - i)VN+\    i = 0,l,...,N. 
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Thus, 

N mm{N,n—N} 

^W=^jf),    and   T^xn=       £      ^N)xn,n>N, 

where, for i = 0,..., min{iV, n — iV}, 

jrfV = (-l)N(x - c)N fNA Pixtyfa N - i)- Jh x"-1*-*. 
n-N-iy: 

Let us denote by Fi(n) the leading coefficient of the polynomial J7!-   ^xn and, for 
the sake of simplicity, we will put F(n; N,t) = F(n). 

THEOREM 6.11. Lett = max{p— l,q}. Except for finitely many values ofn>N, 
we have 

degJ7^xn = n + Nt, 

that is, 

jr{N)xn = F(n}xn+Nt + lower terms degree5 

with     F(n) 7^ 0. More precisely 
i) If p - 1 < q, then 

F(n) = (-bqy 
N      ni 

qJ    (n-N)V 

and deg r(N)xn =n + Nt,     n>N. 

ii) If p — 1 > q, then 

n\ 
F(n) = (p-n + N)Nl (n-N)V 

and 

degTiN)xn <n + Nt,    N+p<n<2N-l+p, 

degTiN)xn = n + Nt,    N <n<N+p,    n>2N+p. 

\i) If p — 1 = q, then 

F{n) = (p-bq-n + N)N (n-Ny: 

and 
iii.l) if p — bq = —k,     k — 0,1,..., iV — 1, then 

deg^(iV)xn < n + ATt,    AT < n < 2N - 1 - jfe, 

degF^x*1 =n + Nt,    n>2N-k, 

Hi. 2) if p — bq is a positive integer, then 

degTwxn <n + Nt,    N+p-bq <n <2N - 1+p-bq, 

degTwxn =n + Nt,    N < n < N +p - bq,    n>2N+p-bq. 
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in. 3) in another case, 

degJ^V = n + Nt,    n > N. 

Proof.  To prove the theorem a basic tool will be Lemma 6.10. For this reason, 
we distinguish three different cases. 
i)   Case p — 1 < q. In this situation, we have 

deg^V = n + Nq - i(q - (p - 1)),    i = 0,1,... ,min{JV,n - N}, 

and then,     degF^x71 = deg ^N)xn = n + Nq1     for all n > N. 

The explicit expression for FQ   'xn is 

^xn = (-l)N(x - c)N^(x]N)VNxn 

"(   bq)    (n-N) 

and the leading coefficient for T^x71 is 

- (~bq)N-, 'lv\)xn+N9 + lower terms degree, 

F(n) = F0(n) = (-bq)
N {n "N)V    n > N. 

ii)     Case p — 1 > q. In this case, as p > 2, we get 

deg^N)xn = n + N(p - 1),    i = 0,... ,min{iV, n - N}, 

and then     degF^x™ < n + iV(p — 1),     for all n > N. The leading coefficient of 

J<fV is 

J'<(") = (-1)<(^)(P)^-«(n_^_i)!.    « = 0,l,...,min{iV,n-7V}. 

Taking into account that 

min{iV,n-iV} 

(6.11) F(n)=       Yl       F^ 
i=0 

and using Lemma 6.9 in), we can show that: 

If N <n< 2N, since min{A^, n - N} = n - N9 we obtain 

n-iV n—N 

Fin) . t Ft{„)=n'. (,)„_„ £ (-!)■ (f) (';I^7') 
/ p_ 1 \ n! 

= „! (pW_„ ^ _ ^ J = (p - n + Jv^^riv)!- 

On the other hand, if n > 2iV 

Ar i   An       AT 
EV  \     \^i7/\        n! m    STs   i\i fn-N\ (p-l + N- i\ 
F{n) = Y,F^) = J^JiyX{-l){     i     ){      N-i      ) i=0 v ^    i=0 \ /     \ / 

niAM    /p-i-n + 2N\      . ... n! 
' ' = (p-n + N)N-  

{n-N)\\ N J     * /Iy(n-N)\' 
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Observe that, since p is an integer bigger than 2, from the definition of the 
Pochhammer's symbol (p - n + N)N, we have F(n) = 0 if and only if N + p < n < 
2N-l+p. Then, there exist exactly N values of n such that deg T^x71 < n+N(p-l). 
In another case, we have degF^x" = n + iV(p - 1). 

mj     Case p—l = q. 
First, we assume that p-bq = -fc, fe = 0,1,..., N-l. In this case, by Lemma 6.10, 

deg^(x; iV-i) = (JV-i)(p-l), if 0 < JV-i < A; and deg^(^; JV-i) < (N-i)(p-l) 
fork + l<N-i<N. 

Therefore, for n > JV, we have deg J^V < n + Ar(p - 1) when i = 0,1,..., iV - 

jfe-1, and degjlN)xn =n + N(p-l) ifN-k<i<N.In this way, degf^x71 < 
n + N(p- 1) when iV<n<2iV-/c-l. 

For n > 2N — fc, we can observe that 

mm{N,n-N} 

F(n) =       S       Fiin), 
i=N-k 

where, by Lemma 6.9 i), 

Now, we give an explicit expression of F(n). Suppose 2N - k < n < 2N, then 
min{iV, n - N} = n - N, and using Lemma 6.9 ii) 

n~N   / AT\ n' 
F(n) = (-!)"   E    (^(i-H-^-*))^ N_ 

i=N-k   V       / V 

nlAT!    -^AW n-N 
-t-1)   (n_Ar)!      ^      VV \n-(2N-k)-i 

, ^N mm   ( n + k-N \ 
~[     '   (n-N)\ \n-(2N-k)J 

= (_1)iv(n+1_(2iv_fc))jv_^__. 

If n > 2iV, again by Lemma 6.9 ii), we have 

F{n) = {-!)»   t   (T)(i + 1-<*-fc»"-'(n-£-0l 
^ n!fc! -   /n-(2JV-fc)\ /   N 

~{    '   (n - (2iV - it))! ^ V * A*"* 

= (-1) 
JV n! fc! (n + k-N 

(n - (2Ar - fc))! 

= (-l)JV(n + l-(2JV-fe))Jv^-^I 
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Hence, if n > 2N - k, 

F(n) = (-l)^(n + 1-(2N- fe))^^^ = (-*-» 4- WNJ^J^ * 0. 

Now, we assume that p — bq ^ 0, — 1,..., — (N — 1) and thus, from Lemma 6.10, 
deg^(x; N — i) = (iV — i)(p — 1), i = 0,1,..., iV. As in the case p — 1 > q, we 

have degjf'V = n + N{p - 1), i = 0,1,.. .,min{iV,n - N}, degF^x" < 
n + N(p — 1), and also (6.11), where 

^(n) = (-1)* y . J (p-bq)N-i{n_N_.)V    i = 0,l,...,mm{N,n-N}. 

Using the same technique, we obtain 

F(n) = (p-bq-n + M)N '      ,    n > N. 

lfp—bq is a positive integer, then F(n) = 0 if and only iiN-\-p—bq <n< 2N — 1 + 
p-bq, that is, there exist precisely N values of n such that degT^x71 < n+N(p—l), 
and for the other values of n > N, F(n) / 0 and hence deg F^x71 = n + N{p — 1). 

In another case, deg!F^xn — n 4- N(p — 1), for all n > N.     U 

7. Recurrence relations and differential operators. As a direct conse- 
quence of Proposition 6.5, which relates the discrete-continuous Sobolev bilinear form 
Bg ' and the one defined from a semiclassical linear functional u, we can establish 
some relations between the monic Sobolev orthogonal polynomials {Qn}n and the 
monic orthogonal polynomials {Pn}m associated with the semiclassical linear func- 
tional u. In the sequel, for the sake of simplicity, we will denote 

kn = (u,P*}^0,    ~kn = B(
s
N\Qn,Qn)?0,    Vn>0. 

PROPOSITION 7.1.  The following formulas hold: 

n+N(p+l) 

i)    (x-c)Ncf>N(x)Pn(x)=     £     a^Qtix),    n>0, (7.1) 
i=r 

where r = max{A^, n — Nt},     (^J^lNfp+1\ = 1    and   ar    = —'—^= —• 

n+Nt 

n)   ^N)Qn{x)=       Y.      P^Pfc)*    ri>N{p + l), (7.2) 
i=n-N(p+l) 

vhere fQNt = F(n),    &lN(p+1) = Y^—- 
Kn-N(p+1) 

Proof   i)     Expanding the polynomial (x — c)N(j)NPn in terms of the Sobolev 
polynomials Qn, we have 

n+N{p+l) 

i=0 

(x-c)Ncj>N(x)Pn(X)=     £     a^Qiix), 
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where, taking into account Proposition 6.5, 

ai BfHQuQi) ki 

From the orthogonality of {Pn}n and since T^Qi = 0 for i < JV, we deduce that 
a^ = 0 when 0 < i < r = max{7V, n - iVt}. 
n^)     Because of Proposition 6.7, the expansion of the polynomial T^Qn in terms 
of Pn is 

n+Nt 

^N)Qn{x) =   2  ^^W- 
2=0 

The coefficients /3^n^ can be computed using again Proposition 6.5, and therefore 

Finally, from the orthogonality of {Qn}n it follows fli     =0for0<i<n — N(p+ 1). 
D 

From the symmetry of the linear operator J7^, we can obtain a difference-di- 
fferential relation satisfied by the Sobolev orthogonal polynomials with respect to the 
Sobolev bilinear form (2.1), where u is a semiclassical linear functional. 

PROPOSITION 7.2 (Difference-Differential Relation). For every n > N, the fol- 
lowing relation holds 

n+Nt 

(7.3) fiN)Qn(x) = Y, 7|n)Q^), 
i=r 

h (AT AT^       (n) rv   \ J     (n)        ^S      {QmF^'Qr) where r = max{iV,n — Nt}, Tn+Nt — F(n) and jr    = ——-—= -. 
IXnp 

Proof. Consider the Fourier expansion of the polynomial F^Qn in terms of Qn 

which, by Proposition 6.7, is 

n+Nt 
(n), 

i=0 

Then 

(„) = gW^^Qn.QQ  = B\P (Qn^Qj) 
% B^iQuQi) ki 

where we have used Theorem 6.6. Notice that 7^ = 0 for 0 < i < N and that the 

orthogonality of the polynomials {Qn}n leads to 7^ =0for0<i<n — A^. So the 
result follows.     D 
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(n) 
REMARK. In formulas (7.1) and (7.3), when r = n — Nt, the coefficients ar ) and 

jr    can explicitly be given by 

ftj'p IXif 

Recall that the values of ^(n) had been calculated in Theorem 6.11. 
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