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ASYMPTOTICS FOR POLYNOMIALS SATISFYING A CERTAIN 
TWIN ASYMPTOTIC PERIODIC RECURRENCE RELATION* 

E. X. L. DE ANDRADEt, A. SRI RANGAt, AND W. VAN ASSCHE* 

Abstract. In this paper polynomials satisfying a certain twin asymptotic periodic recurrence 
relation are considered. The asymptotic behaviour of the ratio of contiguous polynomials and their 
limiting zero distributions are analyzed. Finally, the L-orthogonality relation associated with the 
twin periodic recurrence relation is given. 

1. Introduction. Polynomials Bn, n > 0, satisfying the recurrence relation 

(1.1) Bn+1(z) = 0 - pn+1)Bn(z) - an+izBn_i(z),        n > 1, 

with Bo(z) = 1 and Bi(z) = z — f3i where f3n > 0, an+i > 0, ra > 1, are of considerable 
interest for two point Pade approximants and related quadrature rules. It is well 
known that the zeros of Bn are all positive, distinct and interlace with those of Bn_i. 

This result is due to Jones et al. [5]. Let z^ < z^ < - < Zn be the n zeros of 

Bn, then if /3n = /?, n > 1, it follows from [6] that Zr = /?Vzn+i-r- Furthermore, if 
also a2 = 2a and an+2 = a, n > 1, then the zeros are given explicitly by 

zW=P*/zW1_r    and    z^r =f3 + av™ + y/(P + av™)2 - (3\ 

for r = 1,2,... , [(n + 1)/2J where uin) = 1 + cos(7r(2r - l)/n). 
Consider the sequence 

an(z) =   ,    _ a  v+1_ a x   = I1 " mn-l (z)}mn(z), U > 1, 

which can be obtained from (1.1) where mn(z) = 1 — Bn+i(z)/{(z — /3n+i)jBn(z)}, 
n > 0. It was shown in [9], using chain sequences, that if 

/3N =      sup     f3n,        PN =      inf      pn    and    aN =      sup     an, 
l<n<N+l l<n<N-\-l 2<n<N+l 

for any N > 1 then all the zeros of the polynomials Bn, 1 < n < N + 1, lie inside the 
interval [djv,i,d/v,i] where 

dN,i =PN + 2aN + ^(PN + 2aN)2-P2
N, 

j J   1   ^2^^   // 1   ^2^^       1 

-/v . 

The sequences {Pn} and {an} are non-decreasing and the sequence {/3n} is non- 
increasing. Let $, a and P be the respective limits of these sequences and let 

d = J3 + 2a + yJiP + 2a)2 - /32 
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and 

1     2d 1(1     2d\2 i 
-1 

then all the zeros of Bn(z), n > 1, lie inside the interval [d, d\. The idea of using chain 
sequences to obtain limits for the zeros is due to Chihara (see [1]) who considered the 
recurrence relations associated with orthogonal polynomials.. For a very good use of 
this idea applied to orthogonal polynomials, see [4]. 

Returning to our recurrence relation (1.1), the occurrence of the situations 

(1.2) ft < oo       and       a < oo 

and/or 

(1.3) 0 < $       and       a < oo, 

is interesting. When (1.2) holds then J3 < d < oo and when (1.3) holds then 0 < d < ft. 
Let X = (0, oo) \ [d, d\ and let Z = C \ [d, d\. Here^ C = C U {oo} is the extended 
complex plane. When (1.2) and/or (1.3) hold, then X is not empty. 

In this paper, we assume that (1.2) always holds, and we consider the behaviour 
of the polynomials Bn and their zeros under the asymptotic conditions 

(1.4) 

lim /32„ = /3<0),     lim a2„ = a<0>,     lim fcn+i = P{1),     lim a2„+i = a^. 
n—>-oo n—>oo n—>-oo n—>-oo 

Specifically, we give information on the limiting behaviour of the sequences {B2n-i/ 
i?2n}5 {B2n/B2n+i} and {Bf

n/(nBn)}. A previous study of this nature, with recur- 
rence relation associated with orthogonal polynomials, was done in [10]* 

2. Preliminaries. Together with the polynomials Bn, n > 0 we also consider 
the polynomials An, n > 0, given by 

An+^z) = (z - Pn+i)An(z) - an+i^n-i(z),        n > 1, 

with initial values Ao(z) = 0 and Ai(z) = 1. For any n > 1, An is a polynomial of 
degree n — 1. As in [5] the following results can be verified. 

(2.1)   Tn(z) = An+1(z)Bn(z) - An(z)Bn+1(z) = a2 • "an+1z
n = pnz

n,        n > 1, 

^(^ = Bf
n^(z)Bn(z) - B'n{z)Bn^{z) 

= B2
n(z) + an+1l3nBl_1(z)+an+1anz2Kn^2(z),        n > 2, 

where To(2?) = 1, Ko(z) - B$(z) = 1 and #1(2) = B?^) + a2l31B$(z). Hence 
Tn(^) > 0 and Kn(z) > 0 for n > 0 and for any real positive 2. Prom this and 
(-l)ni?n(0) = Pi fa - • • l3n > 0 one can establish that the zeros of Bn are positive and 
distinct and different from those of An and Bn-i. Considering 

(2-2) Bw(*)-^z_4»)' BnW     -^,-zW' n-1' 
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we have 

» 

and 

A(n) = M^)  =  Tn-l^" ) l<r<n,      VA^-l 

Ti") = gw-l(^ ^    "-^^J >0,        l<r<n,    ^r(")=l. 
BU^) ^n-l(4! 

r=l 

Note that 4n) = A[.n)^_1(^))/{(^))npn}< 

Now define the non-decreasing (step) function ^nW = Z)r=i ^r   U(t—zf   ) where 

[/(*) = 
1,   t > 0, 
0,   t<0, 

we can then write 

?7si=f!-ri*l>n(t),        n>l. 

The above results lead to 

rd 

(2.3) / rm+,Bm(t) #n(t) = pm(5s,m ,        0 < s < m,    m < n. 

Below we sketch a proof of this last result. For more details of this proof and other 
related results we again refer to [5]. First, we have from (2.1) 

An+l(z)       An(z)  _ pnZ* 

Bn+1(z)     Bn(z)      Bn{z)Bn+i(zy 
n>l. 

Since pn y£ 0, Bn(0) ^ 0 and Bn+i(0) ^ 0, one can conclude that there exist two 
sequences {/zr}^l0 and {^_r_i}£l0 such that 

r  n-l (n) 
/J>r fln 

(2.4) 
An(z) 
Bn(z) n-l 

^ M-r-l^ + A*(-^-l«n + O (*n+1) ,     « "> 0. 
r==0 

Here /An) = ^n^Pn and ^^i = fi-n-i+Pn/{Bn(0)Bn+i(0)}. Hence for 1 < m < n, 
the first correspondence property in (2.4) gives 

rd   1 
/      T#nW 

Am(z) = G^)(z) 
Bm(z)       z™*1 

i(n)u\ —   pd zt'1 
where G^(z) = /| frt{d^n{t) - d^mW)- Observe that 

\G%\z)\ <  [ t™(dMt) + d^m(t)) = lim + /i^), 
Jd 
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for any z E A = {z : z = iy, y > 5 > 0}. Now in the equation 

(2.5) _ 
5 Bm(z) - Bm(t) ,,  ,4.       .   , ._     1    „(n),,0,,      fdBm(t) L ^ Jd       Z ~l d z~~t *"" Jd 

the right-hand side is a bounded function for z G A, which tends to zero as z -> oo in 
A. However, the left-hand side is a polynomial of degree less than or equal to m — 1. 
Therefore, both sides of this equation must be identically zero. The left-hand side of 
(2.5) then gives 

f   Bm(z) — Bm(t)        ( 
^m(^) =   / #n(£), 1 S m < n. 

If we write this equation in the form 

1 f^Bmit)..   M fd      1       ..    ^       Am(^) 

then the second correspondence property in (2.4) gives the results in (2.3) for 0 < s < 
m — 1. For s = m, the required result can be established from the right-hand side of 
(2.5). 

Suppose that (1.2) holds, then by considering the convergence of the associated 
continued fraction we can also show that An(z)/Bn(<z) converges uniformly to a limit 
Ri(z) on every compact subset of Z. Hence the Grommer-Hamburger theorem [10] 
implies that there exists a non-decreasing function ip on E C [d,d\, such that 

(2.6)    R^z) = [ -1— dil>(t)    and      [ t-n+sBn(t) #(*) = pn68in ,    0 < s < 
JE z ~ t JE 

Consequently, 

[ mdm=Y,^n)f(4n)),    for   *"/(*) GPan-L 

Moreover, for every bounded and continuous function / on (0, oo) 

n « 

Hm EArn)/(4n))= / mtm. n->00 ±rf JE r=l 

The second equation in (2.6) gives the orthogonality property, or perhaps to be more 
precise the L-orthogonality property, satisfied by the polynomials Bni n > 1. 

3.  Chain sequences and convergence results. From (1.1) the following re- 
currence relation can be obtained 

Bn+i (z) = qn+1 (z)Bn-1 (z) - pn+1 (z)Bn-3(z),        n > 3, 

where 

qn+l(z) = (*- Pn)(z - Pn+l) - OLn ^"^ " «n+l^ 
Z - Pn-1 
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and 

/   \ z ~ Pn+l    2 
Pn+l{Z) = OLn-lOLn Z   . 

Z - pn-.i 

One can easily verify that for z E X one has g"^1^ > 0, n > 1 and pn+i(z) > 0, 
n > 3. Since one can write 

(3.1) 9n+lW =   p 7-T +Pn+lW-5 7^' n ^ 3' 
-Dn-l(Z) ±fn-i{Z) 

it follows that t/n+iOz) > 0, n > 3, for z G X. Let 

q2(z) = (z- p^z - fc) - a2Z = Ba^) 

and 

qa(z) = (z- f32)(z - Hz) - a2
Z-^-z - a^z = B^/B^z), 
z     pi 

then also q2(z) > 0 and qsiz) > 0 ioi z e X. From the above recurrence relation one 
also gets 

Bn-l(z) r Bn+l(^) ]   = Pn+l(z) n>3 

\ qn+l(z)Bn-l(z) J <?n-lO)4n+lO)' gn_l(z)JBn_3(z)   [ gn+lW^w 

which for any 2 € X gives the two chain sequences {an {z)} and {an(z)} where 

a^Hz) = {l-m{:l1{z)}m^(z),        n > 1, 

with 

and 

»nS')(*) = l B^;^ n>0. 

Since TTIQ = 0 for i/ = 0 and z/ = 1, the sequence {ran (2)} is the minimal parameter 
sequence of {an  (z)}. Now under the asymptotic conditions (1.4) we have 

lim qn(z) = (z- pW)(z - fiW) - (a<0> + a^)z,     lim pn(z) = a^a^1^2 

n—¥00 n^-oo 

and 

a^a^z2 

lim a)?Hz) = :> = a(z), 
n->oo  n  w      {(z - /3(o))(z _ ^(i)) _ (a(o) + ad))^}2 

for any z £ X. Hence, it follows from [1, Thm 6.4, p. 102] that 0 < a(z) < 1/4 and 

that the corresponding parameter sequences {ran {z)} converge to limits that depend 
only on a(z). This means that they both converge to the same limit and consequently, 
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Bn+i{z)/Bn-i(z) converges to a limit R2(z) for any z G X. To obtain this limit we 
let n —> oo in (3.1) and get 

Rl^) - {(* - ^)){z - pM) - (a^ + a^)z] R2{z) + a^a^1^2 = 0. 

From this we find 

R2(z) = i{(* - /?(0))(^ - /?(1)) " (^(0) + aW)z 

± \l[(z - /3W)(z - pi1)) - (aW + aWjz]2 - 4a(0)a(1)^|. 

Since Sn-j.i(0)/-Bn_i(0) = fin+iPn and JBn+i(z)/5n_i(2:) -)• oo as ^ ->• oo, the positive 
sign gives the desired limit. 

Now for z G Z, 

Bn-l(z) 
Bn+1{z) = 

Bn-l{z) 
Bn{z) 

Bn{z) 
Bn+l(z) <-h 

r=l 

n-f-l 

8*' 

where J = dist(^, [d,d]). This means that the sequence Bn-i(z)/Bn+i(z), n > 1, is 
uniformly bounded on every compact subset of Z. Therefore, from the Stieltjes-Vitali 
theorem (see for example [3]) one gets 

THEOREM 3.1.  Assuming that (1.2) holds then under the asymptotic conditions 
o/(1.4) 

Um |=±44 = W = I \^ - "i* + «2 + v/(^2-wi^ + w2)
2-4^2i , 

uniformly on every compact subset of Z. Here, ui — (3^ + Z?^1^ + a^ + o^1), U2 = 
^W^1) and 2/3 = a^aW . 

From (1.1) we deduce 

Bn+i{z) ,  Bn{z) 
= (Z - Pn+l) D TIT ~ a^+l;: 

Bn-l{z) 

hence one can also conclude 

COROLLARY 1. Suppose (1.2) and (1.4) ftoM, ^en 

r     B2n-i(z) _    (i), , _      z - pW 
n™oo   B2n(z)   ~U3   [Z)- R2(z)+aVz' 

y       B^)   _ p(o)r x _      *-/3(0) 

n^o B2n+l{z) - *'  [Z) * R2(z) + aWz' 

uniformly on every compact subset of Z. 

Since Bn+i(z)/'Bn-i(z) is analytic in Z, we can take derivatives in these asymp- 
totic formulas to find 

d (Bn+1(z)\      B'^jz)     B'n^(z) Bn+1(z) 
dz\Bn^{z))      Bn^iz)     Bn^(z)Bn^(z) 2[ >' 
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for any z G Z. Thus, from 

d  fBn+1(z) 

we obtain 

(3-2) 

Bn+1(z)\ _ B'n+1(z)     B'^iz) 

dzyBn^z)) I   yBn-X{z))      Bn+i(z)     Bn-i{zy 

'B'n+M     B'n-M\_B!2{z) lim 
n—KX) Bn+1{z)     Bn^{z)J      R2(zy 

for any z E Z. 

THEOREM 3.2. Assuming that (1.2) holds, then under the asymptotic conditions 
(1.4) we have 

B'n(z) 
lim R4(z) = **(*) 1_ Z'-U2       _!_ 

2z ^(z* -1JHZ + U2)2 -4U3Z2     2z' n^oo nBn(z) 2R2(z) 

uniformly on every compact subset of Z. 

Proof. Consider the Cesaro summation of the odd and even combinations of 
the sequence given by (3.2), then it follows that B'n(z)l[nBn(z)] -> R±(z) for any 
z € Z. Since B'n(z)l[nBn(z)\ is uniformly bounded on any compact subset of Z, the 
convergence is also uniform on compact subsets. To obtain the value of the limit 
function we take 

2R2(z) = z2 - mz + 112 + {(z2 - uiz + U2)2 - 4u3z
2}1/2 

and a straightforward differentiation of this gives 

2^2(3) = {(2^ - u1)2R2{z) - 4udz} I {{z2 - mz + u2)
2 - ^z2}112 . 

Hence, the observation 

2U3Z2 

R2(Z) 
= Z UiZ + U2- {(Z2 - UiZ + U2)2 - ^UsZ2} 2\l/2 

immediately leads to the required result of the theorem. D 
Note that 

(3.3) 
nBn(z) 

= A    l/n rd _!_ 

~^iz- zin) ~ Id   z- 
dFn{t) 

where the step function nFn(t) = Ylr=i U(t — z}') represents the number of zeros of 
Bn less than or equal to t. Hence one can extract information regarding the asymptotic 
behaviour of the zeros of Bn from the limit function R4. First of all, we can write 

1 z2-pWpW 
(3.4) Mz) 

2z 
+ 

y/z — a\lz — ay z — b\Jz - b     ^z 

where 0 < a < a < b satisfy ab — ab = U2, a + b = ^1 + 2<sJui and a + b = ui - 2-y/u^. 
Furthermore, since ab = ab = /?(0) (3^, one also has the decomposition 

D / x      -7o Vz - b\Jz - b      71 ^z - a^z - a       1 
tU(z) = ——   /  / +  / = + ^- z 47- 

70 

z 

Z     yjz — CLy/z — a 

bb      y/z — by z — b 

yjz — a^/z~ 
+ 7i 

z 

yjz — ay'z — a 

^Jz — by z — b 
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^o = —77= —-    and   71 = 
2(66 -aa) 2(66 — aa) 

The above relations for R^ indicate that R^{z) is finite and real if and only if z does 
not belong to the union [a, a] U [6,6]. 

4. Integral representations. From the convergence of (3.3), which we have 
already established, and the Grommer-Hamburger theorem, it follows that there exists 
a non-decreasing function F on E C [d, d\, such that 

lim   f  -L-dFn(t)=R4(z)= [ —dF(t), 

uniformly on every compact subsets of Z = C\[d, d\ and as a consequence Fn converges 
(weakly) to F. This result also means that for every bounded continuous function / 
on (0, 00) 

lim ^E/(4n))= //(*W)- 

THEOREM 4.1.   Suppose that (1.2) and (1.4) hold, and that 0 < /^/jW and 
OKa^aW. Then 

m=lL \x-l3\ (x + f3)/x 

y/j2x -(x- P)2^(x - /?)2 - T2
* 

IE(X) dx 

where IE {X) — U(x — a) — U(x — a) + U{x — b) — U(x — b) is the indicator function of the 
setE = B = [a, a] U [6,6], 72 - (y/fffi - V(W)2 + (vW + V^W)2 = (y/b-y/a)2, 

f = (y/fm - T/JW)2 + (VSW - V^W)2 = (y/l - yflf and (3 = y/pWft1) . 
Proo/. Since 0 < P^fiW < 00 and 0 < a^0)a(1) < 00 we have 0<a<a<6< 

6 < 00. Now observe that we can also write 

m^ljl   ,. |r(l „./.w* 
/-00 74^3 - {^(a;)}2 

where T(a;) = a; — ui 4- W2/a;. Hence we need to prove that 

|r(f)| 
nt-hl-r- BZ-t^^-{T(t)Y 

dt 

is equal to R^z). Since zy/{T(z)}2 — Aus = y (z — a)(z — a)(z — b)(z — b), we obtain 
after the substitution y = T(t) 

**-hi 
ty/US dy 

+ 

2V^ 2z - {(MI + y) - y/iu! +y)2- 4^} A/
4W

3 - 2/2 

2^7- 2v^ 2^ - {(wi + y) + %/(MI+2/)
2
-4W2} \/4^3 - U 
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Thus 

1     f'Z 

R{Z) = TJ_.. 
1    Z2^       2z - (m + y) dy 

-I / 
1" 7-2 -2^    r(«)-tf    V^s-y2' 

Since, 

ifj__*=_i       and    ir 
* J-\Z-y ,/A2 - «2      Vz2 - A2 TT /_ 

X        % 
-A z - V x/A2 - y2      Vz2 - A2 TT y_A ^A2 - y2 

for any A > 0, we then have 

= 1, 

R{z)=lL 1   /"V^ i-X{ttl+r(^} + ^{r(g)-y}        dy 

2^ T(«)-y V4«3-ff2' 

= f       m     T(z)\ 1 1 
I       2^       2*   J ^{r(^)}2 - 4w3      2*' 

Substituting the expression for T(z) then gives the required result R(z) = R4(z), 
which completes the proof. D 

Note that one can also write 

i?4(2;) =  —    , + — 
2z TJ(Z - py - ^z^{z - f3)2 - j2z     2z 

and 

(4.1) R2(z) = l{(z- H? - fz + >/(^-/')2-7W(^-/')2-72^} 

where f2 = (v7^ - V^)2 + «(0) + «(1). 
Now we consider the convergence of the ratio Bn-i(z)/Bn(z). First we give the 

following theorem. 

THEOREM 4.2. Let a, b, a, b be such that 0 < a < a <b < b < oo and ab — ab — 

P2.  Then for cfe = (Vb - y/a), di = (Vft - Va), d§ < d? and 5 = [a, a] U [6, b], 

D I    -V{t\d1,d2,dQ,5)dt = L(z]d1,d2,do,8) 
JB 

z ~ t 

where 

(dZ-dl)2 

and 

L(z;di,d2,do,S) 

 2{z - S)  

~  (Z- W -<%Z- [(4 - d2)(d2 - d2)]1/2 Z + y/iz-W-fizy/iz-W-dZz' 
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Proof. For |do| < di < ^ and B — [—dz, —d\] U [di,^2] we have 

1    v^l - ^2 V^2 - di, blda: 
R w - x [x2 - do] 

2w; 

w2 " ^0 " [(^ " do)(d? " ^)]1/2 + V™2 - dW™2 ~ df 

This result can be verified from [10, eq.(3.6)] where one considers S{G(x] di, d2, do); ^) 
4-5(G(^; di, d2, —do); 2?). Applying the change of variables w = (2? — fS)l\fz and a; = 
(t - /?)/>/* (see [7]) then leads to 

£> / —V(t;d1:d2,d(h(3)dt = L(z;dud2,do,P). 
JB z^-t 

From this the result of the theorem follows since 

JB z-t t-P z-PJBz-t 

U 
Note that the function V(t; di,d2,do,6) is a (positive) weight function on B only 

ifa<J<6. 

THEOREM 4.3. Suppose that (1.2) and (1.4) /w/d, together with 0 < fjWfl1) and 

^w -/„ di^w - ir^* dsr/, jV<«^>m>* 

where B,^ and7 are a5 m Theorem 4.1, A2 = (y/pW ~VP^)2 a>ndamin = min{a(0), 

•Proof. Prom (4.1) and Corollary 1 

(4.2) 

an*) 3   W      (z - /3)2 - A2^ - («« - a(o))0 + ^/(z - /?)2 - ^^^/(z - 0)* - 72^' 

Since this limit can be written as 

.|a(i)-a(o)|-(tt(i)-a(o))      {(a(i)+a(o))-|a(i)-a(o)|} 
2a(0)(«-/3(1)) 2a(o) M*,7,7,A,p    j, 

the first result of this theorem follows from Theorem 4.2. Similarly, since 

(4.3) 

4» = ?(^^ ^-^(1)) 
(z - ffl.- \2z - (aW - a^z + ^{z - 0)2 - j2z^(z - /3)2 - ~f2z' 
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the other result of the theorem is obtained by interchanging (a^, /J^) and (a^0\^0^). 
P. 

The results of Theorem 4.3 and equation (2.2) also means that for every bounded 
and continuous function / on (0, oo) 

2n 

lim JTr^)/^2")^/     md4>^{t) ^oo ^-/ J    (0) 

and 

2n+l 2n+l « 

lim   T 42n^f(zi2n^) = /      md^Ht). 
l">00 ^ ^^c1) 

We now consider some special cases. Note that, even though the coefficients /?n, 
an+i (n > 1) are positive, any of their limits, that is any of /3^0\ a^0^, /S^ and a^ 
is allowed to take the value zero. 

CASE 1. First we consider the case 

a(o) = a(i) = a > o   and   /3(0) = /3(1) = /? > 0. 

Then a = 6 = /3, a = /3 + 2a- y/(l3+2a)2 - P2 and 6 = /? + 2a + ^ + 2a)2 - ^2. 
Substitution of these results in (3.4) and Theorem 4.1 gives 

From Theorem 4.3 it follows that ^0)(2;) = i^W = i?3(^) where 

V;      ^ - 0 + V^ - /?)2 - 4a*      27raJa  z-t   K'   '  v   '  'HJ 

Here, (? - a)(z - 6) = (z - (3)2 - 4az. 

CASE 2. Now we consider the case where one of a^0) or a^) takes the value zero. 
We consider (for z/ equal to 0 or 1), 

a*"* = 0,    a^1-^ = a > 0,    pM > 0    and   ^"^ > 0. 

Then, from (3.4), it is seen that a = a and b = b. With this we can write 

2*     2z(* —a)(z —6)      z —a     z — b 

Therefore, F(t) = |?7(t - a) + |f7(t - b). Note that if a - 0 then a = pmin = 
min{/?(0),/?W} and b = /3max = max^0),^1)}. From (4.2) and (4.3) the following 
also hold. If a^0) = a then 

d   w     z-^C1) .w      (^-a)(*-6)        6-az-a       ft-a   z-6 
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If QX
1
) = a then 

„«>(,) = ,   -f a = ^_L + ^-L. and W) - ^y 3   v '      (z-a)(z-b)        b-a   z-a       b-a   z-b 3W      z - ft0) 

CASE 3. Now we consider the case where 

a*") > 0,    a*1-"* > 0,    ^ = 0    and    ^-^ = (3 > 0. 

It follows that U2 = 0, and hence, 

a = o = 0,    6=:/3+(v/a(o)-\/a(i))2, and    6 = 0 + (VcM + VoW)2. 

Substitution of these values in (3.4) gives 

TW x      1/2 1/2 1        1    Z"6    1 1 

^     Vz^bVT^b    2z 27rA z-t^—[y/t^b 

and 

F{t) =   UQ) + — / ^   _!_ /L- -1 dx. 
z Z7r J-oo       \/b — x\/x — b y/b — xy x — b 

If Q/(
0

) = Q/C
1
) and /? = 0 then b is also zero. 

CASE 4. Finally, we assume that 

aM = 0,    a^1-^ = a > 0,    /?(l/) = 0    and   ^^"^ = (3 > 0. 

Then a = a = 0, b = b = (3 + a and 

z       2 — 6 

This means that F(t) = \U{t) + \U{t - b). If /3 = a = 0 then F(£) = £/(*). 

5. Examples. We now give some examples of polynomials that satisfy the re- 
currence relation (1.1) for which the coefficients have the properties (1.2) and (1.4). 

EXAMPLE 1. For A > 0 and 0 < a < b < oo the polynomials Bn defined by 

/   t-n+sBn(t)rx(b - t)x-l/2(t - a)A-1/2 dt = 0,        0 < s < n - 1, 
Ja 

satisfy the recurrence relation (1.1) with 

a       a "(" + 2A - 1) .   1 
A* = /''    a"+1=(n + A)(n + A-l)Q'        n ^ ^ 

where j3 = \/ab and a = (y/b — v
/a)2/4. For a proof of this result, see [7]. This result 

is also valid for A = 0 if we take a2 = 2a. This case has been worked out in detail by 
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Cooper and Gustafson [2] and their polynomials i?2n are related to our polynomials 
BnbyBn(x2)=xnR2n(x). 

Since /S^ = (3^ = (3 and Q;^
0

^ = a^ — a, we are dealing with case 1 of the last 
section. 

EXAMPLE 2. For 0<a<fe<oo, we consider the polynomials Bn defined by 

i  -+- \/ fin i i. 
: eft = 0,        0 < s < n - 1 . 

\/6 — t^t — a 

The distribution function here is the one that appears in the limit in (4.4). In [8], it 
was proved that these polynomials satisfy the recurrence relation (1.1) with 

/Jn = fitn-l/tn,      ^n+1 = (4 " 1)^, Tl > 1, 

where £n = [(1 + £)n - (1 - £)n]£/[(l + £)n + (1 - £)% £ = A/1 + <x/P, (3 = Vab and 
a = (v^ — v/a)2/4. Since ^(0^ = Z?^1^ = /3 and a^0^ = a^1^ = a, we are again in case 1 
of the last section. 

EXAMPLE 3. For A > 0 we now consider the polynomials Bn defined by 

/    rn+sBn{t) #<*)(*) =0,        0 < s < n - 1, 

where i/t^ is a step function with jumps 

at the points 

_l + 2/3(fc + A) + Vl + 4/3(fc + A) _   2 
c - r^+i  , .     and   t = r_A._i = p /tk+i, 

for A^ = 0,1,  These polynomials are related to the Tricomi-Carlitz polynomi- 
als through the transformation considered in [7]. The coefficients of the associated 
recurrence relation satisfy 

Tl 
Pn = P,    an+i = -————— —,        n > 1. 

(n + A)(n + A-l) 

Since ft^ = /J^ = f3 and a^0^ = a^ — 0, we now are in case 2 of the last section, 
and we have 

R^iz) =     and   Rsiz) = 
z-P dV ;      z-P' 

EXAMPLE 4. As a final example, we consider the polynomials Bn that satisfy the 
recurrence relation (1.1) with 

a2n = a(0),    a2n+i=a(1),    An = Pi0)   forn > 1    and    P2n+i = P{1)    forn > 0, 
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where 0 < fi^fl1') < oo and 0 < Q;(0)a(1' < oo. Hence the results of Theorems 3.1, 
3.2, 4.3 and 4.3 are valid. Since An(z)/Bn(z) -> Ri(z) where in this case 

„ , , 1 a<Vz a^z a^z a^z 
Ri(z) = 

z-fi1)  - z-P<®  - z-pM  - z-pW  - z-fi1)  - 

we obtain from the theory of continued fractions 

2(z-pM) 
Ri{z) = 

(z - p)2 - X2z - (a(0) - a^))z + ^/{z - p)2 - fWC* - P)2 - i1*' 

Hence, in the same way as in Theorem 4.3, we obtain 

v(l) 

*<" = /,rn*» = 1T^ + 53ij/,lV<*^''m> dt 

where B, 7, 7 and A are as in Theorem 4.3.  From this we conclude that, with the 
above distribution function ^, the polynomials Bn satisfy 

/. 
t-n+sBn(t) d^{t) =0,        0 < s < n - 1. 

E 

Observe that if a^ = a^ = a then A = 7 and 

1 jb^iyr^ t-jm 
m) = 2^ * V^1^ 

on B = [a, (3min] U [^max, b] where ab - fiWpW and a + b = p^ + 0^ + 4a. 
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