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PRODUCT FORMULAS AND CONVOLUTIONS FOR THE RADIAL 
OBLATE SPHEROIDAL WAVE FUNCTIONS* 

WILLIAM C. CONNETTt, CLEMENS MARKETT*, AND ALAN L. SCHWARTZ^ 

To Richard Askey on his 65th birthday 

Abstract. A product formula is found for the oblate radial spheroidal wave functions. This 
product formula is then used to define a convolution of measures, and the resulting measure algebras 
are described. Some of these are new hypergroups. It is shown that a number of historically important 
non-compact hypergroups can be thought of as special cases of the measure algebras that arise with 
oblate spheroidal wave functions as characters. This completes the study of spheroidal wave functions 
begun in [CMS93]. 

1. Introduction. We begin with a brief introduction to the spheroidal wave 
functions; for background beyond that reviewed here, for a discussion of hypergroups, 
and for more information on the relation between product formulas and measure 
algebras the reader should see [CMS93] and the references cited there. 

The spheroidal wave functions arise in a natural way when the three-dimensional 
wave equation (A + k2)W = 0 is solved by the separation of variables W(a:,0,0) = 
U(x)V(0)e±irn<f). If confocal families of prolate spheroids and hyperboloids of two 
sheets are used, this leads to the ordinary differential equations for U and V: 

(1) U" + (cothx)U' - [ft - {kc sinhx)2 + (mcschx)2] U = 0       (0 < x < oo) 

(2) V" + {catO)V' + [ft + (kc sine)2 - (mcscfl)2] V = 0 (0 < 9 < TT). 

When confocal families of a oblate spheroids and hyperboloids of a single sheet are 
used, this leads the the ordinary differential equations 

(3) U" + (tanha;)C/, - [ft - (fcccoshrc)2 - (msechz)2] U = 0       (0 < x < oo) 

(4) V" + (cot^y' 4- [ft - (kc sm9)2 - (mcscfl)2] V = 0 (0 < 9 < TT). 

By a transformation of the dependent variable V(6) — (sm6)mS(6) the equations 
(2) and (4) can be written in normalized form 

(5) S"(e) + fills'(0) + [A - 7sin2 0]S(0) =0       (0 < 6 < TT) 
tan u 

where a = m and 7 = =f (fee)2, with 7 < 0 for prolate, 7 > 0 for oblate. With the 
boundary condition 5'(0) = S^TT) = 0 and 5(0) = 1 this becomes a Sturm-Liouville 
problem with a discrete spectrum of eigenvalues. The corresponding eigenfunctions 
are called angular spheroidal wave functions {S^7(9)}ne^0, No = {0,1,2,...} for all 
a > -1/2, 7 e E. 
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If the dependent variable in (1) is transformed using U(x) = (smh.x)aS(x), 
then the equation becomes 

(6) S"(x) + *Z±±$'(x) + [A2 + (a + 1/2)2 - 7sinh2 x]S(x) =0       (0 < x < oo). 
Lann x 

The solutions that satisfy the initial conditions 8(0) = 1, §'(0) = 0 are denoted by 
S"'7(#), and are called the radial prolate spheroidal wave functions. 

If the dependent variable in (3) is transformed using U(x) = (cosh x)a7(x), 
then the equation becomes 

(7) 7"(x) + ^-^T'Or) + [A2 + (a + 1/2)2 + 7cosh2 x]7{x) = 0       (0 < x < 00). 
cothz 

Note that although (5) and (6) are equations which are regular singular at 0, 0 
is a regular point of (7), so more general initial conditions are possible. Define even 
boundary conditions by: 

(8) Te
a;A

7 is the solution of (7) which satisfies Te
a;A

7(0) = 1 and (Te
a;A

7)'(0) = 0, 

and odd boundary conditions by 

(9) T^'7 is the solution of (7) which satisfies T^7(0) = 0 and (T£'7)'(0) = 1. 

We refer to T"'A and T"'A as the even and odd radial oblate spheroidal wave functions. 
The general solution of (7) is 

7^(x) = a7^(x) + b7^(x). 

Further, it should be noted that in the case 7 = 0 and a ^ —1/2, (6) and (7) are 
different, i.e. 

(10) %"{x) = ^±±S'(x) + [A2 + (a + l/2)2]§(a;) = 0 
tann x 

(11) 7"(x) = ^±17'(x) + [A2 + (a + l/2)2]T(aO = 0. 
coxn x 

The solution of (10) is the Jacobi function 

sf(x) = <t>{a'-1/2\x) = 4a
>;
aHx/2). 

Solutions of (11) are also given in terms of Jacobi functions: 

7:$(x) = <t>{-1/2>a\x)    and   ^(s) = Smhx4>[1/2'a)(x). 

(see [Koo84, §2.1]). It is shown in [Fle72] that the real bounded solutions of (11) for 
alla>-l/2areTA'

o(0) for 

A e Aa = {A : A > 0 or A = fii with 0 < \fi\ < a + 1/2}. 

In an earlier paper with a similar title [CMS93], an explicit product formula was 
given for the oblate and prolate angular functions, and for the radial prolate functions. 
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Both the angular and radial prolate product formulas are given with positive measures, 
which allows the definition of several new families of hyper groups. 

The product formulas for the oblate angular functions have positive measures for a 
certain range of (a, 7), and a similar result with a different range applies to the oblate 
radial product formula obtained in this article. The product formula is given for all 
(a, 7) with a > —1/2 and 7 > 0. These measures are positive for —1/2 < a < 1/2, 
7 > 0 and a new family of hypergroups is obtained. 

Taken together, the product formulas given in Theorem 2.1 for the oblate case 
and in [CMS93] for the prolate case allow for a more complete description of the 
relationship between the product formula given in [FK73] for the Jacobi functions 
and the spheroidal wave functions. The results obtained for the prolate case and the 
odd oblate case yield the same results as in [FK73] by a different method; the results 
for the even oblate yields an extension of the results in [FK73], and are described in 
the corollary following Theorem 2.1. 

2. Product formulas. The proof is based on an explicit formula for the Rie- 
mann function given in a paper of Henrici [Hen57] on the work of Vekua, and an 
application of Green's Theorem. The argument is in many ways easier than the ar- 
gument in [CMS93], because of the lack of singularity along the critical boundary, so 
what follows can be viewed as both a primer to and a completion of the argument 
given there. 

THEOREM 2.1 (Product formulas for oblate radial functions). Let a > -1/2, 
7 > 0, A G Aa; and 0 < x, y < 00, then 

(12)    7^(x)7^(y) 

cosh(a; — y) 
coshx coshy 

cH-1/2 

^A7(|s-y|) + 
1 
2 

x+y 

+ 

cosh(,+2/)r
+i/2^,7(a;+2/) 

coshx coshy 

H 7^(0 Xa
oi7(Z; x, j/Xcosh 02Q+1 d£ 

J\x-y\ 

and 

(13) 7Z:Z{x)7Z;Z(y) = f ^^M^a^XcoshO2"4-1^ 
J\x-y\ 

where %^J(^;x,y) and M^J^x^y) are supported on \x — y\ < £ < x + y with the 
values 

(14)    Xa
0Q{bx,y) 

_ sinh£ sinhx sinhy 
4(cosh£ coshx coshy)01*1/2 E 

fc,n=:0 

(|+Q0n(l-Ofln    kp-n (^\ 

Jfe!n!(Jb + n-l)! 7    0    \ 4/ 

fc+n-l 

(15)    Ma
0Q(Z;x,y) 

= -(cosh£ cosh a; coshy) -1/2 

fc,n=0 

(§ + a)n(|-a)n   k 
k\n\(k + n)\     7 ".-(f) k+n 
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where 

Qo = Qo(£]x,y) = cosh£ coshz coshy, 

Xo = Xote^,2/) = [cosh(x + y) - cosh f] [cosh f - cosh (a; - y)]. 

COROLLARY 2.2 (Product formulas for Jacobi functions). For 7 = 0 

(i) 7^\(x) = (f))^ '      {x), and (14) is an extension of the product formula in 
[FK73] to the range a > -1/2 with 

nr^rc        x _ sinh^ sinha: sinhy ^ (| + a)n(| -^)n0_n /Xo^71"1 

^obiWiV)      4(cosh^ cosh n; cosh y)^1^ ^        n!(n-l)! 0    U/ 

/.. /.        2\ sinh^ sinha; sinh?/ 
= (1/4-a ) 

4(cosh£ cosh a: cosh?/)a+3/2 

x 2F1 (3/2 + a, 3/2 - a; 2; Xo/(4«o)) 

positive for \a\ < 1/2. 

fz^ T"'A(a;) = sinha;0A (aO* an^ (13) yields the product formula in [FK73] 
which is positive for \a\ < 1/2 with the kernel 

obl ^   'y)     2(cosh^cosh^ coshj/J^+Va A. (ni)2 ^J 

2 (cosh £ cosh a; cosh y) Q:+1/2 2Fi(l/2 + a,l/2-a;l;xo/(4fio)). 

Remark.  It was shown in [CMS93, Theorem 2] that in the prolate case SA'
0 = 

(l>x~      J 
and the product formula has a positive kernel for all a > —1/2. 

Proof [Proof of Theorem] The cases x = 0 and ?/ = 0 are trivial, so by symmetry 
it suffices to consider x > y > 0. Let 

then 

^r^/A (o=-[A2+(a+v^TOK). 
Use a similar definition for L^'7; then u(£,7/) = T^Y(£) T"A (77) for 0 < £, 77 < 00 is a 
solution to the hyperbolic equation 

(16) (L^-£«•>(£, r?) = 0. 

The even initial conditions (8) imply the boundary conditions 

(17) u($,0) = 7^(0   and   u„(&0) = 0. 

Define the triangle 

As,y = {(£, 77):^-2/<£-^<£ + ^<^ + 2/}- 
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A^y has vertices P = (re, y), Q = (\x—y\,Q) and R = (x+y, 0). The Riemann function 
is the unique solution v(£,r]) to the adjoint equation and characteristic boundary 
conditions on the triangle A^: 

(18) (L™ - L^Yv^rj) = vx - vm - [{2a + l)(taiihe)t;U 

+ [(2a + l)(tanh7/)v]^ + 7[cosh2 ^ - cosh2 rj\v = 0        ((^ ry) G A^) 

with boundary conditions 

(19) ff ± v^ — (a + l/2)[tanh£ db tanhry]?; = 0     on^q=77 = a;=Fy, 

and with normalization 

(20) v{x,y) = \. 

An actual formula for the Riemann function is given in Henrici [Hen57] in terms of 
the "characteristic" co-ordinates 

X = cosh(£ + ry),    y = cosh(£ — 77),    XQ = cosh(x + 2/),    io = cosh(a; — y). 

We also need 

(21) Vt = n(^,?7;a;,y) = cosh^ cosh 77 cosh a; coshy, 

X = x(f > ^5», 2/) = [cosh(a: 4- 2/) - cosh(^ + 77)][cosh(£ - rj) - cosh(^ - y)). 

Note that when (£,17)  G AX)2/, 0<yo<y<X< -^o-   In terms of these 
co-ordinates 

/ X A-Y \ Q;+1/2 

«(€,'?) = ^M7(e,'?;^v) = (3^^ J V(X,Y;XQ,Yo) 

where V is given explicitly as the solution of a characteristic boundary value problem: 

(22) VXY + 
i-a2     , i 

+ T y = o _(x + y)2    4_ 

with the following boundary conditions obtained from (19) and (20) 

(23) V{X,Y;X0,Yo) = l    if X = X0 or Y = Y0. 

The solution of (22) and (23) is given by 

V = £2(1/2 + a, 1/2 - a, 1,W3, -7W1/4) 

Oft -  V   ^ + a)n(h-a)nwn(   1w,k 
(24) - ^       k\n\(k + n)\     W3 {-4Wl) 

fc, n=0 v y 

where 

Wi = (X-X0)(Y-Y0) 

= —[cosh(a; + y) — cosh(^ + 77)][cosh(^ — rj) - cosh(a; — y)] = — x 

(X0-X)(Y-Y0)       x 
W3 = 

(X + Y)(Xo + Y0)      4fi" 
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See [EMOT53, 5.7.1(26)] for S2. We now show that the double sum (24) converges 
uniformly for (£,77) £ Ax,y First we note that 

0 < X = (*o " X)(Y - %) < (Xo - Yo)2. 

So on the triangle VXo^o = {(X,Y) : 0 < YQ < Y < X < Xo}, W3 > 0. Also 
2XY + 2XoYo + (X-Y){Xo-Yo)>0 from which it follows that 2(Xo - X) (Y - YQ) < 
(X + Y)(Xo+Yo)thus 

0<W3< -. 

Now 
00     (|+tt)n(|-a)n 

k,n=0 

kTxrnl 

kln\(k + n)\ (7x/4)^3r 

< v^ (|+Q)n(||-a:|)n yy 
- Z^ 2nn! ^ 

n=0 A;=0 
00    /i    ,   _ \   /| 1        _ |\      00 

1 
fc!(A; + n)! (7X/4)* 

-2^ 2»(n!)2 Z^fci^^/^ 
n=0 v    ' fc=0 

< y^(|+a)n(||-a|)n 
.ra=0 

^(Xo-ro)2 

2"(n!)2 

The hjpergeometric series converges by the ratio test, so we obtain the bound 

(25) V{X, Y;Xo, Yo) < Aae^^-Y^ < Aa exp [^e2^2*] 

which is independent of £ and 77, and where A^ = 2^1(1/2 + a, |l/2 — a|; 1; 1/2). 
Changing back to the original variables and using the notation in (21), we obtain 

(26) 

Kbiti>'n;x,y) = 
( cosh £ coshr) \ a+1'2  ^   (I -\-a)n(\ — a)n 

\ cosh x cosh y E 
fc,n=0 

A:!n!(A: + n)! "7 
:frn( 

4/ 

Some specific properties of R^J(^ri]x,y) will be needed. When rj = 0, 

(27) 

JC7&°; *.») = 

Notice that 

cosh£ 

cosh a; cosh y 

y+1/2   "    {l+a)n(l-a)n (Xosk+n 

) ^0      fcW(fc + ")!     7    0    V4/ 

^.n, -v /    .      „       N      ^ cosh(a; ± y) \ 
01+I/2 

The final fact about the Riemann function that is needed is the value of its 
derivative with respect to 77 along the 77 = 0 boundary. To this end, 

-p—        = cosh£ sinh77 cosh a; cosh y I _n = 0 
drj 77=0 l77-u 

dx 
drj T)=0 

= — 2sinh£ sinha; sinhi/. 
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So that 

cosh£     ^+1/2 

(28) ^ZZ&WW) ^ = [coshx c;shy) (-2sinh£ sinh, sinh,) 

xl    f^    (|+«)n(|-")n./to-n/X0^+n-1 

4   ^    Jb!n!(fc + n - 1)! 7    0    U/ 
fc+n^O 

With this explicit representation of the Riemann function and its derivative, Green's 
Theorem will now yield the result. With u and v as defined in (16) - (20) 

(29) v(L^ - L^)u - u{La^ - L^)*v = 0, 

consequently 

(30)   0 = |y^     [v(L™ -L^u-ulL*" -L°«yv] dt;dr) 

=JL[%-%\«*-LK«+a* 
with 

H = vu£ — uv^ + (2a + 1) tanh £ vu 
K = vuv — uvj! + (2a + 1) tanh 77 vu 

and 

(31)    KdZ + Hdrj 
= (vurj — uvr^df; + (vu^ — uv^)drj + (2a + l)uv(tanhry d^ + tanh £ dry). 

Now 
rP rQ rR 1  -r+r+f. 

Jd&x,v        JR JP JQ IQ 

On RP one has d£ = —dr] and by the boundary condition (19) 

vi ~~ v'n ~~ (a + 1/2)[tanh£ — tanhrj}v = 0; 

similarly on PQ one has d£ = drj and 

^ + vv — (a 4-1/2)[tanh £ + tanhr;]?; = 0. 

Thus 

/   (K dt + H drj) = - [   (uv)^ dr] + (uv)^ d£ = -ti(P)t;(P) + u(R)v{R) 
JR JR 

and 

rQ 
I   (KdZ + Hdr))=u(Q)v(Q)-u{P)v(P), 
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and finally 

rR nR 

(32) /   (K d£ + H drj) = /   [^ - uv^ + (2a + 1) tanh rj vu]d£. 
JQ JQ 

Using the boundary conditions (17) and the normalization v(P) = 1, (30) becomes 

0 = -2u(P) + u(Q)v(Q) + u(R)v(R) - f      u(€, 0K(£, 0) df 

which is equivalent to (12), with X";J(&x,y) = -^^(^^«»2/) 
' 77=0 

Now we turn to the odd radial oblate functions. The argument for this case uses 
the Riemann function and Green's Theorem as in the even case, and proceeds along 
identical lines until (32). Now employ (9) to obtain 

u(£,0)=0   and   u^.O) =3?£(0 

and use this instead of (17) to simplify (32); it follows that 

(33) 0 = -2u{P)v(P) + u(Q)v(Q) + u(R)v(R) + f      vun \      df. 
Jx—y 

But u{Q) = u(R)  = 0, v(£,0) = R"£(t,0;x,y), so (33) yields (13), by setting 

M%&*>v) = hK£faO;*,v)-u 
3. Positivity, bounds, and measure algebras. We require several defini- 

tions: 
CB is the space of bounded continuous functions on [0, oo), 
M denotes the space of bounded measures on [0, oo), 
M+ consists of the non-negative measures in M, 
Mc is the space of compactly supported measures in M, and 
Mi is the set of probability measures in M (positive with unit total variation). 
5X denotes a unit mass concentrated at x. M is a Banach space with the total 

variation norm || • ||. The bounded continuous functions on [0, oo) will be denoted CB- 

If nn G M, we say that /in converges weakly to fi G M if limn-j.oo / / d/j,n = f f d/j, 
for every / G CB- 

We begin with some evaluations and observations on positivity and zeros of the 
radial oblate spheroidal wave functions. 

LEMMA 3.1. 

(0 For all x €[0, 00) 

(34) J: t(a+l/2) 

(35) n ,0 
KOL+1/2) 

(x) =  /   (cosh; 
Jo 

s)-za-Lds. 
'  ' ' Jo 

(ii) For \a\ < 1/2 and A = 0 

Ko(x) = (coshx)-"-1/2 2^1 (1/4 + a/2,1/4 -a/2; 1/2; tanh2 x) > 0. 
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(Hi) Suppose A = fxi with /i2 > a2 — 1/4, then 

(cosh x)a+1/2 7^(x)    and   (cosh x)a+1^ 7^{x) 

are positive non-decreasing functions on (0, oo). If fj, > 0, then each ofT^x 

and 7^\ have only finitely many zeros in (0, oo). 
(iv) If 7 > 0 or A > 0, then T^ and T^ each have infinitely many zeros in 

(0,oo). 

Proof (i) (34) and (35) are obtained by solving the differential equation (7). To 
obtain the other results, we transform the differential equation into Liouville normal 
form by setting u(x) = (cosha;)"4"1/2^^): 

u" + ( A2 + J— +7Cosh2x] u = 0. 
\ cosh x ) 

(ii) Since T^0
0 = 4"1/2,a), [Koo84, (2.7)] with a replaced by -1/2 and /? replaced by 

a, and A = 0 yields the result. 
(iii) This follows by examining the sign of the coefficient of u in the differential 

equation. 
(iv) This follows from the Sturm comparison theorem. D 
The product formulas (12) and (13) can be written 

(36) T(aOT(y) = / T do- 

where T = T"^ and a = a££y with a > -1/2, 7 > 0, K G {e,o}, A G C, and 
x, y G [0,00). The measures are given by their action on / G CB by 

(37) 

/ 

and 

fd<Zy = 
f(\x - y\) [ cosh(a; - y) 

2 |_cosh# cosh y 

rx+y 

a+1/2
1   /(x + y) + cosh(a; + y) 

coshx coshy 

a+1/2 

+ /       /(O3e27(&;r,y)(cosh02a+1de 

(38) /"/dtr^y = [x+y f(OKii^^y)^osh02a+1d^ 
J J\x-y\ 

With these definitions we have: 

THEOREM 3.2. For each x, y G [0,oo) 
^ 1/7 > 0, a > -1/2, and K, £ {e,o}, supper*'^ c [\x-y\,x + y]; if M is 

given the weak topology then (x,y) ^ cr^2,y Z5 continuous, 
(ii) If j > 0, a > —1/2, and K G {e,o}7 then there is an increasing function B 

on [0, oo) such that 

\K;2J<B(x+y). 

(iii) 7/7 = 0, a > —1/2 and K, G {e, o}, t/ien t/iere is a constant B such that 

\Kfi
xJ<B. 
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(iv) lfj>0, -1/2 < a < 1/2, and K G {e,o} then 

these measures are strictly positive with the exception thata^xQ = t7"b,« := 0. 
^ //7 = 0, -1/2 < a < 1/2, anc? K = e, then 

<iyeM1. 

(vi) 7/7 = 0, -1/2 < a < 1/2, K G {e,o}, and A = /zz m'^/i //2 > a2 - 1/4, tten 
^zY/i tte restriction that x ^ y when K = o) 

lk?'° ||< /c,a;,2/ll —     q-oijO 

cosh(a; + y) 

cosh(a; — y)m 

a+l/2 

(vii) If 7 = 0, —1/2 < a < 1/2, and K = o, then for every e > 0, £/iere is B > 0 

22cH-l 

2a+ 1 
max 

1 

.\x-y\ 
,B K5?J<(l + c) 

(^um^ If j = 0, a > 1/2, and K — e, then 

Proof (i) The assertion about support follows from (37) and (38). If M is given 
the weak topology and / G CB, then the mapping (x,y) i-> J f daXiy is continuous, 
so the second assertion follows. 

(ii) This follows from (14), (15), and (25) (with a small modification for K = e). 
(hi) For a > 1/2, the argument is similar to 2; for —1/2 < a < 1/2 see 5 below. 
(iv) The double series that define X^J^x^y) and M^J^x^y) are convergent 

series of non-negative terms because xo and HQ are non-negative and (l/2 + a)n(l/2 — 
a)n > 0 when -1/2 < a < 1/2. 

(v) Since a°;ly G Af+, (34) can be used in (12) to obtain ||a£'° J = 1. 

(vi) Recall from Lemma 3.1 that (cosha:)Q;+1//2T"^(a;) is a positive increasing 
function, so by (36) and (iv) 

ra,0/ 

> 

|x-y|l-+1/2 

>^(k-y|) 
cosh I 
cosh(a: 4- 2/) J 

r«,o   || 
' K,x,y\\ 

(vii) Let T = T^0
(a+1/2) = /^(coshs)"2*-1 d5 and let e > 0; let c = 1 + e. & can 

be chosen so that (cosh.b)2a+1 = c, whence 

T(a;)> 
rr/c   if 0 < x < b 

b/c    if x > b. 
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We also have 
POO 

7{x)< /    (coshs)-2ar-1ds< 
22a+l 

2a+ 1 

Now 7 is an increasing function, so when x ^ y the product formula (36) with 
A = i(a + 1/2) yields 

\Wx,v\\ < T(s)T(y) 
T(\*-V\) 

and the result follows. 
(viii) First note that when a > 1/2 

(39) 
cosh(x — y) 

cosh a: cosh?/. 

a+l/2 
+ 1 cosh(x + y) 

coshx cosh y 

cH-l/2 

>1 (x,y?0). 

To see this let t = tanh x tanh y and observe that the left-hand side of the inequality 
can be written 

I(l-t)a+1/2 + i(l + t)0+1/2>l. 

Now recall (34) to see that (12) with A = i(a 4-1/2) and (39) imply 

rx+y 
I      ^(e;ar>»)(cosh02o,+1de<0. 

J\x-y\ 

D 

3.1. Measure algebras. We will generally suppress superscripts and subscripts 
in this and the next section. The product formula (36) can be used to define an 
operation * = *£'7, called convolution, on M by its action on / G CB'- 

(40) j f dfa * i/) = IJ U f dax^ dn(x) dv{y)        (/x, i/ E M). 

* is the unique weakly continuous convolution which satisfies 

^x * Qy = ^x,y' 

It is easy to see from the explicit formulas (14) and (15) that aXiy = (jyjX so that * is 
commutative. Define 

and let 

A = {A : 7\ is a bounded real-valued function}, 

Jl(\) = J Txdfi       (AeA), 

(36) and (40) imply 

(fi*i/)(A)=j5(A)i?(A)       (AeA). 

When 7 = 0, /x »-> /I is injective [Koo84, Thm. 2.3], so it follows that * is associative, 
thus we obtain the following consequences of Theorem 3.2: 

THEOREM 3.3. 
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(i) If 7 > 0, a > —1/2, and K, G {e, o} then * is a commutative operation 
on Mc. Moreover, there is an increasing function B on [0, oo) such that if 
supp/z C [0, a] and supp v C [0,6], then 

||Ai*i/||<B(o + 6)IM||M|. 

(ii) If 7 = 0, a > —1/2, and K £ {e,o} then * is a commutative, associative 
product on M which is both weakly and norm continuous; i.e., there is a 
constant B such that 

II^HI <£MIMI     (Ai,i/eM). 

(Hi) 7/7 = 0, —1/2 < a < 1/2, and K G {e,o} then * is a positive commutative 
and associative convolution, i.e., 

H, v G M+ =>- [i * v G M+. 

(iv) 7/7 = 0, —1/2 < a < 1/2, and K, = e, then (M, *) 25 a commutative Banach 
algebra with identity SQ and with (Mi, *) as a semigroup . Indeed, (M, *) is 
a hermitian hypergroup (DJS hypergroup); for each \ € A, (f)\ is a character 
in the sense that the mapping fi i-> /x(A) is a homomorphism. 

(For information on hypergroups, see [CMS93] and the references cited there.) 

3.2. Renormalization. In this section we continue to suppress superscripts and 
subscripts and we assume 

7 = 0,     -1/2 < a < 1/2,    K G {e, o}, 

and 

AQ = 0    or    XQ = fii with fj? > a2 — 1/4 

so that rS\0 is positive on (0, oo) by Lemma 3.1. Define 

^ (x) = JT
A(Z)/TA0(X)    if 0 < x < oo 

1 1 if x = 0. 

Then ifrx is a continuous function on [0, oo) because continuity at x = 0 in the case of 
K, = o follows by L'Hopital's rule. Thus it is possible to define measures by 

(41) drS||f(0 = -I^L—daXty(()        (0 < x, y < oo) 
J\0{x)J\0(y) 

and 

Thus 

Tx,0 — TQ,X = SX        (X G [0, oo)). 

(42) <iPx(x)My) = J^xdr^y        (A G C), 
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holds for all x, y G [0,oo).  Now ip\0(x) = 1 for all x so if A = Ao in (42) it follows 
from 4 in Theorem 3.2 that TXiy G Mi. Define the operation • on M by 

(43) Jfd(lA*v) = jj (j f drx^ dfjL(x) dix{y) 

for / G CB and /i, z/ G M. Thus, we easily obtain the following 

THEOREM 3.4. Suppose 7 = 0, -1/2 < a < 1/2, and « G {e, o}; and tta^ AQ = 0 
or Ao = i^i with fi2 > a2 — 1/4. Then (M,*) is a commutative Banach algebra with 
identity SQ and with (Mi, •) as a semigroup . Indeed, (M, •) is a hermitian hypergroup 
(DJS hypergroup); every bounded real ip\ is a character in the sense that the mapping 
fjL\-^ f ipxdfi is a homomorphism. 

Remark. When j > 0, (f>x must have zeros (Lemma 3.1), so renormalization is 
impossible in those cases. 

4. Particular cases. The choice of particular values of the parameters 7, a, and 
K in Theorem 2.1 lead to a number of historically important special cases. The for- 
mulas for the Jacobi functions are included in Corollary 2.2. The cases a = ±1/2 are 
included explicitly because they are historically of interest and because the formulas 
are strikingly simple. Other cases are included because they yield familiar formulas 
in an interesting way. 

Recall the Bessel function of the first kind with real and imaginary arguments: 

^1 (-'[}k(T/2')2k+n 

4.1. Even boundary conditions. For the even boundary conditions, the for- 
mula given in Theorem 2.1 leads to the following cases: 

l.a). When 7 > 0 and a = —1/2 the oblate radial functions become the so-called 
"modified Mathieu functions" which satisfy (12) with 

1 00 fc , __, 

Ku^i^^v) = 4sinh^ sinh:c sinhy^l kUk - l)\ (if) 

/   7 
= sinh f sinh x sinh y J -—h {^/rXo) 

V 4
A:O 

l.b). If 7 > 0 and a = 1/2 then 

%1obi,7(^x^y) = tanh^ tanhz tanhy J-—/i(>/7Xo)- 

l.c) . If 7 = 0 and a = —1/2, (12) reduces to the addition formula for cosines 

'J-V2'0(x) = cj>[-1'2'-1/2\x) = cos\x 

so (12) reduces to 

cosXx cosXy = -[cosX(x — y)+ cosX(x + y)]. 

and Theorem 3.4 yields the hypergroup structure on M in which 

Sx * 5y = -S\x-y\ + 2^c+2/' 

which is equivalent in a natural way to the algebra of even measures on M. 
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l.d). If 7 = 0, and a = |3 the functions are 

1/2,o      = cosAx 
e'A coshx 

(12) then becomes 

cos Xx   cos Xy _    cosh \x — y\      cos A|a; — y\        cosh(x 4- y)      cos X(x + y) 

cosh x   cosht/      2 coshx cosh2/    cosh \x — y\      2 coshx cosh2/    cosh(x + y) 

When A = (a + 1/2)i = i, the above formula reduces to the addition formula for 
hyperbolic cosines: 

_    cosh(a; — y) cosh(a; + y) 
2 cosh x cosh y     2 cosh x cosh y 

and Theorem 3.4 leads to the cosh hypergroup. 

4.2.  Odd boundary conditions. For the odd boundary conditions, (13) leads 
to the following special cases. 

2.a). If 7 > 0 and a = -1/2, then 

M y^v^E^m'^w™). 
2.b). If 7 > 0 and a = 1/2, then 

^'^'^ = 2coshgcoLcosh/o(^)- 

2.c). When 7 = 0 and a = —1/2, the odd functions simplify to 

^TA
72,0

^) = sinha^'-^z) = sinhz^'^M = ^, 

and (13) implies 

sinAa;    sin Xy       fx+y sinA£ d£ rx+y 

J\x-y\ X X J\x-y\       ^        2 

In this case, renormalization with AQ = 0 yields 

ip\{x) = 
sin Ax        /TFJI^O^E) 

Xx 

RJll2{Xx 

]/ 2       y/X^ 

so this is a special case of the product formula for Bessel functions of the first kind 
and Theorem 3.4 yields a hypergroup sructure on M which is equivalent in a natural 
way to the algebra of rotationally invariant measures on M3. 

2.d). When 7 = 0 and a = 1/2, then 

X cosh x 



PRODUCT FORMULAS FOR SPHEROIDAL WAVE FUNCTIONS 361 

and Theorem 2.1 implies 

sin Ax    sin Ay fx+y   sinA£ 

iy   J\x- 

or 

A cosh x A cosh y     J\x-y\ ^ cos^1 £   2 cosh £ cosh x cosh y 

sin Xx  sin Xy       fx+y sin A£ d£ 

cosh £d£. 

[EMOT53] 

[FK73] 

[Fle72] 

[Hen57] 

[Koo84] 

A    '    A 

rx-\-y 

J\x-y\ X     2 
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