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PRIMARY DISCONTINUITIES IN SOLUTIONS FOR DELAY 
INTEGRO-DIFFERENTIAL EQUATIONS* 

HERMANN BRUNNERt  AND WENKUI ZHANGt 

Abstract. In this paper, we prove a number of primary discontinuity results for integral and 
integro-differential equations with various kinds of delays. Our results are then compared with 
analogous ones for delay differential equations. Results of this type play an important role in the 
numerical analysis of functional equations with delay arguments, especially in the design of high-order 
methods and the analysis of their optimal convergence orders. 

1. Introduction. Consider the delay differential equation 

(1.1) y'it) = f{t,y(t),y(a(t,ym),    te I := [0,T], 

y(t) = <Kt),    *e[a,0] 

where a = inf^>o a(t,y(t)) < 0. Depending on the choice of a, t — a(tyy(t)) can be a 
constant (if a = t — r), a function of t (for example, if a = qt), or even a function of t 
and the unknown solution y(t). A remarkable difference between (1.1) and its classical 
(non-delay) counterpart is that, in general, the solution of (1.1) is determined by an 
initial function (j)(t) rather than by a simple initial value. As a consequence, even if the 
functions f(t, y, x), a(t, y) and <j>(t) in (1.1) are C00-continuous, the solution y(t) is not 
smoothly linked to the initial function (j)(t) at the point 0, where in general only C0- 
continuity can be assured. This discontinuity in y' is propagated along the integration 
interval. More precisely, a set of primary discontinuities is generated, whose location 
is determined by the delayed argument a(t,y(t)). This is one of the major challenges 
when integrating (1.1) numerically as it may cause reduction of accuracy or lead to 
instability (compare, e.g., [9] and [10]). 

In this paper, we will focus on the discontinuity problem for (1.1) with all three 
kinds of delays, prove discontinuity properties for delay integral and integro- 
differential equations, and compare the results with analogous ones for related de- 
lay differential equations (1.1). The reader may wish to consult [l]-[3], [5], [7], and 
[10] and the references listed in these papers (especially [1]) for relevant background 
material and related results. 

2. Discontinuities for delay differential equations. In order to view the 
discontinuity properties of solutions for delay Volterra equations in the proper per- 
spective, we begin by a brief review of similar results for delay differential equations. 
Thus, consider the first-order delay differential equation 

(2.1) y'(t) = f(t,y(t)Mt-T)),   tel, 

y{t) = m,   t€[-T,o] 

where the delay r > 0 is constant. The theory of existence and uniqueness of solutions 
to (2.1) does not present substantial additional difficulties compared to the ordinary 
(non-delay) case. This is also true when we consider differential equations with more 
general delay afterwards, as long as the delay is uniformly strictly positive and does 
not depend on the solution y itself. 
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Regarding the solution of (2.1), the most natural method (see also [4]) is called 
the method of steps (or the method of successive integrations). It consists of first 
determining the solution y(t) on [0,T] from the differential equation without delay, 

(2-2) »'(*) =/(*,»(t),0(*-T)),   te[0,T], 

2/(0) = m, 

since for 0 < t < r, the delay argument t — r varies in the initial interval [—r, 0] and, 
consequently, the third argument y(t — r) of the function / equals the given initial 
function </>(£ — r). Assuming the existence of a solution y = 0i(£) of this initial-value 
problem on the whole interval [0,r], we proceed recursively by solving 

y'(t) = f{t,y(t)Mt - T)),    t G [nr, (n + l)r], 

with 

y(nT) = (t)n(nr),        n = 1,... , M, 

(we shall assume, without loss of generality, that T = (M -f l)r for some positive 
integer M); here, ^n(t) is the solution of the given initial-value problem on the interval 
[(n — 1)T, nr]. 

Thus, questions on the existence and uniqueness of solutions to the delay problem 
(2.1) reduce to analogous ones for a sequence of initial-value problems for ordinary 
differential equations. However, smooth data / and (f> in (2.1) will in general not lead 
to solutions that are smooth on the entire interval of integration. 

DEFINITION 2.1. If the solution of (2.1) and its derivatives of order less than, or 
equal to // are continuous at some point £ G / but the derivative of order ji + 1 is not, 
then £ is called a primary discontinuity of problem (2.1). 

THEOREM 2.1. The points £M := JJLT (// = 0,1,...), are the primary discontinu- 
ities of problem (2.1). More precisely, for any sufficiently smooth functions f and <f>, 
y^) is continuous at ^ but y^+i) iSy in general, not. 

Proof See [4]. D 
The above results reveal that, as t increases, the solution y of (2.1) becomes 

smoother. In fact, at the initial point t = 0, the first derivative y'(t) has a primary 
discontinuity since we have, by (2.2), 2/(0) = 0(0) but, in general, 

(2.3) 2/(0+) ± 4/(0-). 

Only for special choices of the initial function (/)(t) is it possible to guarantee continuity 
of the derivative of the solution at point 0, for such a function must satisfy the 
condition 

4>'(o-) = f (o,4>(o),<t>(-T)). 

The method of steps can be extended to differential equations with other type of 
delays, such as multiple delays, variable delay and even state-dependent delay. The 
difficulty is to locate the primary discontinuities. As a generalization of (2.1), we 
consider 

(2.4) y'(t) = f(t,y(t),y(t-r(t))),    tel, 

y(t) = 4>(t),    4 6 [3,0] 
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where t — T(£) is a strictly increasing function and 

(2.5) 0<T(t)<t,    a = mf(t-T(t)). 

REMARK 2.1. Throughout this paper, when the delay r depends on time £, we 
will make this clear by the notation r(t). Otherwise, r will be a positive constant. 

THEOREM 2.2 ([10]). The primary discontinuities of problem (2.4) are generated 
inductively by the recursion 

(2.6) 6-r(6) = 6-i5     k>l 

where £0 = 0. 

Because of the hypotheses made, a strictly increasing sequence {^}A;>O is deter- 
mined which can in fact be computed a priori by using (2.6). In this way, a sequence 
of intervals [£&-!,&] is also defined, (see also [10]). 

REMARK 2.2. If the functions (j)(t) and T(£) in (2.4) have some discontinuities with 
respect to t in some of their derivatives, then these discontinuities are also propagated 
by the delay argument t-r(t) following the rule (2.6). These discontinuities are called 
secondary discontinuities. 

Further discussion of this topic, especially the case of state-dependent delays, can 
be found on the following pages; see also [4] for the extension to the multiple delay 
case. 

The existence of primary and secondary discontinuities may lead to a loss of 
accuracy (reduction of order) or to numerical instability if the mesh underlying a 
discretization method does not take into account these discontinuities. For a detailed 
discussion of this problem see, for example, [9] and [10]. 

3. Discontinuities for delay integro-differential equations. Similar dis- 
continuity results hold for Volterra integro-differential equations with constant delay, 

(3.1) y'(t) = f(t, y(t)) + f K(t, s, y(s),y(s - r))d«,    t e /, 

y(t) = <l>(t),    t€[-T,0]. 

However, we shall see (compare, for example, Theorem 3.1 and Theorem 2.1) that 
there are fundamental differences between the regularity of solutions to (3.1) and 
those of (2.1). 

REMARK 3.1. If the delay occurs in one of the limits of integration, for example, 

(3.2) y\t)=f{t,y{t))+ [ K1(t,8,y(s))ds+ [   ' K2{t,s,y{s))ds, 
Jo Jo 

or 

(3.3) y'(t) = f(t, y(t)) + [    K(t, s, y(S)) ds, 
Jt-T 

we can always convert them into the form of (3.1) by a suitable change of variables. 
So we shall only consider (3.1), without loss of generality. 
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THEOREM 3.1. The primary discontinuities of problem (3.1) are the points £M := 
fir (/i = 0,1, • • •). To be more precise, the derivative y^v+^^t) is discontinuous at 
the point £M; but lower order derivatives are continuous, provided the given functions 
functions f, K and 0 are sufficiently smooth. 

Proof. The proof is based on the method of steps. In the first interval [0,T], 

(3.4) y'{t) = f(t,y(t))+ / K(t,s,y(s),(t>(s - T))ds. 
Jo 

It is possible to satisfy the condition y(0) = 0(0), but not, in general, also the condition 
2/(0+) — ^'(O-)- The continuity of the derivative of the solution can be guaranteed 
at the initial point 0 only for deliberately chosen </>(£), and such a function <l>(t) must 
satisfy the condition ^(O-) = /(0,0(0)). 

At the point t = r, the first derivative of the solution is already continuous. In 
fact, the derivative 

(3.5) y'(t) = fit, y(t)) + / K(t, s, y(s)1y(s - r)) ds 
Jo 

and the right hand part are continuous functions of t at the point r, since y(t) is 
continuous at point 0. The second derivative, 

y"(t) = % + %y'(t) + K + l^(t,s,y(s),y(s-T))ds, 

is continuous where we have written K = K(t,t,y(t),y(t — r)). However, y!"{i) is 
not continuous at r, since it will include y'{t — r) as a factor, and y'{t — r) is not 
continuous at r because y'{t) is not continuous at 0. 

At the point t = 2r, y^(t) is continuous, and y^(t) is not. At t = //r, we 
suppose that 2/2^+1)(£) is not continuous, and all lower order derivatives are. At 
t = (/ji + l)r, differentiate (3.1) 2/i + 1 and 2/z + 2 times, respectively, to obtain 

j,(2M+2)(t) = ?Ly(^+i)(t) + .  fK   ,yM(t - r) + lower order terms 
dy ay(t - r) 

and 

yto+*)(t) = ^fy^+2){t) + —^_y(2M+i)(t _ r) + i0Wer order terms. 
dy dy(t - r) 

According to the hypothesis, 2/(2At+1)(£) will be continuous at t = (/x + l)r, as is 
y(2A*) (t-r). As a result, y(2^+2) (t) will be continuous at t = (/i + l)r. Unfortunately, 
2/(2M+3)(£) wiij iose foe continuity at t = (/i.+ l)r as y^2^+1\t) is not continuous at 
t = fir. By induction, we know that the derivative y^2^+1\t) is not continuous at the 
point fir, but lower order derivatives are continuous under the smoothness assumption 
for / and K. D 

REMARK 3.2. The difference between Theorem 2.1 and Theorem 3.1 certainly 
has some numerical implications. When the mesh 11 JV is not constrained, i.e., h ^ rfr 
for some r G iV, we can expect a higher convergence order for (3,1) than for (2.1), 
due to the better regularity properties of the solution for the former problem. 
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Consider now 

(3.6) y'(t) = f(t,y(t))+[K(t,s,y(s),y(s-T(s)))ds,    tel, 
Jo 

!/(*) = M),    *€[a,0] 

where a = inft>o(^ — T(t)) < 0. Here, 0 < r(t) < t, and t — r(t) is strictly increasing. 
A result similar to Theorem 2.2 holds for (3.6). 

THEOREM 3.2. The primary discontinuities of problem (3.6) are generated by the 
recursion 

(3.7) 6fe-T(&) = &-i,    fc>l 

where £o = 0. 

We can also give an analogous result for Volterra integral equations with constant 
delay of the form, 

(3.8) y(t) = g(t) + / K(t, s, y(s),y(s - r)) ds,    t € /, 
./o 

y(t) = <Kt)y    t€[-r,0] 

THEOREM 3.3. The primary discontinuities of problem (3.8) are located at the 
points £M :— fir (/z = 0,1,...). More precisely, for any sufficiently smooth data g, K, 
and (j), y^-1) and lower order derivatives are continuous at £M but y^) is, in general, 
not. 

Proof The solution y(t) of (3.8) will in general not be continuous at the initial 
point t = 0: we have continuity if, and only if, g(0+) ^ 0(0—). 

For t = r, the first derivative is 

y'{t) = g'it) + K(t,t,y{t),y{t -T))+J   —(t,s,y(s),y(s - r)) ds. 

Clearly, ?/'(£) is not continuous at r whenever y(t) is not continuous at 0. The re- 
maining argument is similar to that in the proof of Theorem 3.1. We leave the details 
to the reader. D 

REMARK 3.3. It is worth noticing that, in contrast to Theorem 2.1, primary 
discontinuities of the integral equation (3.8) occur in lower order derivatives. 

Consider now the neutral Volterra integro-differential equation with constant de- 
lay, 

(3.9) y,(t)=f(t,y(t))+ f K(t,s,y(s),y(s-T)1y
,(s-r))ds,    tel, 

Jo 
y{t)=(j>{t),    t€hT,0]. 

THEOREM 3.4. The primary discontinuities of problem (3.9) are given by the 
points ^ := iir (JJ, = 0,1,...). To be more precise, the derivative y^+1\t) is dis- 
continuous at the point £M, but lower order derivatives are continuous whenever the 
functions f, K and (j) are sufficiently smooth. 
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The proof of Theorem 3.4 proceeds along the lines of the one for Theorems. 1. We 
omit the details. 

REMARK 3.4. It is known that there is no smoothing to the solutions of neutral 
delay differential equations (see [4]). However, smoothing indeed happens to the 
solutions of neutral delay integral and integro-differential equations as is shown in 
Theorem 3.4. 

4. Discontinuities for differential equations with state-dependent de- 
lays. Now, consider the state-dependent delay differential equation of the form 

(4.1) y'(t) = f(t,v(t),y(<*(t,y(t)))),   tei, 
(4.2) y(t) = 0(t)    when    t G [a, 0] 

where a = min^>o a(t,y(t)) and a(t,y(t)) < t for t > 0. Classical treatments of (4.1) 
can be found, for example, in [5] and [8]; compare also [1] and the references listed 
therein. 

The initial-value problem for (4.1) is said to be of continuity class p > 1, if the 
following holds over appropriate domains: 

1. The mixed partial derivatives fij^ are continuous for alH + j + k < p; 
2. The mixed partial derivatives a^j are continuous for all i + j < p; 
3. 0eCp[a,O]. 

For / < p, Cf[L - f, L + f] is defined by 

C?[L-Z,L + £\=(P[L-S,L]n(P[L,L + $nCl[L-Z,L + Z]. 

For comparative purposes we recall the following result (and the relevant notation) 
from (4.1). 

THEOREM 4.1. Let the initial-value problem (4-1) have continuity class p > 1. 
For L G /? let the integer I G [l,p] be such that y G C/^JZ/ — £, L + £] for some £ > 0. 
Assume that there exists a least number Z G (L,T), such that Z is a zero of integer 
multiplicity m > 1 of a(t,y(t)) — L. Then y G C^[Z — £, Z + £] where q = p if m is 
even, and q = min(p,mZ) ifm is odd. 

When the data in (4.1) are in Cp, we usually expect the solution y(t) to have 
p + 1 continuous derivatives except at the primary discontinuities. 

The basic idea underlying the proof of Theorem 4.1 is the following. Suppose a 
is the retarding function and L G / is a primary discontinuity. We try to find another 
point ZL, a(Z, y(Z)) — L = 0 and an interval [Z — rj, Z + 77], such that the range of 
a(t,y(t)) for £ G [Z — 77, Z + 77] covers [L — £, L + £], a neighborhood of L. Then, 
when we calculate the derivative on both sides of (4.1) and evaluate it at t = Z, the 
discontinuity will appear on the right-hand side because L -■ a(Z,y(Z)) is such a 
point. As a result, the left-hand side will be discontinuous at t = Z with an order at 
least one higher. The details may be found in [5]. 

Before stating the analogous result for Volterra integral equations with variable 
delays, we briefly look at two special cases contained in Theorem 4.1.   The second 
case shows that not every delay equation leads to primary discontinuities. 

1. Constant delay: 

a(tMt))=t-T 
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where r is a positive constant.   The discontinuity points are /JLT for /x = 
0,1,... . The solution y satisfies y 6 Cg[/JT - £,^T + f] for some ^ E (0,r). 
H = I - 1, / = fj, + 1. Here, ra = 1 and m is odd. So q = min(p, Z) = /. 

2. Proportional delay: 

<x(t,y(t)) =qt 

with 0 < q < 1. It is again independent of the unknown solution y(t). In 
this case, we cannot find any t G [0, +oo) other than zero such that qt < 0. 
That is, no primary discontinuities will occur; see also [6]. However, primary 
discontinuities do exist if the underlying interval is of the form I = [to,T] 
with 0 < to- We leave the details to the reader (compare also [1]). 

Theorem 4.1 can be extended to Volterra integral equations of the form: 

(4.3) y(t) = g(t) + / K(t, s, y(a(s, y(s)))) ds,    t G /, 
Jo 

(4.4) y(t) = <t){t)    when    t G [a, 0] 

where a = mint>oa:(£,2/(£)) and a(t,y(t)) < t for t > 0.  Again, by continuity class 
p > 1, we mean that the following conditions hold over appropriate domains: 

1. The partial derivatives Kij^ are continuous for alH + j + k < p; 
2. The partial derivatives o^j are continuous for all i + j < p; 
3. g G Cp[0, oo) and 0 G Cp[k, 0]. 

THEOREM 4.2. Let the data in (4.3) be in Cp, p > 1. For ^iven Lei, let the 
integer I G [l,p] 6e 5^cft tta^ y G CjLJL — ^, L + ^] /or some £. Assume that there 
exists a least number Z G (L,T) such that Z is a zero of integer multiplicity m > 1 of 
a(t,y(t)) — L. Then y G CP[Z — £,Z + £] where q — pifmis even, and q — min(p, ml) 
if m is odd. 

REMARK 4.1. Note that (4.1) and (4.3) are not identical: differentiation of (4.3) 
leads to 

(4.5) y'{t) =g,(t)+ [ K[(t,s,y(a(s,y(smds + K(t,t,y{a{t,y(t)))) 
Jo 

wheieK'1 = &K(t,s,y). 

Proof [Proof of Theorem 4.2] We proceed along the lines of the proof for Theorem 
4.1. Suppose that L - £ < a(t,y(t)) < L + £ for t G [Z-r),Z + rj\. Setting w(t) = 
a(t,y(t)) and W(t) = (t,t,y(w(t))), then W^^) = (l,!,^1)^)^1)), and 

k 

WW(t) = (0,0,53 WQ)'(a)) 

for ft > 2. Here, a(1) = fta{t,y{t)) and 

^      jb!       /aW^X'1      fa^(t)\jk 
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The sum is taken over all fc-tuples of nonnegative integers (ji,... Jk) that satisfy 
ii+- • '+jk = Q and ji+2J2-\ \-kjk = *;. Denote the scalar function K[^ (t, t, y(w(t)) 
by K^\ that is, K® = K^(W(t)). Then 

y"(t) = g"(t)+ [ K^ds + K' + K*! 
Jo 

yi3) (t) = 9i3) (t) + f K'{' ds + K" + i^ + K'{ 
Jo 

y(k+i){t) = g{k+i)it) + j* K{k+i) ds + K(k) + J2K(i-m-i+i) 

(4.6) 2/(fc+1) (t) = p(ft+1) (t) + f K[k+1Us + Kik) 

Jo 
k   k-i+l 

+ !E H S^-i+iV(---V(V^i(i"1)oW(<1))oW(ia)...)oW^) 

Observe that the highest-order derivative of W occurs when i — q = 1 in (4.6). 
(The term is \/K o W^). Consequently the highest order derivative of y in any 
term on the right-hand side of (4.6) is the k-th derivative. Since y(t) is continuous, 
it follows from (4.5) that y'fy) = yW(t) is the composition of continuous functions, 
hence itself continuous, at t = Z. Since (4.3) has continuity class p > 1, it is easy 
to show by induction from (4.6) that yW is continuous at t = Z for all k < I since 
I < P- (The induction terminates at the l-th derivative because y(a(t,y(i))) need 
not necessarily have more than I - 1 derivatives at t = Z.) This bound on & can be 
improved. 

Let m be even. Then a(t, y(t)) - L will remain either nonnegative or nonpositive 
in some neighborhood oit = Z. In other words, a(t,y(f)) for t in a neighborhood of 
Z will not range over intervals containing the jump point t = L. Hence y(a(t,y(t))) 
for tin a neighborhood of Z could have more than / continuous derivatives. It is easy 
to show by induction from (4.6) that-yW is continuous at t = Z. This establishes the 
first case. 

Let m be odd. Then either a(t,y(t)) - L changes sign at Z, or Z is a cluster 
point of zeros of a(t, y(t)) - L. In either case Z may be a derivative jump point. It is 
readily verified that the derivatives up to order ml - 1 of y(a(t,y(t))) that could be 
discontinuous at t = Z in (4.6) are actually multiplied by appropriate derivatives of 
order up to m - 1 of a(t, y(t)) which are continuous and which by hypotheses vanish 
at t = Z. Thus the effect of the discontinuities at t = Z is nullified. This completes 
the proof of Theorem 4.2. □ 

The above proof can be readily modified to establish an analogous result for 
Volterra integro-differential equations with state-dependent delay, 

(4.7) y'(t) = fit, y(t)) + [ K(t, s, y(a(s, y(s)))) ds,    t e /, 

(4.8) y(t) = <f>(t)    when    t e [a, 0] 

where a = min^o ot(t, y(t)) and a(t, y(i)) <tfort>0. 
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THEOREM 4.3. Let problem (4.7), (4.8) have continuity class p > 1. For given 
Lei, let the integer I G [l,p] be such that y G C^JL — £?£ + £] /or some £ > 0. 
Assume that there exists a least number Z G (L, T) such that Z is a zero of integer 
multiplicity m > 1 of a(£, 2/(t)) — L. Then y G C^[Z — £, Z + £] w;/iere q = p if m is 
even, and q = min(p, m/) «/ m is odd. 

The proof of this theorem is left to the reader. 
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