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METASTABILITY AND PINNING FOR 
CONVECTION-DIFFUSION-REACTION EQUATIONS IN THIN 

DOMAINS* 

XIAODI SUNt  AND MICHAEL J. WARDt 

Abstract. Two singularly perturbed convection-diffusion-reaction equations are examined to 
show the effect of small spatial inhomogeneities on metastable dynamics in one spatial dimension. 
The two problems that are considered are the Ginzburg-Landau equation from phase separation the- 
ory and a viscous shock problem modeling transonic nozzle flow. For each problem, the differential 
operator is perturbed by an exponentially small spatially inhomogeneous term as the singular pertur- 
bation parameter s tends to zero. This weak spatially inhomogeneous term represents the perturbing 
effect on the metastable dynamics of an internal layer that is slowly propagating along a channel of 
slowly varying cross-sectional area. It is shown that the effect of such a perturbation can be very 
significant and often leads to the existence of new stable equilibrium internal layer solutions that 
do not exist in the absence of the perturbation. This pinning effect induced by the perturbation is 
studied asymptotically as e —> 0 and the asymptotic results are compared with full numerical results. 

1. Introduction. We study two singularly perturbed evolution equations ex- 
hibiting metastable dynamics in a weakly inhomogeneous medium. The first problem 
we consider is the following generalized Ginzburg-Landau equation, which models the 
slow propagation of an internal layer in a thin channel: 

e2 

(1.1a) ut = —(Aux)x+Q(u),        0<x<l,        t>0, 

(1.1b) M0,£) =Ua;(M) =0>        u(x,Q) =uo(x). 

Here e > 0 is a small parameter and A = A(x, e) > 0 is the local cross-sectional 
area of the channel, which is specified below. In addition, Q(u) is a smooth function 
with exactly three zeroes on the interval [s_,s+] located at u = s- < 0, u = 0, and 
u = s+ > 0. Introducing the double-well potential V(u) by V(u) = — J^_ Q(r])drj, we 
assume that 

(1.2) Q,(5±)<0,        Q'(0)>0,        V(s+) = 0. 

A typical example is Q(u) = 2(u — u3) for which s± = ±1 and V(u) = ^(1 — u2)2. 
The motivation for studying (1.1) is related to the problem of determining the 

conditions for the existence of stable spatially inhomogeneous steady-state solutions 
to the Ginzburg-Landau equation 

(1.3) ut = Au + Q(u),        xeD;        dnu = 0,        x e dD. 

Here D is a bounded domain in RN and dn denotes the outward normal derivative to 
dD. In a convex domain, it is well known that (1.3) does not admit a stable spatially 
inhomogeneous steady-state solution (cf. [5], [18]). However, this non-existence result 
does not hold for non-convex domains (cf. [9], [12], [18]). In Appendix A, we show how 
(1.1) arises from an asymptotic reduction of (1.3) when D is a thin, axially symmetric 
domain as shown in Figure 1.1. In this context, x represents the direction along the 
axis of the channel and A represents the local cross-sectional area of the channel. 
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When A = l, which yields a slab geometry, it is well known that the propagation of 
an internal layer for (1.1) is exponentially slow as e -> 0 (i.e., metastable) and that a 
stable spatially inhomogeneous solution for (1.1) does not exist (see [4], [8], [14], [22]). 
When A = l, the metastability is a consequence of an exponentially small eigenvalue 
for the linearization of (1.1) around an internal layer solution. 

FIG.  1.1.   A cylinder of revolution with cross-section described in dimensional variables 
R = RoF(X/L). 

This exponential ill-conditioning suggests that the dynamics of an internal layer 
solution for (1.1) will depend very sensitively on the channel cross-section A when 
A is slightly offset from the uniform value A = 1. In particular, exponentially small 
changes in A — 1 should influence the dynamics greatly. Therefore, in §2, we study 
(1.1) as e —>> 0 for an A(x; e) of the form 

(1.4) A(xie) = l + e'Mg(x)e-d/e. 

Here JJ, and d > 0 are constants and g(x) is smooth. If g"(x) < 0, then D is convex and 
we expect that (1.1) will have no stable spatially inhomogeneous equilibrium solutions. 
When g"(x) > 0 and 0 < d < dc, where dc is some constant, we show in §2 that (1.1) 
can have a stable spatially inhomogeneous equilibrium internal layer solution where 
the internal layer is located at a zero of g'(x). This phenomenon, in which an internal 
layer or other localized structure is stabilized by a weakly inhomogeneous medium, is 
called pinning. The effect of pinning of other localized structures such as vortices in 
superconductivity has been studied in [6], [16]. When g,f(x) > 0 and d = dCl we show 
in §2 that the internal layer can be pinned at other locations in the interval [0,1]. 
In §2.1, we provide an asymptotic estimate for the principal eigenvalue Ao associated 
with the linearization of (2.1). In §2.2, we use the projection method, as surveyed 
in [23], to derive a differential equation for the location xo(t) of the internal layer, 
and we determine its limiting behavior as t -> oo. Finally, in §2.3, we compare our 
asymptotic results with corresponding results obtained from a full numerical solution 
of (1.1). 
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The second problem we consider is the nonlinear convection-diffusion equation 

(1.5a) m + [f(u)]x - c(x;e)h(u) = euxx ,        0<a:<l,    ^>0, 

(1.5b) tz(0) = a- ,        u{l) — a+ ;        w(a;,0) = u^x). 

Here 0 < 6: «C 1, a_ >0 and a+ < 0 are constants, and /I(M) and /(it) are smooth. 
The flux function j{u) is assumed to be convex and satisfies 

(1.6) /(a+) = /(<*_),        /(0) = /'(0) = 0,        «/'(«) >0   for   u^0. 

The function c(x; e) is chosen to be 

(1.7) c(x',e) = -e»cj(x)e-E~ld. 

Here // and o? > 0 are constants and g{x) is smooth. 
A primary motivation for studying (1.5)-(1.7) is that, for the special case when 

h(u) = u and /(u) = ^2/2, this problem models transonic gas flow in a nozzle of 
cross-sectional area A(x\s) given by c{x\e) = —Ax(x;£)/A(x;£) (cf. [11], [10], [17], 
[20]). Hence, for e < 1, the cross-sectional area A(x]£) can be taken precisely as 
in (1.4). In this context, the nozzle is said to be divergent if g'fa) > 0 for all x, 
convergent if gf(x) < 0 for all #, and convergent-divergent if g'fa) has no definite 
sign. For Burgers equation (f(u) — u2/2) in a straight channel where g(x) = 0, it was 
shown in [13], [15], and [19] that there exists a unique and stable equilibrium shock 
layer solution centered at XQ = 1/2. It was also shown that for the corresponding 
time-dependent problem, a viscous shock, which gets formed from the initial data, 
tends toward the steady-state solution only over an asymptotically exponentially long 
time interval as e -> 0. This metastable behavior arises from the occurrence of an 
asymptotically exponentially small principal eigenvalue for the linearization of Burgers 
equation around the viscous shock solution. In view of this exponential ill-conditioning 
of Burgers equation, we expect that shock-layer solutions can be significantly altered 
by perturbing the differential operator by exponentially small terms. In [15], we 
remark that the effect of exponentially small but spatially homogeneous perturbations 
was considered. 

Our primary goal in §3 is to study the pinning effect induced by the spatially 
inhomogeneous term c(x]e) in (1.5). In particular, we analyze the existence, stability, 
and dynamics of equilibrium and time-dependent shock-layer solutions to (1.5). In 
§3.1, we obtain an asymptotic estimate for the principal eigenvalue AQ associated with 
the linearization of (1.5) around a shock-layer profile. In §3.2, we use the projection 
method of [23] to derive a differential equation for the location XQ (t) of the shock-layer 
trajectory. We then analyze the equilibrium solutions of this differential equation and 
determine their stability properties. In §3.3, we illustrate the results for certain forms 
of g(x) when h(u) = u and f(u) = 'U2/2, modeling transonic nozzle flow, and we 
compare our asymptotic results with corresponding numerical results. Our results 
show that, under certain assumptions, there can exist stable steady-state shock-layer 
solutions along a convergent nozzle or in the convergent part of a convergent-divergent 
nozzle. In contrast, it was shown, using a nonlinear stability analysis in [7], that when 
c(x\e) is independent of e and when the diffusive term euxx in (1.5) is absent, the 
corresponding inviscid problem does not admit stable shock waves in these nozzles. 

2. A generalized Ginzburg-Landau equation. We now study (1.1) in the 
limit e —► 0 with A{x\£) as given in (1.4). A one-layer metastable pattern for (1.1) 
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can be approximated by 

(2.1) u(x, t) ~ uc [e-l(x - xQ{t))} 

where uc(z) is the heteroclinic orbit that connects s+ and s_, which satisfies 

(2.2a) u'^z) + Q(uc) = 0 ,    -oo < z < oo,    wc(0) = 0, 

(2.2b) 
uc(z) ~ S- + a-el/~z ,    as    ^ —>• — oo ;    uc(z) ~ s+— a+e~~1/+z ,    as    ^ —>• oo . 

Here the positive constants u± and a± are defined by 

s± 

0 

±l/± ds. (2.3) ,± = [-Q'(s±)f\    loga± = log(±S±) + ^     L[2V(8)]1/9  ■  8_a± 

We now look for a solution to (1.1) for t > 1 in the form 

(2.4) u(x,t) —uc [e~l(x -£o(t))] +^(^,*) 

where w <^ uc and i^t < dtuc. The trajectory XQ = xo(i) gives the approximate 
location of the zero of u(x,i) during the metastable evolution. Substituting (2.4) into 
(1.1), and using (2.2), we obtain that w satisfies the quasi-steady problem 

(2.5a) Lew = Af-e^x'ou'^z) - e-f-u'c) >        0 < re < 1, 

(2.5b) wx(0,t) = ux{0,t) -dxuc\x=0 - -e^a-v-e-"-*0'', 

(2.5c) w^t) = ux(l,t) - dxuc\x=1 - -e-^+iz+e-^^-^)/6 

where z = e_1[x — Xo(t)]. Here A is given in (1.4) and the operator L£ is defined by 

(2.6) Lew = e2 (Awx)x + AQ'(uc)w . 

2.1. The eigenvalue analysis. For a fixed ^o € (0,1), we now study the eigen- 
value problem 

(2.7a) L£(j) = X(t),        0<z<l, 

(2.7b) 0x(O) = ^(l) = O,        (0,0) = 1. 

Here (w, v) = /0 uvdx. For this eigenproblem, the eigenvalues Xj for j > 0 are real 
and the principal eigenvalue AQ is exponentially small as e — > 0. To estimate AQ and 
the corresponding eigenfunction </>o, we use the trial function 0o = w/

c[£
-1(x — XQ)]. 

Then, upon integrating by parts, we derive 

(2.8) Ao(0o,0o) = (<l>o,Le<t>o) - e2A(f)o4>ox\0 . 

Using (1.4) and (2.5), we estimate 

(2.9) Le4>o = e»+2g'(x)e-d/e4>ox • 

Since L64>o is exponentially small and 4>o is of one sign, we have that 0o ^ ^000 away 
from 0(e) regions near the endpoints at x = 0 and x = 1 where iVo is a normalization 
constant. However, this approximate form for 00 does not satisfy the homogeneous 
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boundary conditions in (2.7b) and so we cannot use it to calculate </>o(0) and 0o(l)- 
Instead, these quantities are calculated after constructing boundary layer profiles for 
fio near each endpoint. 

Since A is exponentially close to 1, the boundary layer analysis given in [22] for 
the case A = 1 can be used to calculate 

(2.10) ^o(O) - 2Noa„is-e-"-Xo/£ ,    ^(1) - 2iVoa+*'+e~I/+(1"a;o)/e . 

Then, since the dominant contribution to the inner product integrals arises from the 
region near x = XQ, the left side of (2.8) is estimated as 

(2.11) 
/CO /*s+ 

[u'c(z)]2dz= [2V(u)}1/2 du. 
-OO J8- 

Next, we use (2.9) to estimate 

/OO 

u'e{zy{xo+ez)u'l{z)dz. 
-OO 

By using a Taylor series expansion for g'{xo + ez), we get 

OO 

(2.13) (^^--iVoe^e-^^ey^Oroh* 
A;=0 

where the coefficients 7*. are defined by 

1    P00 

(2.14) lk = ~k\J      ^K'(^* dz>        * = 0,1,... . 

The first two coefficients are readily calculated to be 

(2-15) 7o = 0,        7i = f- 

Moreover, if uc(z) is an even function, then 72^ = 0. Finally, substituting (2.10)- 
(2.13) into (2.8), we obtain the following key estimate for AQ: 

PROPOSITION 2.1 (Exponentially small eigenvalue). Fore -t 0, the exponentially 
small eigenvalue of (2.7) satisfies 

(2.16) AQ - Ao(xo) - 2(3Q
1
 {a^e"2^1-*0^ + a2_vle-2v-x°/£} 

OO 

-/jo-v+^-^xy^+^oh*. 
k=l 

Here u±, a± are defined in (2.3), /?o is defined in (2.11); and 7^ is defined in (2.14). 

2.2. The metastabilty analysis. We now derive a differential equation for the 
location #0 ~ xo(t) of the internal layer trajectory. We first expand the solution w to 
(2.5) in terms of the eigenfunctions (f)j of (2.7) as 

(2.17) «,(*,*) = f;£^i(s). 
3=0    j 
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The coefficients Cj, which are found by integrating by parts, are 

(2.18) CJ = -e-^Ax^^j) -eiA^^j) -e^w^l,   j = 0,l,... . 

Since Ao -> 0 as e -> 0, a necessary condition for the solvability of (2.5) is that Co -> 0 
as e -¥ 0. Setting CQ = 0 in (2.18), we obtain the asymptotic differential equation for 
xo=xo(t): 

(2.19) e"1^ (Au'c, fo) - ^(A^u^ </>o) - etfaAwx |J . 

To obtain an explicit differential equation for xo(t): we must evaluate the inner 
product integrals and the boundary terms in (2.19). The dominant contributions to 
the inner product integrals arise from the region near x = XQ . 

First, the boundary terms in (2.19) can be calculated asymptotically from (2.5) 
and (2.10) as 

(2.20) ^At^w^l - 2iVo£ (-alvle-2u+(l-XQV£ + aW_e-2u-X0^ . 

Now, to evaluate (Axu
f

c,<j)o), we use (1.4) and </>o ^ NQU'C to get 

/CO 

g'ixo + ez^u^fdz. 
-OO 

By using a Taylor series expansion of g(xo + ez), we obtain 

OO 

(2.22) (^«'c, to) ~ iVoe^e-^ ^ ekg^^ (x0)fik 

k=0 

where the coefficients ^ are defined by 

(2.23). ^ = ^y     [<(z)}2zkdz,        k = 0,l,.... 

Upon integrating by parts, we can show that /?& = 2jk+i for k > 0 where jk is defined 
in (2.14). Next, for e ->• 0, we estimate the left side of (2.19) to get 

(2.24) e^x'oiAu'MnNofox'o. 

Finally, substituting (2.20), (2.22), and (2.24) into (2.19), we obtain our main 
result for the metastable dynamics associated with the generalized Ginzburg-Landau 
equation (1.1): 

PROPOSITION 2.2 (Metastable dynamics). For e -> 0 and t > 1, a one-layer 
metastable pattern for (1.1) is represented by u(x,t) ~ uc[e'~1(x — Xo(t))] where the 
internal layer trajectory Xo(t) satisfies the asymptotic differential equation 

(2.25) x'0 - h(xo) = 2^0-1 [a^z/Je-2.+(i-^o)A _ ^2 e-2,_soAJ 

OO 

k=zO 
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Here i/±, a± are defined in (2.3), Pk for k > 0 is defined in (2.23), and uc(z) is defined 
in (2.2). 

The following equilibrium result is obtained by setting x'0 = 0 in (2.25): 

COROLLARY 2.3 (Equilibrium). Fore -> 0, an equilibrium solution U(x;e) to 
(1.1) corresponding to a one-layer pattern is given by U(x;e) ~ uc[s~1(x — x™)] where 
uc(z) is defined in (2.2) and x™ satisfies the nonlinear algebraic equation h(xo) = 0, 
i.e., 

1 oo 
(2.26) alvle-2^1-^6 - alfa-*"-*0'' = ^s^e'^T^^"^^) . 

k-0 

We now discuss the behavior of the equilibrium solutions for xo(t). We first 
observe that in (2.25), /i(0) < 0 and h(l) > 0 for s -* 0. Thus, there exists at least 
one equilibrium value x™ for a;o(£). The existence of any other equilibrium value for 
XQ depends on the constants d and fi and the function g'ix). For example, when d > 0 
is sufficiently large, the terms in (2.26) proportional to e~d/£ are insignificant and, 
consequently, the equilibrium value for XQ is given uniquely by 

(2.27) ^ ~ -^+- - ^— log [^± 

Alternatively, when d > 0 is sufficiently small, the right side of (2.26) dominates the 
left side of (2.26) and, consequently, for e ~-» 0, (2.26) has a root x™ near each zero of 
gr(x). As shown in the examples below, when d is near some critical value so that the 
right and left sides of (2.26) balance as e ->■ 0, we can have an equilibrium internal 
layer solution centered at a diflferent point on the interval [0,1]. 

Although the only stable equilibrium solutions to (1.3) in a convex domain are 
constants, the generalized G-L equation (1.1) may admit stable spatially dependent 
equilibrium solution with an internal layer structure. Let x™ satisfy hfa™) = 0. 
Then, since /?& = 27*4.1, as seen by comparing (2.14) and (2.23), we can show that 
h'fa™) = 2XO(XQ

1
) where AQ is given in (2.16). This shows that the decay rate for 

the differential equation (2.25) associated with infinitesimal perturbations about x™ 
is 2A™ where AQ

1
 = Xofa™). This leads to the following criterion for the stability of 

the equilibrium internal layer solutions: 

COROLLARY 2.4 (Stability of equilibrium). Let xff satisfy h(xtf) = 0. Then the 
equilibrium solution to (1.1) has the form U ~ uc[(x - x™)/£] and is stable (unstable) 
if AoOzcT) < 0 (Ao^™) > 0). Here uc(z), Xo(xo), and h(xo) are given in (2.2), (2.16), 
and (2.25). 

Using this corollary, it follows that an equilibrium solution with an internal layer 
located at XQ = x™ is unstable when g'^x™) < 0. Since g"(x) < 0 corresponds to 
a convex domain in higher dimensions, this result re-states the conclusion in [5] and 
[18] concerning the instability of non-constant steady-state solutions to (1.3) in convex 
domains. However, when #"(a^) > 0, then Ag2 can be negative for certain choices of 
jji and d, resulting in a stable internal layer solution centered at x™. The key point 
to construct a stable equilibrium solution is to guarantee that (2.25) has multiple 
equilibria corresponding to simple zeroes of h(xo). Then, we must have exactly one 
stable equilibrium of (2.25) between every two consecutive unstable equilibria. We will 
see from the examples below that this can be realized by selecting the cross-sectional 
profile A(x, e) (i.e., g(x)) appropriately. 
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2.3. Comparison of asymptotic and numerical results. We now compare 
the asymptotic results obtained above with the corresponding full numerical results 
computed directly from (1.1). We also show the existence of stable equilibrium solu- 
tions with an internal layer structure to the generalized G-L equation (1.1). 

In all of the calculations below, we have taken Q(u) = 2(u — u3), for which 
a+ = a_ = 2, v+ = v- = 2, and u8(z) = tanh(;z). In addition, we calculate that 
fo = 4/3, 7i = 2/3, 73 = (TT

2
 - 6)/36, and 72^ = 0 for k > 0. Thus, (2.16) becomes 

(2.28)    Ao = Ao(xo)~48 e-4(l-xo)/e _|_ e-4xo/e 

_ l£l*+2   -d/e 
2 9"^) + ^i-9

{i\x0)e" + --- 

le differential equation (2.25) becomes 

e-4(l-xo)/e _ e~4:Xo/e 

_ eiL+<Ze-d/e ff,(*o) + ^5(3)(»o)e
2 + - 

(2.29)    x'0 ~ h(xo) = 24e 

To check the validity of (2.29), we solved (1.1) numerically for a number of choices of 
g(x), three of which are described below. 

To compute numerical solutions to (1.1), we use a transverse method of lines 
approach (cf. [2]). This method is based on replacing the time derivative in (1.1) by 
a difference approximation and then solving the resulting boundary value problems 
in space. More specifically, we convert the time-dependent problem (1.1) to a set 
of boundary value problems using the second order Backward Differential Formulas 
(BDF) [2], which we solve at each time step using the boundary value solver COLSYS 
[1]. Since the motion of the internal layer solutions is exponentially slow, we found 
it necessary to implement a time-stepping control strategy to efficiently track the 
solutions to (1.1) over long time intervals. To achieve this, we used the /2-norm of the 
difference between the solutions of the second order and the third order BDF schemes 
as an error indicator to reject large inaccurate time steps or to enlarge unnecessary 
small time steps. See [21] for details of these algorithms, where they were used in a 
different context. 

The metastablity result (2.29) is valid only after the completion of an 0(1) tran- 
sient period that describes the formation of an internal layer from initial data. In 
the computations below, we took u(x, 0) = uc([x — XQI/S) as the initial data for (1.1) 
where uc(z) is defined in (2.2) and XQ G (0,1) is the initial zero of u. To eliminate 
any unwanted transient effects, we computed the solution to (1.1) with this initial 
data until t '= 5. At this time, x® is reset to be the zero of u predicted by the nu- 
merical method. This new value for XQ is used as the initial condition for (2.29). 
The differential equation (2.29) is then solved numerically for xo(t) using the initial 
value solver DP 12 [3] and for t(xo) using a numerical quadrature, and the results are 
compared with corresponding numerical results for the zero of u computed from the 
finite difference scheme. 

EXAMPLE 2.1. Let g(x) = — |(x — |)2, which corresponds to a convex domain. 
Then a solution to the equilibrium problem h(xo) = 0 for (2.29) is x™ = 1/2, in- 
dependent of the constants JJL and d. This is the only solution to h(xo) = 0, since 
g"(xo) < 0 implies that h'fao) > 0 for XQ € [0,1]. This unique equilibrium solution 
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TABLE 1. A comparison of the asymptotic and numerical results for t = t(xo) for 
Q(u) = 2(u - u3) and g(x) = -|(x - |)2 with s = 0.05, fi = 0, d = 0.4, and 

a;o(0)=0.4. 

Xo t (asymptotic) t (numerical) 
0.3991489 
0.3902339 
0.3459655 
0.3013976 
0.2646857 
0.2024301 
0.1683312 
0.1350323 
0.0753443 

0.100998498xl05 

0.111103064xl06 

0.515111092xl06 

0.818109359xl06 

0.102010258 xlO7 

0.127991981 xlO7 

0.133126841 xlO7 

0.133755526xl07 

0.133805967xl07 

0.100998673 xlO5 

0.111104540 xlO6 

0.515123233 xlO6 

0.818137253 xlO6 

0.102014660 xlO7 

0.127995306 xlO7 

0.133127901 xlO7 

0.133756144 xlO7 

0.133806497 xlO7 

xfi1 = 1/2 is unstable since Ao(l/2) > 0 in (2.28). This conclusion is confirmed by 
the full numerical results shown in Table 1. This table displays the asymptotic and 
numerical results for the elapsed time as a function of the internal layer location XQ 

for e = 0.05, /i = 0, and d = 0.4, when the initial location is xo(0) = 0.4. The results 
for t = t(xo) agree to at least four significant decimal places. 

EXAMPLE 2.2. We choose g(x) = |(x - |)2, which corresponds to a non-convex 
domain. Again, x™ = 1/2 is an equilibrium solution to (2.29) for any // and d. 
However, this solution can be stable depending on the values of fj, and d. From 
(2.28), a simple calculation gives Ao(l/2) = -±e»+2e-d/£ + QGe-2/6. Let dc be the 
zero of Ao(l/2) as a function of d, i.e., dc = 2 — .slog 192 + (// + 2)£log£. Then, 
from Corollary 2.4, the equilibrium x™ = 1/2 is stable (unstable) when d < dc 

(d > dc). Given ^ = -2 and e = 0.1, we have dc « 1.4742. In Figure 2.3, we 
plot the numerical solution to (1.1) at different times for d = 1.4 and d = 1.5. For 
d = 1.5 and a?o(0) = 0.49, we observe that the internal layer located at xo(t) moves 
at an accelerating speed away from x™ = | and eventually it collapses against the 
wall at x = 0. Alternatively, for d = 1.4 and xo(0) = 0.45 the layer drifts toward 
its equilibrium location at x™ = \ at an exceedingly slow rate. Thus, this example 
demonstrates the influence of the constants n and d on the stability of the equilibrium 
solution. Comparisons between the asymptotic and numerical results for the internal 
layer trajectories are displayed in Table 2a for d — 1.4 and in Table 2b for d = 1.5. 
They agree to at least 3-4 significant digits. 

By plotting h(xo) in (2.29) versus XQ, we can show that XQ
1
 = 1/2 is the only 

equilibrium to (2.29) when it is unstable. Alternatively, if the equilibrium XQ
1
 — 1/2 

is stable, then (2.29) has two additional (unstable) equilibria that emerge from a 
pitchfork bifurcation as d is decreased below d = dc. In particular, for the parameter 
values £ = 0.1, ^ = —2, and d = 1.4, we calculate that there are two other equilibria 
at x™ « 0.4435 and x™ « 0.5565. For a more general g(x), the set of equilibria to 
(2.29) consists, for e —> 0, of the zeroes of </(#o) and probably one or two others near 
the endpoints, provided that d < 2 min(i/_a:m, ^+(1 — XM)) where xm and XM are the 
smallest and largest zeros of gf(x) on the interval [0,1]. Since the equilibrium solution 
closest to the endpoint x = 0 or x = 1 is unstable, a stable equilibrium x™ must be 
near those zeros of gr(x) satisfying ^'(x™) > 0. This analysis is illustrated in the next 
example. 
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TABLE 2a. A comparison of the asymptotic and numerical internal layer 
ajectories for Q(u) = 2{u — ud) and g(x) — \{x - \)2 with e — 0.1, fi — —2, 

rl — 1   A    <mA  rY*»(C\\ — n AK d= 1.4, andxo(O) = 0.45 

t #0 (asymptotic) XQ (numerical) 
0.1009705 xlO4 0.4500052 0.4500052 
0.5824404 xlO5 0.4503374 0.4503374 
0.6115657 xlO6 0.4541856 0.4541852 
0.1266815 xlO7 0.4600576 0.4600546 
0.3232563 xlO7 0.4790305 0.4790227 
0.4510299 xlO7 0.4875179 0.4875137 
0.8933232 xlO7 0.4981489 0.4981502 
0.1586249 xlO* 0.4999096 0.4999098 
0.2243776 xlO9 0.5 0.5 

TABLE 2b. A comparison of the asymptotic and numerical internal layer 
trajectories for Q{u) = 2(u — u3) and g(x) = ^(x — |)2 with e = 0.1, fi = —2, 

d= 1.5, anda?o(0) = 0.49. 

Xo t (asymptotic) t (numerical) 
0.4899742 
0.4892876 
0.4758890 
0.4519193 
0.4263499 
0.4015483 
0.3522899 
0.3018846 
0.2021744 
0.0794917 

0.255661494 xlO5 

0.679551367xl06 

0.747594011 xlO7 

0.105770564x10* 
0.113221195x10* 
0.115273938x10* 
0.116191551x10* 
0.116312395x10* 
0.116330380xl08 

0.116330716x10* 

0.255661329 xlO5 

0.679517141 xlO6 

0.747469530 xlO7 

0.105738718 xlO* 
0.113185051 xlO* 
0.115236708 xlO* 
0.116153855 xlO* 
0.116274632 xlO8 

0.116292599 xlO8 

0.116292938 xlO* 

EXAMPLE 2.3. We now consider g(x) = JQ(S - |)(s — |)ds, which has one 
maximum at xi = | and one minimum at X2 = |. From the discussion before, 
since g"(xi) < 0 (#"(#2) > 0), we expect that when d > 0 is sufficiently small, 
the equilibrium of (2.29) near xi (#2) is unstable (stable). This is confirmed by the 
numerical results plotted in Figure 3 where s = 0.08, /x = 0, and d = 0.2. Figure 
3a shows that the internal layer drifts slowly towards the stable equilibrium location 
at XQZ « 0.6608 when its initial location is at xo(0) = 0.4. However, in Figure 
3b, the internal layer with initial location a;o(0) = 0.333 moves slowly towards the 
left and finally collapses against the wall at x = 0. This shows that there is an 
unstable equilibrium near #1, which is calculated from (2.29) to be XQ^ « 0.3401. 
Corollaries 2.3 and 2.4 suggest that there is another unstable equilibrium x^ between 
X2 and the right endpoint. We compute from (2.29) that XQC. « 0.7762. To confirm 
this conjecture, we compute the solution to (1.1) numerically for two different initial 
locations of the internal layer and we plot the corresponding numerical results at 
different times in Figure 4. From this figure, we observe tha,t when ^o(0) > x^ or 
XQQ, < XQ (0) < £03 5 ^he internal layer moves exponentially slowly away from xJI until 
it eventually collides with the endpoint x = 1 or it reaches its stable equilibrium 
location at a;g£, respectively. In summary, this example has three equilibrium internal 
layer solutions.   The ones located at XQ[ and x^ are unstable, and the other one 
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FIG. 2.1. Plots of the numerical solutions of (1.1) at different times with Q(u) — 2(u — u3) and 
g(x) = ^(x — |)2 where s = 0.1, fi = — 2 with initial condition uo(x) = Uc([x — XQI/S). (a) When 
d = 1.4 and XQ = 0.45, the internal layer moves towards its equilibrium x™ = 1/2; (b) when d — 1.5 
and XQ = 0.49, the internal layer moves towards the left and collides with x = 0. 

located at XQ2 is stable. 
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FIG. 2.2. Plots of the numerical solutions of (1.1) at different times with Q{u) — 2(u — u3) and 
g(x) = JQ (S— |)(5— |)<is where s = 0.08, JJ, = 0, d = 0.2 with initial condition UQ{X) = Uc([x—XQI/S). 

(a) When x® = 0.4, the internal layer moves towards xlfy « 0.6608; (b) when XQ — 0.333, the internal 
layer moves towards the left and collides with x = 0. 

For this example, in Tables 3a and 3b, we give a comparison between the asymp- 
totic and numerical results for the evolution of the internal layers corresponding to 
Figure 3a and 3b, respectively. In these tables, the second column gives the numerical 
results for xo(t) or t(xo) while the third and fourth columns show the corresponding 
asymptotic results from (2.29) with the one term and the two term expansions for 
the second pair of brackets in (2.29), respectively. Since it may happen that g'ixo) is 
close to zero during the evolution of an internal layer, the higher order term in (2.29) 
proportional to gm(xo) can be quantitatively significant in some cases. In most cases, 
we find that the relative errors for the two-term expansion are below 0.002% in Table 
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3a and 0.02% in Table 3b, while they are only about 3% in Table 3a and 50% in Table 
3b for the one-term expansion. Thus, a two-term asymptotic expansion for (2.29) is 
certainly needed to obtain close quantitative agreement with the numerical results. 
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FIG. 2.3. Plots of the numerical solutions of (1.1) at different times with Q(u) = 2(u — 
g(x) = SQ(S — !)(S— §)ds where s = 0.08, /x = 0, d = 0.2 with initial condition uo(x) = Uc([x- 
(a) When x® — 0.76, the internal layer moves towards x™2 ^ 0.6608; (b) when XQ — 0.79, the 
layer moves towards the right and collides with x = 1. 

it3) and 
-x0

0}/e). 
internal 

TABLE 3a. A comparison of the asymptotic and numerical internal layer trajectories 
for Q(u) = 2(u - u3) and g(x) = f*(s - 1/3){s - 2/3)ds, with e = 0.08, p = 0, 

d = 0.2, and^o(O) = 0.4. 

t XQ (numerical) Xo (asymptotic) 1-term xo (asymptotic) 2-term 
0.4531527xl04 0.446231116 0.452053925 0.446234119 
0.7487310 xlO4 0.484045085 0.493797390 0.484052581 
0.8965202 xlO4 0.503953307 0.515317905 0.503963248 
0.1339888xl05 0.560669741 0.574424596 0.560683682 
0.2881822 xlO5 0.650108735 0.658569607 0.650107041 
0.4544450xl05 0.660137084 0.666792280 0.660135732 
0.5741542 xlO5 0.660748955 0.667250946 0.660748242 
0.1175766xl06 0.660847732 0.667319903 0.660847282 
0.5677799 xlO8 0.660847731 0.667319905 0.660847287 

We finally remark that, by taking g(x) to be a periodic function, it is possible 
to construct a domain profile A(x,e) such that (1.1) has arbitrarily many (stable) 
equilibrium solutions. 

3. A Burgers-like convection-diffusion-reaction equation. We now study 
(1.5) in the limit e -4 0 with c(rc;e) as given in (1.7). The viscous shock solution for 
(1.5) can be approximated by 

(3.1) u(x,t) ~us [e^ix-xoit))] 

where the viscous shock profile us (z) satisfies 

(3.2a) <(*) = f[us{z)] - /(a_) ,        -oo < z < oo; 

(3.2b)    us(z) ~a_ -a-ev- 

i*s(0)=0, 

oo ;    us(z) ~ a+ + a+e~v+z ,     z -> +oo . 
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TABLE 3b. A comparison of the asymptotic and numerical internal layer trajectories 
for Q(u) = 2(u - u3) and g(x) = f*(s - 1/S)(s - 2/3)d*, with e = 0.08, p = 0, 

d=0.2, anda;o(0) =0.333. 

XQ t (numerical) t (asymptotic) 1-term t (asymptotic) 2-term 
0.3327547 0.340885709 xlO5 0.153239646 xlO6 0.340916775 xlO5 

0.3316803 0.147718828 xlO6 0.444448389 xlO6 0.147738247 xlO6 

0.3058932 0.744277679 xlO6 0.120475205 xlO7 0.744387573 xlO6 

0.2457738 0.101699029 xlO7 0.148559051 xlO7 0.101710846xl07 

0.2015392 0.110200256 xlO7 0.157152695 xlO7 0.110210654xl07 

0.1500169 0.116129605 xlO7 0.163121386 xlO7 0.116139950xl07 

0.1145554 0.117455785 xlO7 0.164451780 xlO7 0.117466741 xlO7 

0.1014824 0.117521955 xlO7 0.164518040 xlO7 0.117532979xl07 

0.0747960 0.117546167 xlO7 0.164542305 xlO7 0.117557243xl07 

The positive constants z/± and a± are defined by 

(3-3) 

/ 
^± = T/'Cai),     log ( T-^- ) = Tv± 

_a± ra± 
ds . 

J(s)- f(a±)      v±(s-a±) 

We now look for a solution to (1.5) in the form 

(3.4) u(x,t) = u8[e-1(x-xo(t))] +v(x,t) 

where v <^ us and vt ^ dtus. The trajectory XQ — xo(t) gives the approximate 
location of the zero of u(x,t) during the metastable evolution. Substituting (3.4) into 
(1.5), and using (3.2), we obtain that v satisfies the quasi-steady problem 

(3.5a)       evxx - [/'(IOVL + cti(us)v - -ch(us) - S^XQU'^Z) ,        0 < x < 1 , 

(3.5b) i;(0, t) = a- - us(-xo/e) - a-e-"-*0'* , 

(3.5c) t;(l, t) = a+- us([l - xo]/e) - -a+e-"^1-*0^ 

where z = (x - Xo(t))/£. 
As in [19], it is convenient to transform (3.5) to self-adjoint form by introducing 

a new variable w(x,t) defined by 

(3.6) v(x, t) = w(x, t)ip(z) ,    ^(z) = 
uf

s(z) 

<(0) 

1/2 

,      Z = £      {X - XQ) . 

Substituting (3.6) into (3.5), and using the asymptotic behavior of ^(z) as z —> ±oo, 
we find that w(x,t) satisfies 

(3.7a)      L£w = e2wxx - V[x;£]w ~ -sip'1 (ch(us) + e"1 XQU'^Z)) ,    0 < x < 1, 

(3.7b) 

(3.7c) w(l,t)  

a_/(a_) 
z/_ 

1/2 
-v-xo/2e 

a+/(a+) 

v+ 

1/2 
-^+(1—XQ)/2S 
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Here V(x;e) is defined by 

(3.8) V(x; e) = i [f'(us(z))]2 + lf"[us(z)}u's(z) - ech'[us(z)] 

where z = e~1(x — XQ) and c = c(x]e) is given in (1.7). 

3.1. The eigenvalue analysis. For a fixed XQ e (0,1), we now study the eigen- 
value problem 

(3.9a) Le<l> = \<f>,        0 < x < 1, 

(3.9b) m = 0(1) = 0,        (0,0) = 1. 

Here (u, v) = /0 wvdrr. For this eigenproblem, the eigenvalues Aj for j > 0 are real 
and the principal eigenvalue AQ is exponentially small as e —> 0. We now extend the 
analysis of [19] to give an estimate for AQ and for the corresponding eigenfunction 0o 

We first define the trial function 0o by 0o(^) = 'll)~1 {^^s^) where z — (x — Xo)/s 
and tp is defined in (3.6). Then, applying Green's identity to 0o and 00? and using 
(1.7), we get 

(3.10a) Ao(0o,0o) = (0o, L€<j>o) + s2(l)ox4)o\0 

where 

(3.10b) Ljo = -e^1g,(x)e-d/£ht[us(z)}u,
s(z)/^) • 

Since L£0o is exponentially small and 0o is of one sign, we have that 0o ~ iVo0o, 
except near the endpoints at x = 0 and a: = 1. Here iVo is a normalization constant. 
We must modify 0o by inserting boundary layer profiles near the endpoints in order 
to satisfy the boundary conditions in (3.9b). These boundary layers can be analyzed 
in the same way as in [19] and, from this analysis, we obtain that 

0o*(0) ~ -e-1Woi'-[a-i>-/(a_)]1/2e-'-*°/2e , 

(3.11) <l>0x(l)~e-1Nov+[a+u+f{a+)]1'2e-'+(1-*oV2e. 

Since the dominant contribution to each of the inner product integrals in (3.10a) 
arises from the region near x = XQ, we can calculate (0o,0o) and (0o,Le0o) using 
Laplace's method. As in [19], we estimate 

/oo 

[u'.COlV-2(z) dz = eN0(a- - o+)/(o_) . 
-OO 

To calculate (0o, Z/e0o), we use (00, ^00) ~ NQ (0O, L£4>O) - Substituting 0o = ,0~1 {z) 
u'8(z) into this expression, and using (3.6) and ^(0) = —/(a._), we derive 

/oo 

g'ixo+ezyu'^h'iusiz^dz. 
-oo 

A Taylor series expansion for ^'(^o + ez) then yields 

oo 

(3.14) (0o,Le0o)~-iVo/(a-)^+2e-d/£^efc7^(':+1)(^) 
A;=0 
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where the coefficients 7^ in (3.14) are defined by 

1    f00 

(3.15) ^ = ~k\J     <W[us{z))zk dz,    fc = 0,l,.... 

Since we have assumed that h'iu) is bounded on the interval [a+, a-], the exponential 
decay of u'^z) as z -> ±00 ensures that 7^ is finite for each k > 0. We can calculate 
70 explicitly to get 

(3.16) 70 = Ha-) - h(a+). 

Notice that if f(u) is even and h(u) is odd, we get 72^+1 = 0 for k > 0. Finally, sub- 
stituting (3.11), (3.12), and (3.14) into (3.10a), we obtain the following key estimate 
for AQ: 

PROPOSITION 3.1 (Exponentially small eigenvalue). Fore -> 0; the exponentially 
small eigenvalue of (3.9) satisfies 

(3.17)    AQ = AoOro) — la+^e"^1-^^ + a-i/le-"-**'*] 
a- - a+ L      ^ J 

£lJL+le-d/e 
^ek

lk9^\x0) 

Here i/±, a± are defined in (3.3), and jk is defined in (3.15). 

3.2. The metastability analysis. We now derive a differential equation for 
the location XQ = xo{t) of the internal layer trajectory. We first expand the solution 
w to (3.7) in terms of the eigenfunctions Qj of (3.9) as 

(3.18) ^M) = gl^i(x). 

The coefficients r^, which are found by integrating by parts, are 

(3.19) rj = -4((/)j,^~10 -e^j^cti) +e2w(j)jx\l 

where ij) is defined in (3.6). Since AQ -4 0 as e -4 0, a necessary condition for the 
solvability of (3.7) is that ro -4 0 as e -4 0. Setting ro = 0 in (3.19), we obtain the 
asymptotic differential equation for XQ — xo(t) 

(3.20) ^(^^"'O - -efa^ch) +e2w<l>ox\
1

0. 

To obtain an explicit differential equation for XQ (t), we must evaluate the inner product 
integrals and the boundary terms in (3.20). The dominant contributions to the inner 
product integrals arise from the region near x = XQ- 

First, we use (3.7b), (3.7c), and (3.11) to asymptotically calculate the last term 
on the right side of (3.20) as 

(3.21) . eVo*|J - Noef(a-) {a-iz-e-"-*0/' - a+v+e-'+t1-*'^} . 
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Next, we evaluate the term on the left side of (3.20) as 

(3.22) faclTV,) - eiVo(a- " <*+)/(<*-) i 

which is the same as (3.12). To evaluate the first term on the right-hand side of (3.20), 
we use 00 ~ iVo^o and ^o = ip'1 (z)^^) to get 

(3.23) e^^ch) ~N^+1e-d!£f{a-) [ g'(x)h(ua[{x-xo)/e])dx. 
Jo 

Since h(us(z)) —>> /i(a±) exponentially as 2 -> ±00, we can evaluate the integral in 
(3.23) by decomposing it as 

(3.24) /   ^(^^(^[(a; - x^/e]) dx ~ [h(u8) - ft(a_)] g'(x) dx 
Jo                                               Jo 

+ f  [/»(«,) - h(a+)] g'(x) dx + h(a-) [g(xo) - g(0)} + h(a+) [g(l) - g(xo)] . 
JXQ 

The integrands in the two integrals on the right side of (3.24) are localized near x = XQ 

and can be evaluated using a Taylor expansion to get 

(3.25a)     / g'^hiusiix - xo)/e]) dx - h(a-) [g(xo) - g(0)] 
Jo 

00 

+ h(a+) [g(l) - g(xo)} + e £ e Wfe+1) (x0) 
k=0 

where the coefficients /3^, for k = 0,1,..., are defined by 

(3.25b)    I3k = - I      (h[us(z)] - h(a-)) zkdz + -l     (h[u8(z)] - h(a+)) zk dz . 

Using integrating by parts, it is readily seen that fik = 7A;+I where 7^ was defined 
previously in (3.15). We also observe that when f(u) is even and h(u) is odd, then 
fok =0fork>0. 

Finally, substituting (3.21), (3.22), (3.25a) into (3.20), we obtain our main result 
for the metastable dynamics associated with (1.5): 

PROPOSITION 3.2 (Metastable dynamics). For s -> 0 and t > 1, the metastable 
viscous shock dynamics for (1.5) is represented by u(x,t) ~ uit[£~1(x — xo(t))] where 
the internal layer trajectory XQ (t) satisfies the asymptotic differential equation 

(3.26) 

' - M(xo) = la-V-.e-u-XQ/£ - a+u^e'^1'^^) e^e'^ 
a- - a+ I J      a- - a+ 

x L(a^[g(xo)-gm + Ha+)[g(l)-g(xo)}+e^ekl3kg^
1\xo)\ . 

^ ife=0 J 

Here the coefficients a± and v± are defined in (3.3), /?& for k > 0 is defined in (3.256), 
and us(z) is defined in (3.2). 
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The following equilibrium result is obtained by setting XQ — 0 in (3.26): 

COROLLARY 3.3 (Equilibrium). For £ -4 0, an equilibrium shock-layer solution 
to (1.5) is given asymptotically by U ~ us[(x — x^/e] where us(z) is defined in (3.2) 
and XQ — x™ satisfies the nonlinear algebraic equation M(xo) = 0, i.e., 

(3.27) o-iz-e""-^/6 - a+zz+e-^^1"^)/6 = ^e-d/£|/i(a_) [g(xo) - g(0)] 

OO N 

+ h(a+) [g(l) - g(x0)} + e "£ ek^k^ M |. 

To qualitatively understand the equilibrium problem for x'0 — M(xo), we first 
note that M(0) > 0 and M(l) < 0 as e -> 0 when d > 0. Thus, there is at least one 
equilibrium solution for (3.26) as e —> 0. If d > 0 is sufficiently large, then the term 
in (3.26) proportional to e~£ d can be neglected and hence the unique root x™ of 
M(XQ) = 0 is given asymptotically by 

(3.28) x? ~ -^ S— log (m±) . 

Alternatively, if d > 0 is sufficiently small, then M{XQ) = 0 may have multiple roots 
for some choices of g(x). This will be illustrated below for some specific examples. 

Since jk = Pk-i, it follows that M'(xo) = Ao(xo)/£. Thus, the decay rate as- 
sociated with infinitesimal perturbations about x™ is Ao^o1)/^. This leads to the 
following criterion for the stability of the equilibrium shock-layer solution. 

COROLLARY 3.4 (Stability of equilibrium). Letxfi1 satisfy Mfaff) = 0. Then the 
equilibrium solution to (1.5) has the form U ~ us[(x — x^/e] and is stable (unstable) 
if AOOKQ

1
) < 0 (XO(XQ

1
) > 0). Here us(z), Ao(a;o), and M(xo) are given in (3.2), 

(3.17), and (3.26). 

It is easy to show that a sufficient condition for M'fao) < 0 on XQ G [0,1] as e ->• 0 
is that 

(3.29) g'ixo) [h(a-) - h(a+)] > 0,        for all   XQ € [0,1]. 

When this condition holds, the shock-layer solution centered at XQ = x™ where x™ 
is the unique root of M(xo) = 0, is stable for s C 1. In particular, (3.29) is satisfied 
when h'(u) > 0 for it G [a+, a_] and (/(x) > 0 on x E [0,1], which models a diverging 
nozzle flow as discussed following (1.7) above. More generally, a sufficient condition 
for the stability of a root xff of M(xo) = 0 is that (3.29) holds at XQ = xff. This 
stability conclusion for an internal layer solution is consistent with [11]. 

However, when g'(xo)[h(a-) — h(a+)] < 0 on [0,1], the stability of an equilibrium 
internal layer solution can only be determined by explicitly calculating the sign of 
XO(XQ

1
) where x™ is a root of M(xo) = 0. In this case, multiple equilibrium solutions 

for x!
0 = M(xo) are possible (see the examples below). We now illustrate the existence 

of multiple equilibria in this case when d > 0 is sufficiently small and e —)■ 0. Let's 
suppose that ^'(^o) < 0 on [0,1] and /i(a_) > ft(a+) > 0. Then, when d > 0 is 
sufficiently small and e -t 0, there is a root x^ of M(XQ) = 0 that is 0(e) close to 
the unique solution of 

(3.30) h(a-) [g(xo) - 9(0)] + h(a+) [g(l) - g(xo)] = 0. 
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The assumption g'(x^2)[h(a-) -h(a+)] < 0 then yields that M'faffo) > 0 when d > 0 
is sufficiently small and e -> 0. Hence, this root is unstable. However, when d > 0 
and e -> 0, we calculate that M(0) > 0, M(l) < 0, M'(0) < 0, M'(l) < 0. Hence, 
there must exist additional roots x^ and XQ^ to M(XQ) =0 that satisfy 0 < x^ < x'fy 
and rc^ < a?03 < 1 for which M'^gJ) < 0 and M'ix^) < 0. Thus, these additional 
roots are stable equilibria of X'Q = M(xo) and the profiles us[s~1(x — x^)] and 
us[s~1(x — XQZ)] correspond to stable internal layer solutions. Notice, as d -¥ 0+, 
xoi ~^ 0 and ^03 -> 1 so that these internal layer solutions become stable boundary 
layer solutions in agreement with the analysis in [11] for the case d = 0. 

3.3. Comparison of asymptotic and numerical results. We now compare 
the asymptotic results obtained above with the corresponding full numerical results 
computed directly from (1.5). For all of the calculations below, we consider the case 

u2 

(3.31) f(u) = — ,        h(u) = u,        a_ = — a+ — a. 

As discussed in [20], and following (1.7) above, this problem models the transonic flow 
through a nozzle of cross-sectional area A{x\ e) — 1 + £Me~ff dg{x). We will consider 
nozzles of different cross-sectional areas by varying the term g{x) in (3.17), (3.26), and 
(3.27). Recall that the nozzle is said to be divergent if g'ix) > 0 for all x, convergent 
if g'ix) < 0 for all x, and convergent-divergent if gf(x) has no definite sign. We use a 
similar numerical method as described in §2.3 above to compute numerical solutions 
to (1.5) and to compare with the corresponding asymptotic results. 

When f(u) = u2/2 and a- = —a+ = a, we have a± = 2a v± = a and us(z) = 
—atanh(a^/2). We also calculate that (70,71,72,73, •• •) = (2a,0,7r2/3a,0,...). 
Prom (3.17), the principal eigenvalue Ao(^o) satisfies 

(3.32) Ao ~ -^(e-*1-*")/6 + e"^/6) - e^e"^ [g'(xo) + ^fl"'(*o) + •••]. 

In addition, since /?& = ^k+i for k > 0, (3.26) becomes 

(3.33) x'0 ~ M(xo) = a(e-ax^e - e'^1-^^) - e^e-^ 

In most cases, the higher order terms in the square brackets on the right sides of 
(3.32) and (3.33) make only very minor improvements to the results. Thus, except 
when specified otherwise, they are ignored when making the comparisons below. 

EXAMPLE 3.1. We first consider a divergent nozzle where g(x) = Cx for some 
C > 0. From (3.32) and (3.33), the only equilibrium value for xo(t) is x™ = \ and 
the principal eigenvalue Ao(l/2) is always negative for any fi and d > 0, C > 0. Thus, 
from Corollary 3.3 and 3.4, there is a unique shock-layer solution centered at x = 1/2 
and it is stable. This agrees with the conclusion in [7] and [17] that flows along a 
divergent nozzle are always stable. The case C = 0 was well-studied in [13], [15], and 
[19] and comparisons between asymptotic and numerical results can be found in [15] 
and [19]. 

EXAMPLE 3.2. We next consider a convergent nozzle where g(x) — Cx for some 
C < 0. In this case, x™ = 1/2 is still a root of M(xo) = 0 in (3.33), but now from 
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(3.32) we calculate Ao(l/2) as 

(3.34) Ao(l/2) - -2a2£-1e-a/2£ - e^e'^C. 

Thus, the stability of x™ = 1/2 is determined by the values of //, d, and C. For 
example, if // = —1 and d = a/2, then the shock layer located at x™ = \ is stable 
(unstable) if C > -2a2 (C < -2a2). If JJL = -1 and C = -2a2, then it is stable 
(unstable) if d > a/2 (d < a/2). These stability results are fully confirmed by the 
numerical results displayed in Tables 4 and 5, where a = 1. In these tables, we 
give the asymptotic and numerical results for xo(t) in the second and third columns 
respectively, and the error representing the difference between the asymptotic and 
numerical results in the fourth column. The asymptotic results agree with the nu- 
merical ones to at least five decimal places. From these tables, we observe that when 
the equilibrium x™ — ~ is unstable, the shock layer will move away from x™ — \ v,m  _   I 

to somewhere else, but not to the endpoints x — 0,1. This suggests the existence 
of other stable equilibria for (3.33). For this example, it is easy to show that when 
x™ — | is unstable (i.e., Ao(|) > 0), then M{x§) has exactly two more zeros that 
are symmetric about x™ — |. They correspond to two stable equilibrium values for 
#o(£)- When x™ — \ is stable, then it is the only zero of M{x§). This analysis is 
illustrated by plotting M(#o) in Figure 5. 

TABLE 4a. A comparison of the asymptotic and numerical shock layer trajectories 
for (1.5) with f{u) = u212 and g'ix) = -1.9. Here e = 0.03, // = -1, d = 0.5, a = 1, 

and x% = 0.205712482. 

* Xo(t) (asymptotic) xo(t) (numerical) error 
.7466667 xlO1 .212682157 .212676330 .582xl0-6 

.5013333 xlO2 .236113084 .236101298 .117xl0-4 

.3754166 xlO3 .285065717 .285059434 .628xl0-6 

.3879890 xlO4 .352169342 .352167776 .156xl0-5 

.2523277xl05 .404404274 .404403590 .683xl0-6 

.4144176 xlO6 .465271835 .465271222 .613xl0-6 

.3061509 xlO7 .489469516 .489468465 .105xl0-5 

.8745862 xlO7 .496984897 .496983905 .991 xlO"6 

.8407137xl08 .499999999 .499999999 -.204 x lO"9 

TABLE 4b. A comparison of the asymptotic and numerical shock layer trajectories 
for (1.5) with f(u) = u2/2 and g'ix) = -2.1. Here e = 0.03, // = -1, d = 0.5, a = 1, 

and x* = 0.494999996. 

t xo(t)  (asymptotic) xo(t) (numerical) error 
.2988174xl04 .494997385 .494997382 .346 xlO"8 

.1725713xl06 .494847418 .494847363 .548 xlO"7 

.4950768 xlO7 .489521616 .489522250 -.633 x lO"6 

.7862987 xlO7 .486497884 .486497678 .206xl0-6 

.9804466 xlO7 .485206361 .485204630 .173xl0-5 

.1465816xl08 .483947388 .483944120 .326 xlO"5 

.1659964X108 .483811685 .483908521 .316xl0-5 

.2242408 xlO8 .483701958 .483699155 .280xl0-5 

.8697827xl08 .483689263 .483686417 .284xl0-5 
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FIG. 3.1. Plots of M1O0) = a(-e-«(1-a;o)/e + g-axo/e) (solid lines) and M2(xo) = 
£fle~d/£C(xo — |) (dash lines) versus XQ where a = l} e = 0.03, /i = —1, and C = —2. The 

intersection(s) of Mi(xo) and M2(xo) is the zero(s) of M{XQ). (a) d = 0.55: we have Ao(|) < 0, 
and the only equilibrium x™ = | is stable; (b) d = 0.45: we have three zeros of M(XQ) given by 
rrj^ « 0.3902, x^ = 0.5, and x^ « 0.6097. Here x^ = 0.5 is unstable and the rest are stable. 

TABLE 5a. A comparison of the asymptotic and numerical shock layer trajectories 
for (1.5) with f(u) = u2/2 and g'fa) = -2. Here e = 0.03, fjL = -l,d = 0.55, a = 1, 

and x0
0 = 0.205646164. 

t xo(t) (asymptotic) xo(t) (numerical) error 
.mooooxio2 

.216714648 .216706869 .777xl0-5 

.4765000 xlO2 .235153498 .235142419 .HOxlO-4 

.3321062 xlO3 .281796238 .281790749 .548xl0-5 

.1271548 xlO4 .320208345 .320206583 .176xl0-5 

.1494813xlO5 .392954938 .392955455 -.517 x 10-6 

.1429582xlO6 .457781790 .457782599 -.808 x 10-6 

.5020859 xlO6 .488305699 .488306411 -.712 x HT6 

.1608928 xlO7 .499637394 .499637666 -.271 x 10-6 

.5455925 xlO8 .500000000 .499999999 .582 xlO"9 

Therefore, there exists either one or two stable steady-state solutions of the form 
u rsj Us[(x — x^/e] along the convergent nozzle we are considering. The analysis of 
[7] for the inviscid problem 

(3.35) ut + uux — c(x)u = 0 

proved that standing shock waves in a convergent nozzle (i.e., c(x) > 0 for all x) or 
in the convergent portion of a convergent-divergent nozzle are unstable. Our example 
has shown convincingly that the effect of viscosity and the boundary conditions in 
(1.5) allows for the existence of a stable standing wave in a convergent nozzle when 
c(x) is replaced by the form in (1.7). 

EXAMPLE 3.3. Next, we let a — 1 and consider a convergent-divergent nozzle 
where g{x) = [x — a)2, and the constant a satisfies \ < a < 1. Now the algebraic 
equation 2g(xo) — g(0) — g(l) = 0 has one root x* G (0,a).  If we choose d so that 
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TABLE 5b. A comparison of the asymptotic and numerical shock layer trajectories 
for (1.5) with f(u) = u2/2 and g'(x) = -2. Here e = 0.03, fi = -1, d = 0.45, a = 1, 

and rrg = 0.494999513. 

t a;o(*) (asymptotic) xo(t) (numerical) error 
.3895482 xlO3 .494967222 .494967221 .946 xlO"9 

.7976059 xlO4 .494295191 .494295125 .658 xlO-7 

.3291548 xlO5 .491389800 .491389298 .502 xlO-6 

.8279433 xlO5 .480483494 .480480756 .273xl0-5 

.1491332xl06 .445338979 .445330373 .860xl0-5 

.1690847xl06 .429122276 .429116007 .626xl0-5 

.2249490 xlO6 .395546688 .395541088 .560xl0-5 

.3072491 xlO6 .390353158 .390348796 .436 xlO-5 

.2905679 xlO10 .390284916 .390281195 .372xl0-5 

0 < d < x*, then it is easy to see that for e —Y 0 the function M(XQ) in (3.33) will have 
three zeros xgi, x^, and ^03, satisfying 0 < XQJ < x™2 < %* and a < XQ^ < 1. These 
zeros are illustrated in Figure 6 for the parameter values e = 0.04,a = l,// = — 1, 
d = 0.171244968, and a = 0.8. From the discussion following Corollary 3.4, it is clear 
that XQI and XQ^ are stable equilibria and that XQ2 is unstable. In Figure 7, we verify 
the stability of XQI and XQ^ by plotting the numerical solution to (1.5) at different 
times for two initial values XQ. The two initial values x® in Figures 7a and 7b are so 
close that there is only one unstable equilibrium for xo(t) between them, which is x^. 

EXAMPLE 3.4. Finally, we give an example to illustrate that it is possible to 
construct a nozzle geometry to guarantee an arbitrary number of steady state internal 
layer solutions. We take g(x) = sm(n7rx) where n is positive integer. Let x* = i/n 
for i = 0,..., n be the i-th zero of g(x). In this case, the differential equation (3.26) 
for xo(t) becomes 

(3.36) 

X'Q ~ a 1 e    axo/e _ e-a(l-xo)/e]   _ ^ -d/e 
(sinimrxo) ,    C = l- 

n27r4e2 

6a2 + ■ 

It is easy to see that if d is chosen such that 0 < d < a^, then for e —> 0, there exists 
iV = n + (n — 1) mod 2 equilibria XQJ, i = 1,2,..., iV. Among these equilibria, XQI 

for i — 1,3,... , N are stable and the rest are unstable. Note that if d > xl, then the 
number of the equilibria may be less than N. 

We now implement a numerical experiment to illustrate this analysis. We choose 
n — 4, a — 1, /i = 0, d = 0.19, and e — 0.02. In this case, we have three stable 
equilibria at ^QI ^ 0.2044, #03 — O-^ and x^ « 0.7955, and two unstable equilibria 
ax Xi 02 0.2440 and x^ 
expansion for £. We choose the initial values x^ =0.24 and x^ 

0.7559, which we compute from (3.36) using a two-term 
0.25 when computing 

the numerical solution to (1.5). The asymptotic and numerical results are shown in 
Tables 6a and 6b. These tables also display the asymptotic result (3.36) with both the 
one-term and the two-term expansions for £• The error terms in the fourth and sixth 
columns represent the difference between the asymptotic and numerical results. Since 
the higher order terms in £ in (3.36) are significant, we observe from Table 6 that a 
two-term expansion for 7/ is certainly needed to obtain close quantitative agreement 
with the numerical results for xo(t).   Finally, in Figure 8, we plot the shock layer 
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-0.8- 

FIG. 3.2. Plots of Mi(x.o) = a(-e-a^-xoy£ + e'^^/e) (solid lines) and M2(XQ) = 
ei*e-d/e((Xo _ a)2 _ ija2 + (i _ a)2] + 7r2a-2£2/3) versus XQ where e = 0.04, a = 0.8, a = 1, 
fi = —1, and d — 0.1712... . The intersections of Mi(xo) and Mzixo), which are the zeros of 
M(xo)} are agj « 0.1286, xfy « 0.2077 and x^ « 0.9122. //"ere £/ie equilibrium x^2 is unstable, and 
the other two are stable. 

0.5 ■1 
 1=0 
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-0.5 I 
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"\ 
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(b) 

FIG. 3.3. Plots of the numerical solutions to (1.5) at different times with f{u) = tt2/2 and 
g(x) = (x - a)2 where £ — 0.04, a = 0.8, a = 1, fi — -1, d — 0.1712... and initial condition 
UQ(X) = us[{x — xfy/e}. (a) XQ = 0.2: shock layer moves towards left; (b) x® = 0.25: shock layer 
moves towards right. 

evolution corresponding to the data in Table 6, which shows that x^ and x™s are 
stable equilibria, while x^ is an unstable equilibrium. 

Appendix A. Derivation of equation (1.1). Consider the Ginzburg-Landau 
equation (1.1) with Neumann boundary condition in a cylinder of revolution with 
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TABLE 6a. A comparison of the asymptotic and numerical shock layer trajectories 
for (1.5) with f(u) = u2/2 and g(x) — sin(47ra:). Here e = 0.02, a = 1, fj, = 0, 

d = 0.19, and x% = 0.239991525. 

t a;oCO (num.) (3.36) 1-term errorl (3.36) 2-term error2 
.1133545X103 .239718703 .239610666 -.108 x 10-'6 .239726721 .801X10-5 

.5512484X103 .238497828 .237864222 -.633 x lO"3 .238543918 .460xl0-4 

.1135106X104 .236387221 .234724657 -.166 x 10-2 .236505117 .117X10-3 

.2580156X104 .228182044 .222194243 -.598 x 10-2 .228599741 .417xl0-3 

.4255100 X104 .214978265 .206459679 -.851 x 10-2 .215700702 .722xl0-3 

.6061413X104 .206403299 .201517420 -.488 x lO"2 .206902782 .499X10-3 

.8360356X104 .204368747 .200989316 -.337 x 10-2 .204672929 .304xl0-3 

.1606592X105 .204187662 .200966538 -.322 x 10-2 .204461290 .273X10-3 

.6239090X105 .204187642 .200966538 -.322 x lO"2 .204461248 .273X10-3 

TABLE 6b. A comparison of the asymptotic and numerical shock layer trajectories 
for (1.5) with f(u) = u2/2 and g(x) = sin(47ra;). Here e — 0.02, a — 1, // = 0, 

& = 0.19, and x% = 0.250022546. 

t zoM (num.) (3.36) 1-term errorl (3.36) 2-term error2 
.9389256 Xl02 .250384983 .250386816 .183X10-5 .250384917 -.664 x lO"7 

.5804413 X103 .252677437 .252755503 .780X10-4 .252672223 -.521 x lO"5 

.1650848 xlO4 .261513735 .262616867 .HOxlO"2 .261438939 -.748 x lO"4 

.3207804 xlO4 .296383726 .306534177 .lOlxlO"1 .295721003 -.662 x lO"3 

.4969111 XlO4 .398142523 .424482167 .263X10-1 .396102752 -.204 x lO"2 

.6545529 xlO4 .469337132 .481526941 .121X10-1 .468203669 -.113 x 10-2 

.9610786X104 .497704786 .498961715 .125xl0-2 .497567194 -.137 x lO"3 

.157Q298X105 .499987099 .499996630 .953X10-5 .499985677 -.142 X lO"5 

.6945472 XlO6 .5 .5 .573X10-9 .5 -.274 x lO"9 

cross-section described in dimensional variables by R — R^F{XjV) (see Figure 1.1): 

(A.la) 
Ut = D(URR + ir1UR + Uxx) + QoQ(U),    0 < X < L,    0<R< RoF(X/L), 

(A.lb) (UR, Ux) ' (1, -L^RoF'iX/L) = 0,        on R = RoF(X/L), 

(A.lc) Ux^O,        on X = 0,1, 

Here D and Qo are positive constants and Q(U) is described following (1.1). We as- 
sume that the cylinder is long and thin so that RQ C L. In terms of the dimensionless 
variables r = RQ

1
R, X = L~1X1 and r = DL~2t1 (A.l) becomes 

(A.2a)      Ur = S-2(Urr + r"1!^) + Uxx + QQ(U),    0<x<l,    0<r< F(x), 

(A.2b) Ur-52UxF
,(x)=0,        on   r = F(x) 

(A.2c) Ux = 0,        on    x = 0,1. 

Here S = RQ/L <€ 1 and Q = D^QQL
2
. 

We now derive a partial differential equation that is valid for U in the limit 
6 -» 0. We expand U away from the endpoints at x = 0,1, as U'= UQ + 62Ui H . 
Substituting this expansion into (0.2a) and (0.2b) and collecting powers of <52, we 
obtain 

(A.3) Uorr + r_1t/r = 0,    in 0 < r < F(x);    Uor = 0,    on r = F(x), 
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(a) (b) 

FIG. 3.4. Plots of the numerical solutions to (1.5) at different times with f(u) — u2/2 and 
g(x) — sin(47r^) where e — 0.02, a = 1, v — 0, d = 0.19, and initial condition uo(x) = Us[(x — XQ)/?]- 

(a) XQ = 0.24: shock layer moves towards left; (b) XQ = 0.25: shock layer moves towards right. 

and 

(A.4a) 

(A.4b) 

Ulrr + r  1Ulr = Uor - QQ{Uo) - Uoxx,    in 0 < r < F(x), 

Ulr = F,{x)Uox,    onr = F(x). 

The first equation gives UQ = Uo(x,t). To determine an evolution equation for UQ, 

we write (0.4a) as (rUir)r = r(?7or — QQ(Uo) — Uoxx)> Integrating this equation with 
respect to r from 0 to F(x) and applying the boundary condition (0.4b), we get 

(A.5) Uor = Uoxx + 2F-1F,Uox + QQ(Uo). 

Let A denote the cross-sectional area of the domain, so that A = TTF
2
. Then, from 

(0.5) and (0.2c), we get the one-dimensional reaction-diffusion equation 

(A.6a) 

(A.6b) 

UOT = J(AUOX)X + QQ(UO) 0 < x < 1,    t > 0, 

UOX(0,T) = UOX(1,T)=0. 

To study the slow motion of internal layers under (0.6), we suppose Q ^> 1 and so we 
write Q = e~2 for some e <C 1. Then, setting t = s_2r, we find that (0.6) reduces to 
(1.1) when the cross-sectional area A = A(x,e) is given by A(x,e) = l + £fJ'g(x)e~d/£. 
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