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LOW FREQUENCY ELECTROMAGNETIC SCATTERING THEORY 
FOR A MULTI-LAYERED CHIRAL OBSTACLE* 

CHRISTODOULOS ATHANASIADISt AND IOANNIS G. STRATISt 

Abstract. We consider the problem of scattering of a plane electromagnetic wave by a multi- 
layered chiral scatterer with a perfectly conducting core. We derive integral representations for the 
total exterior electric field, as well as for the electric far field pattern of this problem. Using the low 
frequency approximation, we reduce the scattering problem to an iterative sequence of problems in 
potential theory, and construct the leading term approximation of the electric far field pattern. 

1. Introduction. The study of the scattering of low frequency electromagnetic 
waves by an obstacle was initiated by Lord Rayleigh in 1897. A method of obtaining 
succesive approximations in ascending powers of the wave number was described by 
Stevenson [19]. Significant contribution to the study of scattering in low frequencies 
has been made by Kleinman and by Jones (we refer to [13], [14] and [11], [12], respec- 
tively). Some important theorems for multiple scattering of electromagnetic waves 
were proved by Twersky [20]. The present authors [5] obtained low frequency solutions 
of the conductive problem for Maxwell's equations. Low frequency electromagnetic 
scattering theory has been developed by one of the authors [3] for a multi-layered 
scatterer. In [18], Picard investigates the limiting process as the angular frequency 
tends to zero for the solution of the classical Maxwell system. In [1], Ammari et al. 
obtain the limit of the scattered field solution of the Drude-Born-Fedorov equations as 
the frequency tends to zero, and show that the asymptotics depend on the topological 
properties of the considered domain. Low frequency expansions have also been used 
in acoustics and elasticity; see, for example, Dassios [8], Dassios and Kiriaki [9], and 
one of the authors [2]. 

A chiral object is a body that cannot be brought into congruence with its mirror 
image by translation and rotation. Chirality is common in a variety of naturally 
occurring and man-made objects (e.g., DNA in molecular scale, helices). From an 
operational point of view, chirality is introduced into the classical Maxwell equations 
by a pair of generalized constitutive relations in which electric and magnetic fields are 
coupled via a new material parameter. The monograph [16] by Lakhtakia contains 
a large part of work on scattering problems involving chiral media. Low frequency 
expansions in chiral media have been used by Lakhtakia et al. [17], Lakhtakia [15], 
and Jaggard et al. [10]. 

The purpose of this work is to explore the low frequency scattering problem for 
an electromagnetic plane wave incident upon a multi-layered chiral scatterer with a 
perfectly conducting core. In Section 2, we describe the multi-layered chiral scatterer 
and formulate the corresponding scattering problem for the electric field only. In 
Section 3, we construct an integral representation for the total exterior electric field in 
which the transmission and boundary conditions, along with the behaviour at infinity, 
are incorporated. Moreover, we derive the electric far field pattern of the considered 
problem. In Section 4, we reduce the scattering problem to a series of problems in 
potential theory which can be solved successively in terms of expansions in appropriate 
harmonic functions; we also construct the leading term approximation of the electric 
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far field pattern.   Finally, Section 5 contains some remarks and comments on other 
related research work. 

2. Formulation of the problem. The multi-layered chiral scatterer ft is a 
bounded, convex, and closed subset of E3, with a C2-boundary SQ. The interior of 
ft is divided by means of closed and nonintersecting (72-surfaces into subsets (layers) 
fij, with dflj fl dflj+i = Sj, j = 1,2, ...,iV. The surface Sj-i surrounds Sj and 
there is one normal unit vector n(r) at each point r of any surface Sj pointing at 
flj. Each flj, j = 1,2,..., iV, is occupied by a homogeneous isotropic chiral medium 
with electric permittivity ej, magnetic permeability fij, chirality measure fy, and 
vanishing conductivity. The space HTV+I, within which lies the origin, is the core of 
the multi-layered chiral scatterer, and appropriate boundary conditions are satisfied 
on its surface SN, that may be either the perfect conductor condition, or the dielectric 
conditions, or an impedance boundary condition [7]. 

The exterior flo of the scatterer is an infinite homogeneous isotropic achiral 
medium with electric permittivity EQ, magnetic permeability p^ and vanishing con- 
ductivity. 

We shall consider the scattering of time-harmonic electromagnetic plane waves by 
the multi-layered chiral scatterer (7. Let (Einc,Hinc) and (ESC,HSC) be the incident 
and the scattered waves, respectively. (Esc, Hsc) satisfies the well-known Silver-Miiller 
radiation condition [7]. The total exterior field (Eo,Ho) in HQ is given by 

(2.1) Eo-Esc + Einc, 

(2.2) Ho = Hsc + Hinc, 

and satisfies the Maxwell equations 

(2.3) V x EQ = zu;/ioHo, 

(2.4) V x Ho = -iuEoEo 

where u is the angular frequency.  The total field (Ej,Hj) in each chiral layer fij, 
j = 1,2,..., iV, satisfies the equations 

(2.5) V x E,- = iuiij^Hj + pjrfEj, i 
'A:2 

J 

(2.6) V x H,- = -iuEj ±Ej + PJ^HJ 

where 

(2-7) 72 - -J!L- 'j 1 - *?# 3^3 

with 

(2.8) fc? = uPew . 

The equations (2.5) and (2.6) are derived by the source-free Maxwell curl postulates 

(2.9) V x Ej = iuBj ,    V x H^- = -iu'Dj 
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along with the Drude-Born-Fedorov constitutive relations 

(2.10) D,- = ^.(E,- + &V x E,-),    B,- - /ij(Hi + ^V x H,-). 

For the physical meaning of fy, jj, kj and more details about the constitutive relations 
for chiral media, we refer to [16]. We note that any solution of (2.3)-(2.6) is divergence 
free. 

In order to develop the low-frequency theory for the scattering by 0, we consider 
the decoupling of E^ and H^, j = 0,1,..., TV in (2.3)-(2.6), eliminating the magnetic 
field. The equation thus arising is [3], [16], 

(2.11) V x V x Ej = 7?Ei + 2/^7? V x E,-    in %    j = 0,1,..., N 

where /?o = 0, and 70 = ko = CJ^O^O)
1
/

2
 is ^^e free-space wave number in fio? and in 

view of (2.8), we get 

(2.12) k) = £-^-kl,    j = 0,l,...,N. 
£0^0 

The scattered electric field Esc satisfies the Silver-Miiller radiation condition 

(2.13) lim fp x V x Esc(r) + ikorEsc{r)} = 0 

uniformly in all directions. 
On the surfaces Sj, j = 0,1,..., N — 1, we have the transmission conditions 

(2.14) hxEj =hx Ej+i, 

(2.15) nxVxE^^-J-nxVx Ei+1 + 7? (ft - ^ft+i) n x Ei+1. 

The relation (2.15) arises from the standard dielectric condition n x Hj = n x Hj+i 
on Sj by substituting the magnetic field from (2.5). 

We consider that the core is a perfect conductor, that is 

(2.16) n x EN = 0, on SN. 

The proof that the above transmission problem has a unique solution can be found 
in [6]. 

The corresponding problem, arising by eliminating the electric field, consists of 
the equations mQj,j = l,2,...,N 

(2.17) V x V x H,- = 72 H,- + 2^7] V x H,-, 

the transmission conditions on Sj, j — 1,2,..., iV — 1 

(2.18) nx H, =n x Hj+i, 

(2.19) n x V x ^ = ^J-n x V x Hi+1 ^^U - ^±i^+i)n x Hj+1, 

the boundary condition OIJ SN 

(2.20) n x V x HAT - /?jv7Arn x JiN = 0, 
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and the radiation condition 

(2.21)        lim [r x V x Hsc(r) + ikor Hsc(r)l = 0,    uniformly in all directions, 

with /?o = 0 and 70 = fto-   This problem can be treated by an entirely analogous 
procedure to that of the following sections. 

REMARK. Instead of being a perfect conductor, the core may be considered to 
be chiral and penetrable. In this case, the electric field EJV+I, in the interior of the 
core fijv+ij will satisfy (2.11) with j = N + 1, and the transmission conditions (2.14), 
(2.15) for j = AT, on SN- This problem can be studied essentially as in Sections 3 and 
4. 

3. The exterior field. In this section, we construct an integral representation 
of the total exterior electric field in which all the transmission and boundary con- 
ditions are incorporated. In order to do this, we begin with the following integral 
representation for the electric field, [20], [3]: 

(3.1)    Esc(r) = [  [(V x Esc(r')) ' (n x f (r,^)) 
Jso1 

- (n x E^r7)) • (Vr, x f(r,r'))] ds(r'), r G O) 

where r(r,r') is the free-space dyadic Green's function 

(3.2) r(r,r') = -(/ + fc0-2V®v)i—-—, 
47r|i 

with / = ei (g) ei + 62 O 62 + 63 (g) 63 the identity dyadic (e^, j = 1,2,3, are the 
cartesian unit vectors). Inserting (2.1) in (3.1) and taking into account that Einc is a 
solution of the equation (2.11) for j = 0, we obtain 

(3.3)    Eo(r) = Einc(r) + /  [(V x Eo(r')) • (n x f (r,r')) 

-(nxEo(r,))•(Vr/xf(r,r,))]^(r,). 

Using the transmission conditions on So, the relation (3.3) becomes 

£i7o (3.4)    Eo(r)=Einc(r) 
^o7i  Jso 

[  n-[(V xEiCO) xf^r7)  cte(r') 

+7o
2 flft f  fi. fE^r') x f (r.pOl datf)- [   *' \^i^) x (^ x T(r,T>)j\ ds(rf). 

^0       JSo        L J JSQ        L J 

Now, applying successively the dyadic form of the divergence theorem and taking into 
account that Ej and f are solutions of (2.11) in Oj, j = 1,2,..., A/", and OQ respec- 
tively, and introducing the transmission conditions (2.14), (2.15) and the boundary 
condition (2.16), we obtain that 

(3.5) Eo(r) = Einc(r) + Esc(c)(r) + Esc(a)(r) 

where Esc'c) and Esc(a) denote, respectively, the chiral and the achiral parts of the 
electric scattered field Esc, and are given by 

47rEBC(c)(r) = - —falfi [   (V x E^r')) • (n x f(r,r')) ^(r') 
£0 JSN 
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N N 
fco2E?^ /   (VxE^r'))-^ xf(r, 0)^(0 

3=1 

N 

N 

(3-6) - fc0
2 ^ e-lpj /   E^r') • (Vr/ x f (r,r')) dt;(p/), r G fio 

and 

47rEsc(a)(r) = ^ /   (V x E^r')) • (n x f^r')) d^r') 

(3.7) + j^ (f^ - l)   f  (V x E^r')) • (Vr/ x f for1)) dt;(r'), r € flo . 

The surface integrals in (3.6), (3.7) express the effect of the core, while the volume 
integrals express the contribution of each layer to the exterior field. 

The behavior of the scattered electric wave in the region of radiation is described 
by the electric far field pattern E0o(f), which is defined [7] by the relation 

(3.8) Esc(r) = Eooff) h(kor) + O f 1V    r -> oo , 

uniformly in all directions where h(x) = eix/(ix) is the zeroth-order spherical Hankel 
function of the first kind. Substituting the asymptotic forms, [3], 

(3.9) f(r,rO = -^(/-r0r)/i(A:or)e-^?-r,+O^ ,        r -+ oo 

(3.10) Vr/ x f for') = -M(jf x f) MM e-^' +o(^),    r -► oo 

in (3.6), (3.7) and, in view of (3.8), we obtain 

(3-11) E00(f) = EW(f) + EW(f) 

where 

47rE^(r) = ik3
0^(32

N [    (V x EN(T')) • (n x (I-r®r)) e-ik^r'ds(rf) 
£o      JSM V / 

N 

+ *o E -^1 /  (V x Ei(r')) • a x ?) e-ik0*-''dv(T') 

N . 

+ **o y] —^i /    (V x E^r')) • (/ - f ® f) e-**0*-''^^') 

(3.12) +fc4y-£i^.  /   Ej(r')-(/xf)e-ifc°f-r'(iU(r') 
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and 

47rEW(f) - -iko — [   (V x EN(T')) • fn x (/ - f 0 f)) e"^0"1*''ds(r') 
VN JsN 

V y 

-ik3
0y^(l-^)  [   Ej(r

,)'(I-r^r)e-ik^r,dv{rf) 

(3.13) - kl JT (- - l) /   (V x E^r')) • (/ x f) e'^'dv(r'). 

4. The low frequency approximation. We consider an incident plane wave 
Einc(r) = pez/i;odr where the unit vector d describes the direction of propagation, the 
constant vector p G M3 gives the polarization, and are such that p • d = 0. Einc is 
analytic at fco = 0 and it can be expanded into the convergent power series 

(4.1) Einc(r) = p 53 ^f" (d ' r)m ' 
m=0 

We assume the standard low frequency hypothesis k^a <^ 1, where a is the radius of 
the smallest circumscribable sphere around the scatterer, [3], [8], [9], [13], [14]. We 
consider the following expansion of the fields Ej into convergent power series of ko: 

(4-2) .Ei(r)=f;^p*«)(r) 
m=0 

where $m (r) are independent of ko. For the justification of this expansion, see the 
Appendix. Inserting the expansion (4.2) into (2.11) and equating equal powers of ko, 
we obtain for j = 0,1,..., AT, m = 0,1,2,..., that 

(4.3) VxVx*$(r) 

= m(m _ i)£^ U V x V x *«>_2(r) + 201 V x ^_2(r) + #<>>_2(r)] . 

Let us note that V • E = 0 renders V • $m = 0. In view of this relation, (4.3) becomes 
the Laplace equation for m = 0,1, and the Poisson equation for m > 2; in the latter 
case, the right-hand side of (4.3) is dependent on the (m-2)-th order coefficient which 
is known from previous steps. 

The boundary conditions (2.14) and (2.15) are transformed into 

(4.4) nx^)(r)=nx^+1)(r) 

n x V x *a)(r) = ^n x V x *W+i)(r) + m(^" ^f/ggg^n x V x *«>_2(P) 

(4.5) 

-%+1ej+1nJ+1nx Vx$^(r)+£iMi (Pj - ^) fix$^(r)|, 

on Sj, j = 0,1,...,N - 1, and the boundary condition (2.16) becomes 

(4.6) nx$W(r) = 0   on SN. 
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It is known, [3], that the fundamental dyadic f (r, r7) and the dyadic Vr/ x f (r, r') 
have the following expansions: 

(4.7) 

(4.8) 

where 

(4.9) 

rM=£^Pcm(r,r'), 
m=0 

oo 

ml 

(ikoY Vr, xf(r,rO=£^^Mr,r') 
m=0 

ml 

Cm(r,r') = 
r — r /im-i  r 

47r(m + 2) 
m — 1 

(m + 1)/ - (r - r') 0 (r - r') 
r — r' 

(4.10) Sm(r,r7) = — (m - l)|r - r'p-^r - r') x /. 

Substituting (4.1), (4.2), (4.7), and (4.8) into (3.5)-(3.7) and equating equal powers of 
fto, the following integral relation among the coefficients $j, $J,..., $4 is obtained: 

(4.11) 

where 

*S)(r)=p(d.rr+pW(r)+FW(r) 

47rFW(r)=^^f;H^-l) /   (V x *W (^ . (fi x Cm_,(r,r')) da^) 
£o p=0\P/ JsN 

+ rEE U   P(P-l)^i /   (Vx$«2(r'))-4-,(r,r')^(r0 

+ EE   TJ^-1)?^ /   (Vx$«2(r'))-Cro-,(r,r')^(r') 

m     N     /     \ r 

(4.12) +EE    J^-1)?^'/    ^2(rr^-,(r,r')^(r') 

and 

47rPW(r) = ^f; W /   (Vx$W(rO).(nxC^(r,r'))^(rO 
Miv p=0\PJ JsN 

m     N 

-T.Y. 
Jsv™)(1-S)*-I)I/-(r'K"-'(r'r')d"<r') 

m    N 

(4-13) +EE('!) (TT-
1
) / (Vx*C0(r')).^_p(r>r')«fo(r'). 

In order to derive the low-frequency expansion for the electric far field pattern 
Eoo(r), the series (4.2) and 

(4.14) 
m=0 

m! 
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are substituted into (3.8) to give 

(4.15) E0O(f) = EW(f) + EW(f) 

where now 

4*E&>(f) = -'ffa ± ^p£ h) (-iy [ (v x CV)) 

.(nx(7-f®f))(f.r'rdS(r')+Ei!^r-E U   (-1) 

x E -& / (V x ^^-/r')) • (/ x f)(f • r')" dv(r') 

+|o^E(;)<-1»'gMe^» 
.(/xf)(f.t'r*(r',-E^Pf:(;)(-i)'E|« 

m=0 ' p=0   XH / j=l    U 

(4.16) x f  (V x ^^(r1)) • (I - ? <8> ?)(f • r,)p^(r,) 

and 

777'—U ^L/—U 

/*7     \ 777+3      "''       /       \ 

• (n x (I - f ® f))(r • r')' *»&) + E ^^T" E    7   (-1)' 

xEf1--N)  /"   ^(^-(^-^^(r-r'r^r') 

+ y^n;+2y(m)i-iy£(^-i) 
m=0 '"" /9=0   Nr'/ j=l  ^^ 

(4.17) x /" (V x ^(r1)) • (/ x f )(f • r')" ^(r')- 

In order to construct the leading-term approximation as &o -> 0, we first note 
that the low frequency coefficients $Q correspond to &o = 0 and, in view of (2.7), 
(2.12), to jj = 0. Consequently, $Q is a solution of the electrostatic problem and, 

hence, $0 ^s ^e gradient of a scalar function; therefore, since the coefficient of iko 

contains the term V x $0    , ^ '1S e(lualto zero- Moreover, the coefficient of (iko)2 is 

(4.18)     --^—[    fVx^COl-ffixa-f®?))^^) 
47r ^iv JSN \ /    v / 

+ T- — /    f V x ^ (r7)) • (n x (/ - f (8) f)) (f • r') ^(r') 
47r m JsN

K J    v y 
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+sg(g-i)i(Vx*",(r'))-(,xt)*(r')' 
If we consider the low frequency expansions for the magnetic fields 

(4.19) H,(r) = f; £^*0>(r),    r G %    j = 0,l,...,N 
~       777'. 

m=0 

where \I>™   are independent of fco, and substitute (4.19), (4.2) into (2.5), we obtain 
the relation 

(4.20) V x $«)(r) - m(m -l)^-fiVx $!£_2{r) 

= mH(eoLio)-1/2*m-i(r) + m(m - 1) ^ ^ V x ^(r). 

From the relation (4.20), we have that the first integral of (4.18) is a multiple of a 
surface integral of the form 

J SN 
Mr'), 

which is equal to zero, [3]. The other integrals of (4.18) vanish since they contain 

V x $0 (r)- Therefore, the coefficient of (iko)2 vanishes and the electric far field 
pattern is of order O(fco) as fto ->• 0. In particular, the leading term approximation, 
as A;o —> 0, is 

E~<f> - T?{-^ L (" * <V)) ■ (« x </-,«,)) ,.(,') 
+ ifl f    (v x $ W (r')) • (n x (/ - f ® f)) (f • r') ds(r') 

+ E (i - J) £. $oJ)(r') • (/ - f ® f) dt;(r') 

(4.21) +^(^_i)^  (vx$<J')(r'))-(/xr)di;(r')|+O(^),Al)->0. 

Hence, the leading term approximation as ko ->- 0 of the electric far field pattern of 
order fco in the low frequency case does not depend on the chirality measures fy and 
has the same form as for the achiral multi-layered scatterer [3]. 

On the other hand, the fco coefficient of Ea« (f) is given by 

(4.22) JTr^f *!>V)-(Jx?W') ^eo     Jo, ^        ' 

- S-ffi J    (V x *W (r')) • (& x (I - v ® f)) dS(r') 

which is clearly nonzero. Hence, as far as the appearance of chirality in the leading 
term approximation as ko -)■ 0 of the electric far field pattern is concerned, the 
"chirally significant" exponent of ko is 4. 
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REMARK. The most common approach for using the low-frequency method in 
electromagnetics consists in working with the electric (or the magnetic) field only: [3], 
[5], [12], [13]. However, one could work with both the electric and magnetic fields; in 
our case, the decomposition of E and H into suitable Beltrami fields, [4], [16], should 
then be taken into account. 

5.  Special cases. 

Achiral multi-layered scatterer. When the chirality measures /3j, j = 1,2,..., 
N are equal to zero (i.e., when the scatterer is achiral multi-layered), then all the 
terms involving chirality disappear, and the corresponding results of [3] for an achiral 
multi-layered scatterer are recovered. 

Homogeneous (non-layered) chiral scatterer. When fy — /?, Sj = £, //? = //, 
j = 1,2,..., TV, and there is no core, then the obstacle ft is a non-layered homogeneous 
penetrable chiral scatterer. The existence and uniqueness of solutions to this problem 
has been established in [4]. In this case, the analysis of the preceding sections gives 
the following results: 

(a) The total exterior electric field is given by EQ = Einc + Esc(c) + Esc(a) where 

(5.1) 47rEsc^(r) = -—]feg/?|"/3 f (V x E^7)) • (Vr/ x f (r,^))^^) 
£o       L    Jn 

+ /(VxE(r,)-f(r,r,)^(r/)+ f E(r') • (Vr* x f (r,^)) dt^r')  , 
Jn Jn 

(5.2) 47rEsc(a) (r) = k2Jl--pJ  f E^) • f (r, r') dv(r') 

+ (^ " 0 I(V X E(r,)) ' ^ X f(r'r,))^(r,)' 
and E(r/) is the electric field in ft. 

(b) The electric far field pattern is given by Eoo = Ee» + Eoo where 

(5.3) 47rE^(r) = -k3
0(3 \ kof3 [ (V x E^7)) • (/ x fy-*0*"'dvtf) 

eo        L        Jn 

+ i [ (V x E(r')) • (J - f ® ^e-^0^^^^) + ko [ E(rf) • (J x rK^^'d^r') 
Jn Jn 

(5.4)    47rEW(r) = -k2
0 ik0 (l - —)  f E(r') • (7 - f ® f)e-i/!oS-r'dt;(r') 

l)  f (V x E(r')) • (I x r)e-ikot-r'dv(r') 

This expression is completely analogous to the one given in [17] after elimination of 
the terms containing the magnetic field there. 

(c) The low-frequency coefficients are given by (4.11) where 
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(5.5)    47rFW(r) =-fijt, Mp(p-1)1/3 [ (V x $p_2(r')) ■ ^(r.r') dv(r') 

+ /(Vx$,_2(r
,))-Cm-,(r,r')dt;(r')+ / ^-2(r') • Jm_p(r,r')^(r') , 

(5.6)    47rFW(r) = - £ (^) [(l - f)'9^ " ^ £ ^-2(r')' Cm-^r,^) d«(r') 

- (j - lj J(V x ^(r')) ■~8m.p(r,r')dv(r') 

(d) In the low frequency expansion for the electric far field pattern, we have 

\T7l+4      m 

u       m=0 p=0   vr/ JU 
)) 

(Ixr)(r-r,)l>dv(r,) + -l3Y 
(iko) m+4 

u     m=0 p=0   x^ 

- (ik0r+s 

(5.7) 

x / $m_p(r') • (7 x f)(f • r')" dv(r') --/?£■ 
"'O ff0    m=0 

x E M (-1)'' / (V * $™-p(r')) • (/ - f ® f)(f • v')" dv(r') 
p=0 VP/ ^n 

-^"('-^S^tOf-D-^WO 
(/-f (8)f)(r-r,)p^(r,)+ ( — -l) J) 

W      1 ^ v^ (^o)m+2 v^ / //* \ s^p 

m=0 
ml 

p=0 

(5.8) x / (V x ^-.(r7)) • (J x f)(r • r')* dv(r'). 

6. Appendix. In this Appendix, we establish that the electric fields may be 
expanded into convergent power series of Afo. For simplicity, and without loss of 
generality, we consider that Cl is a non-layered homogeneous chiral scatterer (of electric 
permittivity £, magnetic permeability fi, and chirality measure (3) immersed in free 
space QQ.   

Let 77 be the intrinsic impedance (77 = y^Jt/s) of SI, and let k2 = (jj2efi. Let us 
note that by the definition of ko: 

(6.1) 2 _   £M   .2 

£0/^0 

Recall the well-known Bohren transform [16] 

(6.2) E = QL-n?Qfi,        H^-Qi + Qfl, 
IT) 
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of the electric and magnetic fields E and H in f2 into left-handed and right-handed 
Beltrami fields QL and Qn, respectively, satisfying 

(6.3) V x QL = 7LQL ,        V x Q^ = -JRQR 

where the wave numbers corresponding to Q/, and QR are given by 

(6.4) lL = k(l-kl3)-\       7R = k(l + m-1. 

Since E and H are divergence free, an immediate consequence of (6.3) is 

(6.5) AQi + JIQL = 0,        AQR + 7|QK = 0, in 0. 

It is known, see e.g., [21], that QL depends analytically on 7^, for 7L ^ 0 (and Q^ 
on 7^). Since, by (6.4), 7^ and JR are rational functions of k, QL and QR depend 
analytically on k; hence, by (6.2), E and H are both analytic in k, and in view of 
(6.1) in ko- Thus, we have established the desired property. 
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