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ON A GENERAL CLASS OF INTERIOR-POINT ALGORITHMS FOR 
SEMIDEFINITE PROGRAMMING WITH POLYNOMIAL 

COMPLEXITY AND SUPERLINEAR CONVERGENCE* 

JUN Jit, FLORIAN A. POTRA*, AND RONGQIN SHENG§ 

Abstract. We propose a unified analysis for a class of infeasible-start predictor-corrector al- 
gorithms for semidefinite programming problems, using the Monteiro-Zhang unified direction. The 
algorithms are direct generalizations of the Mizuno-Todd-Ye predictor-corrector algorithm for linear 
programming. We show that the algorithms belonging to this class are globally convergent, provided 
the problem has a solution, and have the best known complexity. We also give simple sufficient con- 
ditions for superlinear convergence. Our results generalize the results obtained by Potra and Sheng 
for the infeasible-interior-point algorithm proposed by Kojima, Shida and Shindoh and Potra and 
Sheng. 

1. Introduction. In this paper, we consider the semidefinite programming 
(SDP) problem: 

(1.1) (P)        mm{C9X:Ai9X = bi,    i = 1,... ,m, X y 0}, 

and its associated dual problem: 

m 

(1.2) (D)        m<xx{bTy:J2yiAi + S = C,    S^o] 
2=1 

where C, X, and Ai are symmetric matrices in Rnxn, b =  (&i,... ,bm)T  G Mm, 
G • H — TY(G

T
H), and X y 0 indicates that X is positive semidefinite. 

SDP arises in many scientific and engineering fields, including system and control 
theory, combinatorial optimization, and eigenvalue optimization. Over the last couple 
of years SDP has attracted very active research, focusing on the extension of the 
existing methods in LP to the context of SDP. Several generalizations of the Mizuno- 
Todd-Ye predictor-corrector method for SDP have been recently analyzed by Lin and 
Saigal [6], Luo, et al. [7], Kojima, et al. [3, 4], Potra and Sheng [12]-[14], and Zhang 
[18]. The algorithm proposed by Kojima, et al. [3] and Potra and Sheng [13] uses 
the HRVW/KSH/M direction and has polynomial complexity. Also, Potra and Sheng 
[13] proposed a sufficient condition for the superlinear convergence of the algorithm 
while Kojima, et al. [3] established the superlinear convergence under the following 
three assumptions: 

Al    SDP has a strictly complementary solution; 
A2    SDP is nondegenerate in the sense that the Jacobian matrix of its KKT 

system is nonsingular; 
A3    the iterates converge tangentially to the central path in the sense that the size 

of the neighborhood in which the iterates reside must approach zero, namely, 

lim \UXk)isk(Xk)2 - (Xk • 5*/n)l|| J(Xk • Sk/n) = 0. 
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These were the first two papers investigating the local convergence properties of 
interior-point algorithms for semidefinite programming. 

More recently, Kojima, et al. [4] proposed a predictor-corrector algorithm using 
the Alizadeh-Haeberly-Overton search direction, and proved the quadratic conver- 
gence of the algorithm under Assumptions Al and A2, but the algorithm does not 
seem to be polynomial. Using the Nesterov-Todd search direction, Luo, et al. [7] 
investigated a symmetric primal-dual path following algorithm, which was proposed 
originally by Nesterov and Todd [11] and derived differently in [15]. They proved the 
superlinear convergence under Assumption Al, while the Assumption A3 is enforced 
by the algorithm. In a recent paper, Potra and Sheng [14] proved the superlinear 
convergence of the infeasible-interior-point algorithm of Kojima, et al. [3] and Potra 
and Sheng [13], under Assumption Al and the following assumption 

A4    lim^oo XkSk/VX^Sk = 0. 

Among these four assumptions, Assumption A1 is standard. Assumptions A3 
and A4 are similar, but Assumption A4 is a little bit weaker than Assumption A3. 
As shown by the example in [3], Assumption A3 or A4 is also needed to ensure the 
duality gap being reduced superlinearly. However, Assumption A3 or A4 could be 
enforced by proper parameter selection in the algorithm (cf. [7]). 

In a very recent paper, Monteiro and Zhang [10] proposed a unified analysis for 
a class of long-step interior-point algorithms for SDP. In what follows, we will call 
the unified direction the Monteiro-Zhang direction. Using this direction, we pro- 
pose a unified analysis for a class of infeasible-start predictor- corrector algorithms for 
SDP, which generalize the Mizuno-Todd-Ye predictor-corrector algorithm for linear 
programming. By extending the analysis of Potra and Sheng [13, 14], we show that 
this class of predictor-corrector algorithms shares similar global and local convergence 
properties with one of its members — the infeasible-interior-point algorithm proposed 
earlier by Kojima, et al. and Potra and Sheng. In particular we prove polynomial 
complexity for general problems and superlinear convergence for problems satisfying 
Assumptions Al and A4. 

Notation. The following notation is used throughout the paper. W, M?j_, and 
M^.+ denote the p-dimensional Euclidean space, the nonnega/tive orthant of W, and 
the positive orthant of W, respectively. The set of all p x q matrices with real 
entries is denoted by MPXq. The set of all p x p symmetric matrices is denoted by 
Sp. For Q £ Sp, Q y 0 means Q is positive semidefinite and Q y 0 means Q is 
positive definite. The trace of a p x p matrix Q is denoted by Tr(Q) = ^=1[Q]M. 

The eigenvalues of Q 6 Sp are denoted by Xi(Q), i = 1,... ,p, and its smallest 
and largest eigenvalues are denoted by Xm'm(Q) and AmaX(Q), respectively. Given P, 
Q e Wxq, the inner product between them is defined as P • Q = Tr(PTQ). The 
Euclidean norm of a vector and the corresponding norm of a matrix are both denoted 
by || • ||; hence, ||Q|| = max{||Q2/|| : \\y\\ = 1}. The Frobenius norm of a matrix Q is 

WQWF = y/ZUEUM' Q* = W) means WQW" is bonded, while Mk = 0(uk) 

means Mk/vk = 0(1). 

2. The unified direction. Throughout this paper we assume that both (1.1) 
and (1.2) have finite solutions and their optimal values are equal. Under this assump- 
tion, X* and (y*)S*) are solutions of (1.1) and (1.2) if and only if they are solutions 
of the following nonlinear system: 

(2.1a) Ai • X = 64,    i = 1,... , m, 
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771 

(2.1b) Y,yiAi + s = c> 

(2.1c) X5 = 0,    X y 0,    5 >: 0. 

We denote the feasible set of the problem (2.1) by 

T ={(X,y,S) G S^ x Rm x 5^ : (X,2/,5) satisfies (2.1a) and (2.1b)} 

and its solution set by J7*, i.e., 

F* = {(X,y,S)eT:X^S = 0}. 

The residues of (2.1a) and (2.1b) are denoted by: 

(2.2a) Ri = bi — Ai • X,    i = 1,... , m, 
771 

(2.2b) Rd = c-Y,yiAi-s. 
i=l 

For any given e > 0 we define the set of e-approximate solutions of (2.1) as 

jr = {Z = (X,y,S) e SI x Rm x S^ : 

X*5<e,    |Ui|<€,    i = l,...,m,    prf|| < e}. 

In [18], Zhang defines the linear transformation 

Hp(M) = i [PMP'1 + (PMP-1)7] 

for a given invertible matrix P and observes that if P is invertible and M has a real 
spectrum, then 

HP(M) = TI   iff   M = TL 

Thus, the system X5 = 0 is equivalent to the system Hp(XS) = 0, since XS is 
similar to the positive definite matrix S^XS^. Therefore, (2.1) is equivalent to 

(2.3a) Ai • X = bi,    i = l,...,m, 
772 

(2.3b) Y,V*A* + S = C> 
i=l 

(2.3c) Hp(XS) = 0,    X>0,    StO- 

A perturbed Newton method applied to the system (2.3) leads to the following linear 
system: 

(2.4a) Hp(US + XV) = £TI - Hp(XS), 

(2.4b) Ai • U = (1 - ORi,    * = l,...,m, 
771 

(2.4c) J^wiAi + V = (l-0Rd 
1=1 
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where r > 0 is a parameter, and £ G [0, 1]. Monteiro and Zhang [10] established 
the polynomiality of a long-step path following method based on the search direction 
(U,w, V) obtained from (2.4) when the scaling matrix P belongs to the class 

(2.5) {W^ : W G 8$+ such that WXS = SXW}. 

Being motivated by Monteiro and Zhang's work, in this paper we consider the follow- 
ing set of permissible matrices associated with (X, S) G 5^+ 

P^S) = {P : P G Mrixn is invertible and PXSP'1 G Sn}. 

It is interesting to note that the members of P(X, S) could be nonsymmetric while 
those in (2.5) are only symmetric. We also note that Theorem 3.2 of [16] indicates 
that there is a unique symmetric solution ([/, IU, V) G Sn x Mm x Sn to the linear 
system (2.4) for every P G P(X, S). The following characterization of P(X, S) will be 
frequently used in our analysis. 

LEMMA 2.1. Let X, S G Sl+. Then, 

(2.6) P(X, S) = {P : xipTPXi G S£+ comnrntes twtt X^X* } 

(2.7) = {P : S-ipTPS-z G <S£+ commutes with 5^X5*}. 

Proof. The lemma follows from the fact that 

(2.8) PXSP'1 = (PXSP'Y 

is equivalent to both 

[XipTPXi][xiSXi] = [X25X^][X2PTPXi] 

and 

[5-*PTP5-i][5iX5i] = [S^XS^lS-^pTpS-^] . 

D 

We mention that the above lemma can also be derived from Proposition 3.4 and 
Theorem 3.1 of Monteiro and Zhang [10]. Given a matrix P G P(X, 5), let us define 

(2.9) Jx = X^PTPX^    and    Js = 5""*PTPS"*. 

It follows from Lemma 2.1 that Jx, Js € 5++ commute with X25X2 and 

S^XS*, respectively. 

LEMMA 2.2.   For any P G P(X, 5), tfiere exzs^ orthogonal matrices Qx and Qs 

such that 

P = Qxjlx-i =Q8jh
i • 

Proof. In view of (2.9), we obtain 

[jlx-ip-^jlx-ip-1] - / 
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and 

[Jfl
iSip-1]r[JaiSiP"1] = J. 

The lemma is proved by taking Ql = jlX'ip-1 and Q* = JJS^P"1. D 
Note that Jx — Js = I and P = X~2or52 define the directions formulated 

by Monteiro [9] which are particular cases of the direction originally proposed by 
Kojima, et al. [5]. The direction defined by Jx = Js = I and P = S* was derived 
independently by Helmberg, et al. [2]. Finally, the case Jx = [XiSX*]^, or Js = 
[52X52]~2 corresponds to the Nesterov-Todd direction [11] (see [16] and [15] ). 

3. A class of predictor-corrector algorithms. In this section, we propose 
an infeasible-interior-point predictor-corrector algorithm for solving (2.1), which gen- 
eralizes the interior-point method for linear programming proposed by Mizuno, et al. 
[8]. The algorithm performs in a neighborhood of the infeasible central path: 

C(T) = {Z = (X,y,S) £ 5?+ x Mm x S£+ : 

X5-rJ,    Ri = (T/T0)R0
i:    i = l,...,m,-   Rd = (r/r0)^}. 

The positive parameter r is driven to zero and therefore the residues are also driven 
to zero at the same rate as r. The iterates reside in the following neighborhood of 
the above central path: 

jVfr.r) = {(X,y,S) € 5?+ x Mro x S^+ : \\Hp(XS) - TI\\F < 7T} 

= {(X,y,S) € «S?+ x Rm x «S»+ : \\PXSP~1 - TI\\F < 7T} 

= {(X,y, 5) e 5?+ x Rm x ^+ :     ^(^(XS) - r)2      < 7r} 

= {(X,y,S) G <S?+ x Rm x .5?+ : ||XiSX5 - r7||F < 7r} 

where 7 is a constant such that 0 < 7 < 1. It is interesting to note that the neigh- 
borhood ./V(7, r) is independent on the scaling matrix P. Throughout the paper we 
use the notation: 

(3.1) tt = supminl/^, fts} 

where KX = WJxWWJ^Wi Ks = ll^sllll^r1!!, and the supremum is taken over all matrices 
P that are used in our algorithm. The K in (3.1) is known for several important 
examples. If P = X~^5 then Jx = / and K = 1. If P = S*, then Js — I and K — 1. 
For the Nesterov-Todd direction, we have Jx = {X^SX^)^ or Js = (S^XS^)~i, 
and thus K < y/{\ + /?)/(!- /?) < >/3 for a = 0.19 and /? = 0.31. More generally, if 
Jx = (xiSXiy or Js = (SiXSi)"0- for <T G M, then 

« <((1 + /?)(!- /?))kl <3kl    for   a = 0.25*3-|ai/2,    f3 = 0.41 * S'^2. 

Throughout the paper, we assume that the spectral condition number of Jx or 
Js is bounded and some upper bound on K, is known. The neighborhood size in our 
algorithm will depend on the quantity K. First, let us choose two positive parameters 
a, /? satisfying the inequalities 
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(3.2b) 0-a>n(l/^K). 

For example, a = 0.25/v^, 0 = OAl/y/H verify (3.2). We note that the parameter a 
defined in (3.2) always satisfies ay/x, < 0.5 and hence a < 0.5, which will be frequently 
used in our analysis. 

At a typical step of our algorithm we are given (X, y, S) G Af(a, r) and obtain a 
predictor direction (U,w,V) G Sn x M™ x Sn by solving the linear system (2.4) with 
£ = 0. By taking a steplength 9 along this direction, we obtain the points 

X{9) = X + 6U,    y(0) =y + 6w,    S(9) = 5 + 0V. 

Theoretically we would like to compute the step length 

(3.3) 

0 - max J£ € [0,1] : (j>2(\i(X(0)3(0)) - (1 - 9)T)A \ 0(1 - 0)T9  \/9 G [0,0]}. 

However this involves computing the root of a complicated nonlinear equation. In 
Lemma 3.5, we will show that 

(3.4) 9>9 

where 

(3.5) 9 = 
V/l + 4<V(/?-a) + l: 

and 

(3.6) s^-WPUVP-1 

r 

Actually, ^is the positive root of 8T9
2
 + (/? - a)6> - (/? - a) = 0. In what follows we 

assume that a steplength 9 satisfying 

(3.7) 9>9>9 

is computed, and we define 

(3.8) X = X + dU1        y = y + 0w,        S = S + 0V,        T+ = (1-0)T. 

In case 0 = 1 (which is very unlikely), it is easily seen that (X,y,S) G J^* and 
therefore the algorithm terminates with an exact solution. Now suppose that 0 < 1. 
Then X and S are symmetric positive definite matrices since \i(X(0)S(0)) > (1 - 
/3)(1 - 0)T> 0,J = 1,... ,n, V0 G [0,0]. Therefore we can define the corrector 
direction (U,w,V) as the unique symmetric solution of the following linear system 
(2.4) with (X,y,S) = (X,y,§), P = Pe F(X, 5), and r = r+. By taking a unit 
steplength along this direction we obtain a new point 

(3.9) X+=X + C7,    y+ = y + w,    S+ = 5 + y. 

Clearly 

(3.10) Rf = (1- 0)RU i = 1,... , m,    i?+ = (i _ 0)Rd. 

Summarizing, we can formally define our algorithm as follows: 

ALGORITHM 3.1.   Choose (X0,y0,S0) G Af(a,T0) with r0 = /i0 = (X0 . S0)/n 
and set ip0 = 1. For k = 0,1,..., c?o ^li through A5: 
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Al   Set X = Xk, y = yk, S = Sk and define Rd = C - YZLi V^ - S, Ri = 
bi — Ai • X, i = 1,... ,ra. 

A2   If max{X • S,\\Rd\\,\Ri\J = 1,... ,m} < e, then report (X,y,S) G ^ and 
terminate. 

A3   Find the unique symmetric solution U,w,V of the linear system (2.4) with 
f = 0, define X,y,S, r+ as in (3.8), and set ^ — (1 — O)^, for a 6 satisfying 
(3.7). If 8 — I, then report (X,y,S) G J7* and terminate. 

A4   Find the unique symmetric solution U^iv^V of the linear system (2.4) with 
£ = 1, (X,2/,S) = (X,y,S), P = P, r = T+, and define X+,;*/+,S+ as in 
(3.9). 

A5   Set Xk+1 = X+, Sk+1 = s+; r*+1 - r+
; 0k = fl, T/;^

1
 = ^, Rk

d = Rd, 
Rt = Ri, i = 1,... ,ra. 

The following results of Monteiro [9, Lemma 3.3] will be used in the analysis of 
Algorithm 3.1. 

LEMMA 3.2.   Suppose that M £ Wxp is invertible.   Then, for any E G Sp, we 
have 

(3.11) Amax(£) < ^Ama^MEM"1 + (MEM-1)?), 

(3.12) Amin(£) > ^^(MEM-1 + (MEM-1)7), 

(3.13) PHJP < ^IIMEM-1 + (MEM^fWp . 

LEMMA 3.3. Let (X, y, S) G ^(7, r) for some 7 G [0, I/A/S) and r > 0. Suppose 
that (Dx,Ay,Ds) G Mnxn x Rm x Rnxn is a solution of the linear system: 

(3.14a) Hp(DxS + XDs)=H, 

(3.14b) Ai#i?a.=0,    i = l,...,m, 

(3.14c) J^A^Ai + D^O, 
i=l 

for some H G Rn><n.  Then, the following three statements hold: 
(a) if KX < KS, then 

\\x^DXn2
F^A\x^Dxx-Hi< . 1™  ■ 

(i - v^7r 

f6J «/ Kg < Kx, then 

||g*2?,g*||^ + T3||5-*I?.S-*||^<(1j|^|y)a; 

rc;||Pi3.iJ.P-»||J,<^gf^:. 

Proof. Let us prove (a). Suppose that K^ < KS, then K^ < n. Writing 

2H = 2HP(XDS + DXS) 

= PXDsP-1 + PDxSP-1 + [PXDsP-1 + PDxSP-l}T 
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= PXDsP-1 + rPDzX-'tp-1 + PDXX-1P-1{PXSP-1 - TI) 

+ [PXDsP-1 + TPDXX^P-
1
 + PDXX-1P-1(PXSP-1 - TI)]

T 

= B + BT + PDXX^P-^PXSP-
1
 - TI) 

+ [PDa.X-1p-1{PXSP-1 - TI)}
T 

where 

B = PXDsP-1 + rPDxX-ip-1, 

we have 

2||#||F > ||B + BT\\F - 2\\PDXX-
1
P-

1
(PXSP~

1
 - TI)\\F 

> \\B + BT\\F - 2\\PDXX-1P-1\\F\\PXSP-1 - TI\\F 

> \\B + BT\\F - 27T\\PDXX-
1
P-

1
\\F. 

According to Lemma 2.2, P = QxJiX   2, so that we have 

WPDXX^P^WF = WQxJiX-iDvX^xij-^QTWF 

= \\j£x-iDxX-1xij;i\\F 

ZWdwWJx^WWx-lDxX-iWF 

= y/^\\X-iDxX-i\\F < yfc\\X-lDxX-i\\F. 

Using Lemma 3.2 with M = PX? and E - XiDsX^ + TX''^DXX'~^, we obtain 

\\B + BT\\F > 2\\xiDsxi +TX-3DxX-i\\F 

= 2(\\X^Dsxi\\2F + T2\\X-zDxX-i\\2F)i    (since Dx»Dt = 0). 

Therefore, 

\\H\\F > ±\\B + BT\\F - 7T||P£>XX-
1
P-

1
||F 

> (\\xiDtxl\\2F +T2\\X-iDxX-i\\2F)i - ^rr\\X-?DxX^\\F 

>(\\xiD.xi\fl
F + rl\\X-lDxX-ifF)Hl-'Y\/K), 

which proves (a). We can prove (b) similarly. To prove (c), we may assume KX < KS 

without loss of generality, and deduce 

WPD^P^WF = \\QxJiX-2DxDsXzJx *QT\\F 
>-i|i„_ nn   T2Y-?n  n v? r  2/9T| 

= \\jlx-iDxDsxij;i\\F 

<[l|Jl|||kx"5||]||X-5DXJDsxl||F 

<yfc[T\\X-lDxX-l\\F][\\xlDtxi\\F]/T 

<Ml)[T2\\X-lDxX-i\\2F + \\xlDsxi\\%]/T 

^ 2(1 -U)^     ^^ 
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D 
The next corollary will be essentially used in the proof of global and local con- 

vergence properties of Algorithm 3.1. 

COROLLARY 3.4.   Under the hypothesis of Lemma 3.2, 

(l+7)l|tf|LF 

T\\X-tDxX-l\\F< 

1--A7 

l|g||F 
(l-v^7)(l-7)- 

Proof.  If KX < K,8, then the results follow immediately from (a) of Lemma 3.2. 
Suppose K,X > his. Then from (b) of Lemma 3.2, we obtain 

Hence, 

\\XiDsX
k*\\F = \\[X*Si]S-vDtS-*[S*Xv]\\F 

<\\xisi\\2\\S-iDsS-^\F 

= Xmax(xiSXi)\\S-iDsS-i\\F 

<(l+7)l|g||F 
_      1 - -^7 

T\\X-IDXX-1\\F = T\\[X-iS-i}SiDxS2[S-3X-i}\\F 

<T\\X-$S-1\\2\\SIDXSHF 

= T\\slDxsHF/\mia(xlsxl) 

< 
(l-^7)(l-7) ' 

D 
The next lemma justifies our definition of steplength 6 in the algorithm. 

LEMMA 3.5. // (X, y, S) e Af(a, r), then 6 € [0,1] defined by (3.3) satisfies 9>§ 
where 0 is given by (3.5) and (3.6). 

Proof. By definition, we have 

X(0)S(0) - (1 - 0)TI = (X + 0U)(S + 0V) - (1 - 0)TI 

(3.15) = (1 - 0){XS - TI) + 61X5 + 0{XV + US) + e2UV . 

If we set 

R{0) = P[X(e)S{0) - (1 - 0)TI]P-
1
, 

then, in view of (3.15) and (2.4a) with £ = 0, we obtain 

R(0) + R{0)T = 2(1 - 0){Hp(XS)- TI) + 0[2Hp(XV + US)PXi 

+ 2Hp(XS)] + O^PUVP-1 + (PUVP-Y] 
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= 2(1 - 6)(xisxi - rl) + e2[puvp-1 + (PUVP-1)7]. 

Therefore, 

^\\R{6) + it:(^)T||F < (1 - 0)\\X*SX* - TI\\F + O^PUVP^WF 

(3.16) < ar(l - 6) + 62
8T. 

Hence, for any given parameter v G [0,1), we must have X{9) >- 0, 5(0) >- 0 for all 
0 G [O,min(0,z/)). Otherwise, there must exist 0 < 0' < min(0,z/) < z/ < 1 such that 
X^7^^') is singular, which means 

(3.17) Amin(X(0')S(0') - (1 - ^)r) < -(1 - #)T . 

However, using (3.12) with M = P and E = X{0')S{6') - (1 - 6i')r, we have 

Ami„(X(0')S(0') - (1 - e')r) > ^Amin(i?(^) + R{ff)T) 

>-l\\R(ff) + mfrjr\\F 

> -[aT(l - 0') + {fffSr)    (from (3.16)) 

>-/?(!-<?>, 

which contradicts (3.17). Since X(6) >- 0, its square root X(6)^ exists and is uniquely 
defined. Applying (3.13) of Lemma 3.2 with E = X{e)$S(0)X(e)l - (1 - 0)TJ, 

M = PX(6i)5, and noting that U^) = MEM'1, we obtain 

£(A<(X0W)) - (1 - 0)r)2) 2 = ||X(«)i5(6l)X((9)i - (1 - e)rI\\F 

<^||fl(0)+^(0)T||F 

< ar(l - 0) + 02(5r    (from (3.16)) 

< /3(1 - 0)r,    for all 0 < 0. 

Therefore, (X(0),y(0),5(0)) G A/*^, (1 - 0)r), for all 0 G [O,min(0,z/)]. If 0 < 1 we 
can choose v = 9, which gives 0 > 0. Finally, if 0 = 1, then (X(0),2/(0), 5(0)) G 
A/X/?, (1 -0)r), for all 0 G [0,1), which implies X(l) t 0, 5(1) ^ 0 and X(l)5(l) = 0, 
and therefore 0 = 1 = 0. □ 

Before stating our main result let us note that the standard choice of starting 
points 

X0 = ppI,    2/0=0,    S0 = pdI 

is perfectly centered and satisfies (X0,2/°, 5°) G Af(a, r0), as required in the algorithm. 
We will see that if the problem has a solution, then for any e > 0 Algorithm 3.1 

terminates in a finite number (say K€) of iterations. If e = 0 then the algorithm 
is likely to generate an infinite sequence. However it may happen that at a certain 
iteration (let us say at iteration KQ), we have 0 = 1, which implies that an exact 
solution is obtained, and therefore the algorithm terminates at iteration KQ. If this 
(unlikely) phenomenon does not happen, we set KQ = oo. 
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THEOREM 3.6. For any integer 0 < k < KQ, Algorithm 3.1 defines a triple 

(3.18) {Xk,y\Sk)eN(a,Tk) 

and the corresponding residuals satisfy 

(3.19) Rk
d = ^kRl    Rki=i>kRl   * = l,...,m, 

(3.20) Tk = xpkT0, 

(3.21) (1 - a)Tk < nk = {Xk • Sk)/n < (1 + a)Tk 

where 

k—l 

3=0 

and Qi is defined by (3.7). 

Proof The proof is by induction. For k = 0, (3.18)-(3.21) are clearly satisfied. 
Suppose they are satisfied for some k > 0. As in Algorithm 3.1 we will omit the index 
k. Therefore we can write 

■(A:,tf,S)G^(a,r),. 

Rd = ^R0
d,    12i = ^i2?,< = l,... ,m, 

r = ^T0,     (l-a)r < /x < (1 +a)r. 

The result^in (3.19) and (3.20) follow immediately from (3.8) and (3.10). From the 
fact that ([/, ?D, V) is the solution to the system (2.4) with £ = 1, (X, ?/, 5) = (X, £, 5), 
P = P7 r = T

+
, together with (3.9), we obtain 

X+5+ - T+
 I =(x + U)(s + V)- T+

I 

(3.22) =X5-(l-e)r/ + Xc74-I75 + C7F. 

Define 

5 = P(X+5+-r+/)P~1. 

Then, (3.22) implies 

B + BT = 2[iJp(X5) - (1 - £)TJ] 

-i 
+ [2Hp{us + xv)] + [Pf/yp   +(P[/yp  y] 

(3.23) =[Pi7yp   +(P[/yp   )T]. 

Since k < KQ, we see that £ < 1 and that X y 0, S >- 0. Applying (c) of Lemma 3.3, 
we deduce 

0^
2
(1-£)T 

-   2(1-V^^)2 



560 J. JI, F. A. POTRA, AND R. SHENG 

(3.24) < a(l - §)T = ar+        (from (3.2)). 

Without loss of generality, we may assume K,X < K?- Hence by applying (a) of 
Lemma 3.3 with H = (1 - 6)TI - Hp(XS), we have 

h      h       \\HP{xs)-{i-e)Ti\\F       p l|x   ux   "^     {i-^m-e)r    -T--w^<l> 
which implies that I + X'^UX^ y 0, and therefore, X+ =X + UyO. Thus (X+)i 
exists. Using (3.22), (3.23), applying Lemma 3.2 with E = (X+)iS+(X+)i -r+I, 
M = P(X+)i, and noting that B = MEM-1 .we have 

||(X+)^+(X+)^ -r+/||^ < i||5 + ^T||i, 

= -HPtfVT     + [PC/FP    J^ ||F        (from (3.23)) 

^-lr <\\PUVP    \\F 

(3.25) < ar+        (from (3.24)). 

The above inequality implies that 

Amin((X+)iS+(X+)i) > (1 - a)T+ > 0. 

Hence (X+)iS+(X+)i y 0, which gives S+ y 0. In view of (3.25), this shows that 
(3.18) holds for k + 1. Finally, (3.21) is an immediate consequence of (3.18). D 

4. Global convergence and iteration complexity. In this section we assume 
that J7* is nonempty. Under this assumption we will prove that Algorithm 3.1, with 
e = 0, is globally convergent in the sense that 

lim fik = 0,     lim R* = 0,     lim -R* = 0, i = 1,... , m. 
k-*oo k-^-oo k—>oo 

In the sequel, we will frequently use the following well-known inequality: 

(4.1)    UMiMsllF < min{||Mi|| ||M2||F , ||Mi||F|||M2||},    for any Mu M2 G Mnxn. 

LEMMA 4.1 (Potra-Sheng[13], Lemma 3.2). Assume that J7* is nonempty. Then 
for any (X*,y*,S*) G J7* and (X,y,S) eAf(a,r) we have 

(4.2a) X^S0+X0^S<(2 + a + Qnr0 , 

(4.2b) X • 5* + X* • 5 < ((1 + a + ^)/(l - I/J) + C>r 

where 

(4.3) C = (X0 • S* + X* • 50)/(X0 • 5°). 

Lemma 4.1 shows that the pair (Xk, Sk) generated by Algorithm 3.1 is bounded. 
More precisely, we have the following corollary, which can easily be deduced from 
Lemma 4.1 and Theorem 3.6. 

COROLLARY 4.2 (Potra-Sheng [13], Corollary 3.3). Under the hypothesis of 
Lemma 4-1 we have 

(4.4) \\X^{SQ)^\\F < V^ + a + CW0, 
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(4.5) \\Si(X0)i\\F<y/(2 + a + Qm», 

(4.6) \\xi\\F<\\(S0)-i\W(2 + a + 0nr^ 

(4.7) 115^\\F < \\(X0)-i 11^(2 + a + C)nrO, 

(4.8) WX^S^||2 = \\xiSXi|| <(l + a)T, 

(4.9) ||X-25-2||2 = HX-^^X-ill < ^   1  .   . 
(1 — a)r 

LEMMA 4.3. Let {X,y,S) G jV(a,r), P G P(X,5). T/ien, 
(i) max{Kx,Ks} < 3K; 

(ii) /or any M G M"x", \\HP(M)\\F < UPMP-MIF < y/iK\\X-iMXi\\F. 

Proof. In view of (2.9), we have 

Jx = [xiSz}Js[X2Si}T  and  J"1 = [(X5S5)-if j-i^S*]-1. 

Therefore we obtain, 

IIJxIl < IIJ.II ll^^5||2 = \\Js\\XmaK(xhsxi) < (1 + a)r||Js||, 

ll^"1!! < ll^ll Wixisi)-1^ = llJr'IIAminCxisxi) < H^li/ai-^r). 

Hence, 

(4.10) fcx = ||js|| HJ-
1
!! < ii£||J8|| HJr1!! < 3fcs. 1 — a 

Similarly we can prove ks < 3kx. Thus, (i) follows immediately, (ii) can be proved by 
noting that 

||HP(M)||F < HPMP-1!^ 

= WQXJ^X-^MX^^QIWF 

= \\J^X-iMXijxi\\F 
<^;\\x-iMxi\\F 

<V3^\\X-iMXi\\F. 

D 

LEMMA 4.4. Suppose (X,y,S) G J-, and denote 

T = TP[xi{S0 - S)xi +X-i(X0 - X)SXi] - X^SX^, 

Tx=ipX-5(X0-X)X-z, 

Ts = i>xi(S0-S)xi. 

Then the quantity S defined by (3.6) satisfies the inequality: 

S < ^L (T\\TX\\F + 4V3^||T||F) (IIT.IIF + 3V3^||T||F) . 



562 J. JI, F. A. POTRA, AND R. SHENG 

Proof. It is easily seen that (17 + V>(^0 - X), *> + ^(tf0 - y), ^ + ^(5° - 5)) 
satisfies (3.14) with if = Hp(M) where 

Af = ^(X(50 - 5) + (X0 - X)S) - XS. 

Hence, according to Corollary 3.4, we have 

T\\X-Hu + 1>(X0-X))X-t\\F < T, ^      -:<m\\r, 
(1 — y/KOL)\\ — a) 

\\xHv + i>{S°-S))xHF< (1 + a)ll5l|F <3||g||F. 
1 — i/Ka 

By (ii) of Lemma 4.3, we have 

\\H\\F = \\Hp{M)\\F < y/zii\\X-?MX2\\F = \/M\T\\F- 

Therefore 

T\\x-lux-t\\F < T\\TX\\F + q\H\\F < T\\TX\\F + 4V3^||r||ir, 

\\XWX* \\F < \\TS\\F + 3\\H\\F < \\TS\\F + SV3K\\T\\F. 

Again, using (ii) of Lemma 4.3, we deduce 

6 = \\PUVP~1\\/T<V3^\\X~iuVXi\\F/T 

<V3^[T\\X-3UX-i\\F][\\xivxi\\F]/T2 

/3K 
<^{T\\TX\\F + 4V^\\T\\F) (HT.IIiP + a^lTlli,). 

Q 

LEMMA 4.5.  Under the hypothesis of Lemma 4-4 'we have 

(4.11) 8 < 3.5«;L5 (42.6(2.5 + Qndo + T.SVn)2 , 

where 

do=max(||(X0)-i(X0-l)(Z0)-i||F, ||(50)-i(50-5)(50)-5||F). 

Proof. Using the notation of Lemma 4.4, and Corollary 4.2, we can write 

\\T\\F < nx^is* - S)xl\\F + ^\\x-^{x0 - x)sx^\\F + \\xisxt\\F 

= V||^^(50)5(50)-5(50 - 5)(S0)-i(50)2Xi|\F 

+TP\\X-*S-%S*{X
0
)*{X

0
)-*{X

0
-X){X

0
)-*{X

0
)IS*S*X

1
*\\F 

<V||x4(50)i||2||(50ri('50-5)(S0)-^llF 
+V||X-25-5||||^(X0)5||2||X555||||(X0)-5(.Z0-X)(X0)-5||F 
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+y/n\\X*SX*\\ 

< ^(2 + a + Onr0do(l + i^) + v^(l + a)r 
1 — a 

= r[2(2 + a + C)ndo/(l - a) + (1 + a)v^] 

<r[2(5 + 2C)ndo + 1.5Vn|. 

Also, 

||^||F<^||^"^-iS2(X0)i(X0)-2(X0-X)(X0)-i(X0)2525-2X-i||F 

<^\\X-iS-i\\2\\Si{X0)i\\2do 

^(2 + a + Qy 
T(1 - a) 

(2 + a + Qn 

^ il>(2 + a + Qnr0 ^ 
S  7^ x «l r(l - a) 

a 
-do <(5 + 2C)nrfo, 

and 

||Ts||Jp<7/;||xi(50)^(50)-^(50-5)(50)-i(50)ix^|| 

<^||xi(50)^||2do 
< t/>(2 + a + C)^0do = (2 + a + Qnrdo 

< (2.5 +Qnrdo. 

Then (4.11) follows from Lemma 4.4. D 

According to Lemma 3.5 and Lemma 4.5, it follows that if JF* is not empty, then 
the step length 9k defined by (3.7) is bounded away from 0. This implies global 
convergence as shown in the following theorem. 

THEOREM 4.6. 7/J7* is not empty, then Algorithm 3.1 is globally convergent at 
a linear rate. Moreover, the iteration sequence (Xk,yk,Sk) is bounded and every ac- 
cumulation point of (Xk,yk,Sk) belongs to F* (i.e., is a primal dual optimal solution 
of the SDP problem). 

Using Lemma 4.5, we can easily deduce the following result. 

THEOREM 4.7. Suppose that T* is nonempty and that the starting point is chosen 
such that there is a constant 7* independent of n satisfying the inequality 

(2.5 + C)max(||(X0)-i(X0-X)(X0)-i||F, ||(50)-^(50 - 5)(S0)-i||F) 

<n~i7*, 

for some (X,y,S) € J7.  Then Algorithm 3.1 terminates in at most O(^y/nln(eo/e)) 
iterations, where 

(4.12) eo = max{A-0«50,||iJS||,|ii?|,* = l,...,m}. 

COROLLARY 4.8. Suppose that T* is nonempty and that the starting point is feasi- 
ble, i.e., (X0,2/0,5°) E F. Then Algorithm 3.1 terminates in at most 0(Ky/n\n(eo/e)) 
iterations, where eo is defined by (4-12). 
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THEOREM 4.9. Suppose X0 = 5° = pi, where p > 0 is a constant such that 
11**11 < P, US'*!| < p for some (X*,y*,S*) e T*. Then the step length dk defined by 
(3.7) satisfies the inequality 

(4.13) 0k > 
95Kn/v/cJ + 1' 

where u is a constant such that (3 — a > LU/^/K. 

Proof. According to Lemma 4.1, we have 

P(TT(X) + Tr(5)) < (2 + a + C)nr0 = (2 + a + Qnp2, 

i.e., 

^(A<(X) + A<(5))<(2 + a + CW. 
2=1 

Since X* • 5* = 0 we get the relation 

f = (5* • X0 + X* • 50)/(X0 • 5°) - (TrpT) + Tr(S*))/(np) < 1, 

which implies 

n 

(4.14) HAfiHl. + IISill^^AiW + A^J^CS + aW. 
»=i 

It is easily seen that 

(4.15) \\X0-X*\\<p   and    ||50-5*||<p. 

Applying (4.14)-(4.15), Corollary 4.2, and Lemma 4.4 with (X,y,S) = (X*,y*,S*), 
we have 

\\XHS0 - S^xiWp <\\xi\\2
F\\S

0 - S*\\ <2,5p2n, 

\\x-i{x0 - x*)sx?\\F = wix-zs-^sHx0 - X*)S5{S3 xi)\\F 

<\\X-is-*\\\\S2Xz\\\\si\\2
F\\X

0-X*\\ 

= \\X-2 S^X-iW^WXi SXi\\5\\Si\\2
F\\X

0 - X*\\ 

(4.16) < 6.1p2n. 

In view of (4.16)-(4.17) and Corollary 4.2, we obtain 

||T||F < ij\\xHS0-S*)Xi\\F+iP\\X-Hx0-X*)SXi\\F + \\xiSXi\\F 

(4.17) < T[9.6n + l.SVn) < 11.1™, 

T||Tx||F = TV>||X-i(X0-X*)X-5||i, 

= T^||(A-i5-i)5»(A"0 - X*)SHS-*X-?)\\F 

(4.18) <r^||55|||||X-55-i||2||x0-Z*i|<7rn, 

(4.19) ||Ts||f = </>||X2(S0 - S*)xi\\F < ip\\xi\\2F\\S
0 - S*\\ < 3.5rn. 
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Therefore, 

5< 

Consequently, 

(r||raj||ir + 4>/3^||r||ir) (||r,||F + 3V3^||r||F) <8890.6/^1-5n2 

d>6 = -^= — >   y — > 
y/l + 45/(l3-a) + l      y/6/(0 - a) + 1      95Kn/y/u + l' 

U 

In the following corollary we summarize the complexity results for standard start- 
ing point of the form X0 = S0 = pi. 

COROLLARY 4.10. Assume that in Algorithm 3.1 we choose a starting point of 
the form X0 — 5° = pi, where p > 0 is a constant. Let eo be given by (4.12) and let 
e > 0 be arbitrary.  Then the following statements hold: 

(i) If T* / 0, then the algorithm terminates with an e-approximate solution 
(Xk,yk,Sk) E Fe in a finite number of steps k = Ke < oo. 

(ii) //p>max{||X*||,||S*||},/orsomc(X*,j/*,5*)€^* then Ke = 0{Knln(eo/e)). 
(in) For any choice of p > 0 there is an index k = Ke = 0(Avnln(eo/e)) such that 

either 
(ma){Xk,y

k,Sk)eTt> 

or, 
(iiib) 0  <  l/(95Kn/y/uj + 1),   and in the latter case there is no solution 
(X*,2/*,S*) € ^* with p > max{||X*||, ||5*||}. 

5. Local convergence. In this section we will investigate the asymptotic be- 
havior of Algorithm 3.1. Throughout the paper we assume that the SDP problem has 
a strictly complementary solution (X*,y*,5*) of (2.1), i.e., X* +5* >~ 0. For a strict 
complementarity solution (X*, 5*), there exists an orthogonal matrix Q = (qi,... , qn) 
whose columns gi,... , qn are common eigenvectors of X* and 5*, and define 

B = {i : qfX'qi > 0},      N = {i : q7S*qi > 0}. 

It is easily seen that BUN= {1,2,... ,n}. For simplicity, let us assume that 

where AB and A^v are diagonal matrices. Here and in the sequel, if we write a matrix 
M in the block form 

M=(Mn    M12 

VM21  M22 

then we assume that the dimensions of Mn and M22 are |B| x |B| and |N| x |N|, 
respectively. 

Lemma 4.4 of Potra and Sheng [13] indicates that we can write 
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As in [13], we define a linear manifold: 

M^{(X',y',S')eSnxWn xSn:Ai»X' = bi,  i = 1,... ,m, 
m 

^y'iAi + s'^c, 
i=l 

qfX'qj =0iftori€N, 

(5.3) gf^- =:0ifior j G B}. 

It is easily seen that if (X',y', S') G M, then 

In the next theorem, we provide a sufficient condition for the superlinear con- 
vergence of Algorithm 3.1. This sufficient condition will be characterized by the 
asymptotic behavior of the following quantity r]k 

(5.4) % =%(r) = ^\\{Xkr^{Xk-Xk){Sk -Sk){Xk)i\\F, 

where (Xk,yk,Sk) is the solution of the following minimization problem: 

(5.5) 

mm{\\(Xk)-Hxk -X')(Sk - S')(Xk)i\\F : (X',y',S') € M, \\(X',S')\\F < T}, 

and F is a constant such that IKX^,^^)!!^ < T, \fk. Note that every accumulation 
point of (Xk,yk,Sk) belongs to the feasible set of the above minimization problem 
and the feasible set is bounded. Therefore (Xk,Sk) exists for each k. 

THEOREM 5.1. Under the strict complementarity assumption, if rjk -» 0 as 
k —> oo, then Algorithm 3.1 is superlinearly convergent. Moreover, if there exists a 
constant a > 0 such that rjk = 0((rk)a), then the convergence has Q-order at least 
1 + a in the sense that ^+1 = 0((^)1+(7). 

Proof. By Lemma 3.5, it remains to prove that 6k -> 0 as k ->• oo. For simplicity, 
let us omit the index k. It is easily seen that (U + X — X, w + y — y, V + S - S) 
satisfies (3.14) with 

H = Hp(X(S -S) + (X- X)S - XS) 

= Hp((X - X)(S - S))  (since XS = 0). 

Let 

(5.6) A = X-i(X - X)(S - S)Xi. 

Then, according to (ii) of Lemma 4.3, 

(5.7) \\H\\F < y/3K\\A\\F = Vs^rjT. 
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Denoting 

A* - X-*(U + X - X)X-*,   AS = X1HV + S- S)xi, 

and applying Corollary 3.4, we obtain 

r\\Ax\\F < ^j r < 4V^vr, 

which implies 

(5.8) \\^X\\F <4v/3^ry. 

Similarly, 

(5.9) ||As||f<
(l

1
+a)lJ5'|f <3^,r. 

The fact that (X,y,S) G M, together with (5.1)-(5.2), implies 

lix-ipr - x)x-i\\F = \\i - x-lxx-$\\F 

<\\I\\F + \\X-$XX-i\\F 

= V^+\\QTX-2QQTXQQTX-iQ\\F 

= V^+IKST,... ,x^)QTXQ(xi,... ,xZ)T\\F 

(5.10) = V^+ II Yl (Ql^1j)£i£JT\\F = 0(1). 

Similarly, 

(5.11) \\S-'(S -§)S-'\\F = 0(i). 

Let us observe that 

X-IUVX* = (x-iUX-i) (x^VX^ 

= (AX-X-2(X-X)X-^ (At-X'(S-S)X^ 

= AxAt-(x-l(X-X)X-l)&. 

-AxXiS* (5-4(5-5)5-4) S^X? + A. 

Then from (5.7), (5.8), (5.9), (5.10), (5.11) and Corollary 4.2, we have 

\\X-iuVXt\\F < \\Ax\\F\\At\\F + \\X-l(X-X)X-l\\F\\A,\\F 

+||xi5i||2||A;c||F||5-i(5-5)5-i||F + ||A||F 

= 0(w). 

Hence, according to statement (ii) of Lemma 4.3 we get, 

6 = \\PUVP-
1
\\F/T < V^\\X-iuVX?\\F/T = 0(ri). 
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Therefore, dk -)> 0 if rjk -> 0. Finally, if rjk = 0(Tka) for some constant a > 0, then 
we have 6k = (^((r^)0"). From Lemma 3.5, 

9 
l-0< 1 

1 + ^1 + 46/(13-a) 

= y/l + 45/(p^aj-l 

y/l + 45/(l3-a) + l 
45 / {13-a) 

(y/l + S/iP-ai + l)* 
<8/(l3-a) = 0(Tff). 

Therefore, r*+1 = (1 - 0k)Tk = 0(.(r*)1+<r).   Recalling (3.21), we obtain /+1 = 
0((/x*)1+*). □ 

Because of Theorem 5.1, the local convergence analysis established in [14] also 
applies to Algorithm 3.1 if Assumption A4 is satisfied. We end this section by stating 
the following result without proof. For its proof, we refer the reader to [14]. 

THEOREM 5.2. Under the the strict complementarity assumption and Assumption 
A4, Algorithm 3.1 is superlinearly convergent. Moreover, if XkSk = O((rA;)0-5+<7) for 
some constant a > 0, then the convergence has Q-order at least 1 + min{a, 0.5}. 

6. Further remarks. We have shown that the class of predictor-corrector algo- 
rithms defined by Algorithm 3.1 shares the same global and local convergence prop- 
erties with the infeasible-interior-point algorithm of Kojima, Shida and Shindoh and 
Potra and Sheng. This result suggests that the practical performance of these algo- 
rithms should be similar. 

The iteration complexity of Algorithm 3.1 depends on the spectral condition num- 
ber of Jk or Jk. From a computational point of view, the choice of Js = I (where 
PTP = S) seems to be preferable (cf. Zhang [18]). However more computational 
experiments are necessary before a definitive conclusion is reached (see also [16] for 
a comparison between the performance of several Mehrotra predictor-corrector algo- 
rithms for SDP). 
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