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APPLICATIONS OF WEIGHTED LAGUERRE TRANSPLANTATION 
THEOREMS* 

GEORGE GASPER*  AND WALTER TREBELS* 

To Richard Askey on his 65th birthday 

Abstract. As applications of the weighted transplantation theorems in Stempak and Trebels [16] 
we consider (i) the characterization of one-dimensional Hermite multipliers via Laguerre multipliers, 
(ii) extension theorems for Laguerre multipliers in the spirit of Coifman and Weiss [3, Theorem 6.5], 
and (iii) necessary conditions for Laguerre multipliers via backward differences. 

1. Introduction and Notations. The purpose of this paper is to apply the 
weighted version [16] of Kanjin's transplantation theorem [12] for Laguerre expansions 
in the following three instances: 

(i) We characterize the one-dimensional Hermite multipliers on Lp, 1 < p < oo, 
via corresponding Laguerre multipliers. As a corollary of the results for Laguerre 
multipliers we obtain a sufficient criterion of Hormander type for Hermite multipliers 
which is slightly better than that in Thangavelu [17, p. 91]. 

(ii) Coifman and Weiss [3, Theorem 6.5] related radial Fourier multipliers on 
Lp(Rn) with those on Lp(Rn+2) via transference methods. We deduce an (improved) 
analog for Laguerre multipliers which is in the nature of best possible. 

(iii) Necessary conditions for Laguerre multipliers are derived via backward dif- 
ferences. Though these are not sharp they nevertheless give the impression that 
necessary conditions of Kalnei-type (see [11] for the Jacobi series case, see [8] for the 
Laguerre series case) viewed till now as isolated in the framework of known necessary 
[5] (sufficient [16]) criteria arise from backward differences. 

The paper is of programmatic character: We can show in the integer case that 
transplantation theorems reflect the structure of corresponding multiplier spaces, but 
fail to extend the result indicated in (ii) to fractional differences at the moment. Also 
it is evident that a full range transplantation theorem with general power weights is 
needed (i.e. the analog of Muckenhoupt's result [14, Theorem 1.6] for Jacobi series). 

To become more precise let us introduce some notation. Let L%(x), a > — 1, n E 
No, be the classical Laguerre polynomials (see [18, p. 100]), 

*;(*)=: LSOO/LSCO),     ^(o) = ^=(w;a) = r(^^(^
)
1), 

be the normalized ones. Introducing a forward difference operator AA and a backward 
one VA by (whenever the sums exist) 

oo k 

Axck = Y, Aj^cw ,    VACfc = ]r Aj^Ck-j , 
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we call into mind two identities [4, 6.15(4), 10.12(39)], essential for the following. 

(1) AA^(x) = Catx xxRa
k
+x{x),    x > 0, A > -(a + l/2)/2, 

(2) VAI£+A(*) =£*(*).    *>0, AGR. 

Using (2) and an interchange of the summation order yields for finite sequences {a^} 

oo oo 

(3) J2(AW)La
k
+x(x) = Y/^Lt(x) 

k=0 k=0 

from wliich we can conclude 
oo oo 

ju(a) tufa) 
k=0 k=0 

(4)    |rra^||LP      <C||y> + l)A(AV>£*|Lp     ,    A>0,l<p<oo. 
k=0 

For, by [2, (3.30)], we have 

oo 

A=0 ^ 

< cj\\-t)^e>-^»"(f~\ Y, r(r(l ° !+1)" (^-^^(rie-'^l V<<») '^ 

when using the integral Minkowski inequality. Observing that {r(A;H-a+A+l)/(r(A;+ 
a-M)(A;-f 1)A)} G M^;Q! for all p, the assertion (4) follows. Generic positive constants 
that are independent of the functions (and sequences) will be denoted by C. To a 
function / G L1^, *, where 

/•OO 

Lp
w{7) = {f:\\f\\LiM = (Jo    \f(x)e-*/2\Wdx)l/r < <x>} ,    1 < p < oo, 

/o 

one can associate its formal Laguerre series 

oo uv /.OO 

f(x) - (r(a + I))"1 j; Uk)La
k{x),        Un) = /     /(^^(arj^c- cfa. 

A scalar-valued sequence m — {m^JAjGNo is called a (bounded) multiplier on I^t-y 
notation m 6 M£;7, if 

OO oo 

for all polynomials / = (r(a+1))-1 X) aA;^^ (which are dense in Lv,. for appropriate 
7 - see Poiani [15, Theorem 2] ); the smallest constant C for which this holds is called 
the multiplier norm ||m||Mp. . We observe the duality property (1/p + l/p' = 1) 

Mla = Kap'-yp'/p'    -l<7<P(a+l)-l,    l<P<oo, 



APPLICATIONS OF LAGUERRE TRANSPLANTATION THEOREMS 339 

and, therefore, can restrict ourselves to the case p < 2 in the following. 

The weighted transplantation theorem [16, Corollary 4.3] we will apply can be 
formulated as follows 

(5) Ka+s = MM>    ^ = a+^>    1<P<2'    «./?>-!. z     p 

provided /? satisfies the condition 

(6) 

(2/3 + 2)(i-i)<l    if   a,P>0 p        2) 
-1< 0 < 0 if   (i < 0 and a > (1 

/?<S + 2feri        if    Q<0anda<^. 2-p    '       2-p 

This relation already indicates the essential role played by transplantation theorems 
in the examination of the structure of multiplier spaces. Let us now turn to our first 
application, the characterization of Hermite multipliers. 

2. Hermite multipliers. The Hermite polynomials are given by [18, p. 106] 

Hn(x) = (-l)ne*2 (^)ne-x2,    x G R, n G No . 

For 1 < p < oo define the Lebesgue spaces 

J£(*i7) - {/ :  ll/lk(„i7) = ( r \me-'*'2\P\*\'r*°y" < oo} ,     7 > -1; 
J —OO 

7 > -1 is assumed to ensure that Hk G L^Hm ^ for all k G NQ. Define in the canonical 

way Hermite coefficients fH(k) of / € ^(jj.^ by 

/OO /•OO _^ 

f(t)Hk(t)e-t2dt,    h? = (        [Hk(x)}2e-Xdx)     =(^2kk\)-1. 
-OO ^ J —oo 

By Holder's inequality, the /#(&) exist if 7 < p—1; for these 7 associate to / G L^H, ^ 
its Hermite expansion 

00 

/(x)~£Mfc)tf*(z)- 
fc=0 

We call a scalar-valued sequence m = {mk}ke^o a Hermite multiplier, m G M^ , if 

for Tm/ ~ ^2mkfH{k)Hk(x) there holds 

ll^/lk(Hi7) < II-IIMJJl/L^,; 

if 7 = 0 write M|^0 = M^. Since the polynomials are dense in L^H. ^ , — 1 < 7 < 
p — 1, (see [15, Theorem 7]) we restrict ourselves in the following to polynomial /. 
Now observe that #2n are even, i?2n+i are odd polynomials so that one can uniquely 
decompose / G 1^^  * into its even and its odd part, 

fe(x) = I (/(*) + /(-*)) ,      fo(x) = \ {f{x) - f(-x)) . 
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Then 

ll/IU* <\\fe\\L>H      +ll/oll^fH       <2||/||L'H   , 
tu(Jf;7) w(H;7) ^{Hn) u>(tf;7) 

and for their Hermite coefficients we obtain 

From this it is clear (see [7] in the ultraspherical case) that the M# -multiplier norm 
of m is equivalent to the multiplier norm of m restricted to the subspace of even 
L^/^x-functions plus the multiplier norm of m restricted to the subspace of odd 
L™(tf;7rfunctions> Le-> 

IHIM&;7«IH|     .    +IH|     .    . 

Via quadratic transformations [18, (5.6.1)] one can reduce the Hermite polynomials 
to Laguerre polynomials 

H2m(x) = (-l)m22mm!L-1/2(x2),    H2m+1(x) = (-l^^mlxL^ix2); 

thus in particular 

£ m2kfH(2k)H2k(x) = J2 m2kakL-1/2(x2),    ak = (-l)k22kklfH(2k), 
k=0 k=0 

^m2k+1fH{2k^l)H2k+l{x)^m2k^bkxL1J2{x2),   bk = (-l)k22k+1k\fH(2k+l). 
k=0 k=0 

Since 

iiE^-fe^^ik^, =c(    IEm"o*L* 1/2(*)e-*/2r*(7-1)/2d*)  , 
k=i) W     ^ Jo        k=Q 

it immediately follows that 

similarly 

ll{m2*}llM, I    «IIW}||M:1/2:(7_1)/2 
" 'il I even 

||{m2/s+1}||        |      « ll{"»2fc+i}lljtff/ai(,+J>_1)/a 
" »"y I odd 

and, therefore, 

IIMIIJI^, * (ll{m2*}||M:i/2;(7_1)/2 +ll{m2fc+i}||Mf/2;(7+p_1)/2) • 

If we now apply the transplantation theorem (5) in the case 7 = 0, we obtain the 
announced characterization, see part (a) of the following corollary. 

COROLLARY 2.1 (a) For 1 < p < 00 there holds 

IIWJIIMJ « (ll{m2*}ll^1/2;_1/2 + ll{^2fc+l}||M^1/2;_1/2) • 
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(b) Defining ^rrik — rrik — mk+2 we have for 1 < p < oo 

2N 

IIMHMJ < c(||m||,oo + sup (^(fc + l)|A2m,|2)1/2) . 
N        N 

(c) For 4/3 < p < 4 the following sufficient condition is true 

2N 

\\{rnk}\\M>H 1   /2 < C(\\m\\t~ + sup (]>> + l)|A2mfc|
2)1/2) . 

H;l-p/2 \ xr -£—' / 

Part (a) and [16, Corollary 4.5] imply (b), (5) for 7 = 1 - p/2, duality and [16, 
Theorem 1.1] give (c) of Corollary 2.1. The two sufficient Hermite multiplier criteria 
(b) and (c) contain those of Thangavelu [17, Theorem 4.2.1] for one dimension and 
even improve them slightly. 

3. An extension theorem in the spirit of Coifman and Weiss. In [3, 
Theorem 6.5], Coifman and Weiss have shown the following extension result for radial 
Fourier multipliers: 

Denote by £(&) = (£1 , ..., £&)» & £ N, a vector in the k-dimensional Euclidean 

space R*\ // [£1_n{tnm(t)) ] ,. . , t > 0, is a Fourier multiplier on Lp(Rn); then 

m(|£(„+2)|)eikP(R"+2) and 

While for p — 1 this result is best possible, it is of course not natural for p = 2 
(recall M2(Rfc) = L00(RA;)). On account of Zafran's result [19] one cannot directly 
improve it via interpolation. Here we want to give an analog of the Coifman and Weiss 
result in the framework of Laguerre multipliers, an analog which is in the nature of 
best possible, thus indicating what to look for in the Fourier multiplier case. Having 
established the Laguerre multiplier result, on account of Guy's [10] transplantation 
theorem, the corresponding result for (modified) Hankel multipliers is obvious, thus 
a result for radial Fourier multipliers restricted to radial functions. 
On account of duality we will restrict ourselves to the case 1 < p < 2. 

Let us start with the case 1 < p < 2; by (3) we have for finite sequences {ak}k£No 
that 

00 00 

H^nWiJII^ = ||£A(mfca,)£nk(Q) 
k=0 k=0 

00 00 

  I T* "Til    7      Vlfcfc4-1 I ^t(,fc )±Ju        II r* <\\^ + l)(Amk)1^L^\Llla) + \\J2^+i(^alt)Lt+x\\^ 
k=0 k=0 

00 00 

< ii{(*+i)Amfc}|M,+,JIETTT^
+1

II^( +IIW+I}IIM>   iiEAa^+1ii£p
(, oc + l;oc       t     J   /C +   1 u>(a£) ot + lja      f     J ** tu(a) 

<C(||{(A; + l)Amfc}||Mp+i;a+||{mfc+1}||M,+i;J||E^fcll^((>)! 

where the first estimate on the right hand side follows from [2, (3.30)] and [1, Corollary 
2.2] and the second from (3). Hence 

IMIJHJU < C(ll{(* + IJAmjJIlMP^ + IIW+illlMP^J 
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An application of the transplantation result (5) immediately gives 

COROLLARY 3.1 Letl<p< 2;ifp = a-^ > -1 satisfies (2/? + 2)(^-|) < 1, 
then 

IHlAfS;a < C(\\{(k + l)Amk}\\MPifi + ||{mfc+i}||MpJ . 

REMARK 1. Concerning smoothness of the involved multiplier sequences, this 
result is in accordance with the necessary conditions in [5, II, Corollary 1.3] and the 
sufficient ones in [16, Corollary 1.2]. In both types of conditions the smoothness 
of an M^-multiplier sequence is described by the quantities (2/3 + 1)(^ — |) and 

(2/3 + 2)(- — |), resp.. Increasing the parameter from (3 to a, a and /? as in Corollary 
3.1, should require an additional smoothness of 1 in the necessary conditions as well as 
in the sufficient ones; this being true is at once verified since 2a(^ — ^) —2/3(^ — |) = 1. 
Thus the counterexamples showing that the necessary conditions and the sufficient 
ones just mentioned could not be improved within the setting of wbv-spaces can be 
taken to show that Corollary 3.1 is best possible. 

2. It is clear that a full range transplantation theorem with general power weights 
would remove the restriction on /? - see also Corollary 3.2 below where the case p = 1 
is discussed and for whose proof no transplantation theorem is needed. 

Let us now turn to the case p = 1; consider again a finite sequence {&&} and 
assume without loss of generality that ao = 0. By [18, (5.1.14)] we have for a > — 1 
that 

z;>>fcLrfl = (i+«)£^-E(fc+1)(Aa*)L*+i 
which implies that 

(?) iiEo^+1ik(Q+l)«iiE(A;+1)Aa^ik(Q)- 
The "<"-direction directly follows by the triangle inequality, (4), and Proposition 
3.3 (a) below which discusses the boundedness of the shift operator; the converse 
inequality is a consequence of the triangle inequality (from below) and the restriction 
result in [6, Theorem 2.1]. 

COROLLARY 3.2 For a > 0 there holds 

IHIM*    +1 ~ ll{™*+i}||Afi.a + ll{(fe + 1
)
A
^}IIMI.Q • 

REMARK 3. The additional assumption a > 0 arises from the circumstance that 
the boundedness of the generalized Laguerre translation, hence of the convolution, 
has only been proved for these a-values - see [9]; but this property is used in the 
proof of (8) below. 

Let us start with the "<"-direction. From (7) we have with the aid of (4) 

||^mfca^
+1|lL\        <C|i;0* + 1)(Aro*a*)£*lli\ , 

<C || y> + l)(Amfc)a*L?||Ll     + C || Vm^A; + l)(Aofc)i?||Li 

<C (|| W+1}||MIIQ + ||{(fc + l)Am,}||Mx; J|| 5> + l){^ak)Lt\\L 

<C (||{mfc+1}||M.;Q + ||{(A + l)Amfc}||Mi;J|| ^a^+1||L: 
(« + !) 
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by (7). For the converse we note that by [6] we have for a > 0 

(8) IMlMj.a «   sup  \\J2rkmkL%\\Li     ,    ||m||Mi    < C\\m\\Mi . 
0<r<l   ^^"^ o + l;a + l 

Thus, up to the proof of the fact that the shift of a multiplier sequence is a bounded 
operator in the multiplier norm, there remains to estimate uniformly in r, 0 < r < 1, 

l5>*(* + l)(Amfc)L2l|Li («) 

4-11 VmtJ.ifJb + lKArML?llri («) 
6L2llri 

a) 

<^ (IHlM^1;a+1 + II W+l}||Mi; J 

by (7) since, when applying [5, II, Theorem 3.1], it turns out that {rk} as well as 
{(k + 1)(1 — r)rk} are Laguerre coefficients of L^,,-functions, whose L1-norms are 
uniformly bounded in r; hence the assertion via (8) and the boundedness of the shift 
operator which we prove below. 

PROPOSITION 3.3 (a) Let a > -1 and 1 < p < 2. Then 

oo oo 

IIE^tKlu   <c|l£a^ll    • 
fc=o wla) k=o w(a) 

Also, setting L^^x) = 0, the converse holds: 

£=0 Wia) k=0 Wia) 

(b) Let {rrik} be a scalar valued sequence with mo = 0. Then we have for a > — 1 and 
1 < p < oo that 

IIW+l}||MS;a < C||{™*}llAfS.0 • 

Using duality, (b) directly follows from (a), the latter being clear for p = 2 by 
Parseval's formula; thus, by the Riesz interpolation theorem, we have only to show 
(a) in the case p = 1. By [18, (5.1.14)] there holds 

(9) -kTiLa
k
+1^ - i£fi(») - (i + jrH)LK*) 

and thus 
oo oo oo 

k=o wla) k=o Ma)       k=ok + 1 '"(Q+1) 

But by [2, (3.30)] and an interchange of the integration order the last term turns out 
to be dominated by a constant times || X^fc^fclli1 

For the converse first note that by [4, 10.12(5)] 

k\xae-xL%{x) = ((d/dx)k-1e-xxk-1+(a+V)' = ((k - l)\xa+1 e'*L^l(x))' 
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and, therefore, since xa+1e~xL^l(x) -* 0 for x -> oo, 

POO 

(10) k        yae-yLa
k(y)dy = -xa+1e-xLa

k+l(x). 
J X 

Now w(3 estimate the left-shift operator. By (9) and the triangle inequality 

lE^iUIL^IlE^^II, 
w{a) 

+iiE^«ik(Q+1)^iiE^ik ... 
v{cc) 

since {k/ik + a)} G M^ and the term with I^J can be estimated with the aid of 
(10) an<i an interchange of the integration order. 

Preposition 3.3 allows us to reformulate Corollary 3.1 by iterating the procedure 
TV-times, iV G N fixed, to obtain: 

COROLLARY 3.4 Let 1 < p < 2, N e N, and p = a - ^. TTien 

i=o 

provided that f3 > — 1 and (2/? + 2)(- — |) < 1 ty/ien 1 < p < 2, and 0 > 0 when 
p = l. 

4. Necessary conditions based on backward differences. Here we want to 
indicate how backward differences can be used to deduce necessary multiplier criteria 
and how the transplantation theorem leads to improvements. Starting with (1) we 
have for A > 0 that 

CxxLx
k(x)=Lx

k(0)AxLo
k(x),    x>0, 

and hence for a finite sequence {a^} 

xxf(x) :=xx^akL
x

k(x) = Cj2^Lx
k(0)AxRo

k(x) = Cj2^X(^Lx
kmLo

k(x), 

or by the uniqueness property for Laguerre expansions 

[**/(*)];(*) = CVx(akL
x

k(0)). 

Holder's inequality gives, with a parameter S > 0 to be chosen later, 

|V*(a*l£(0))| < CII/IL^ jT WWe-ftfxW'dx)1" . 

When estimating the last integral let us restrict to the case 1 < p < 4/3. Markett's 
[13] Lemma 1, 5th case, leads to the estimate 

sup 
k 

(k + ir(x-s^\x(akL
xm\<C\\f\\LUx_5),    6<Z, A<-^ + |-|. 
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This inequality is very suited to derive a necessary multiplier criterion in a trivial 
way (in contrast to the procedure in [5]). As in [5, 1,(9)], choose the test function 
/ = fcW, where the Laguerre coefficients of $(JV) are smooth, = 1 if k < N and = 0 
if k > 2N. There holds [5,1,(9)] 

II$(JV)IIL* ,_, <c(N + i)(a+1)/p'+s/p 

and hence, with ak = mk[*Wyx(k) and m G M£A_5, the following result via (5). 

COROLLARY 4.1 Let 0 < A < -&- + £ - f, 0 < S < |, 0 = A - ^, and let 

A,/? satisfy the first two conditions of (6). Then 

sup |VVfcL£(0))| < C IMkv, < C \\m\\Mlp ,    1< p < 4/3. 

REMARK 4. The use of the parameter 8 (near p/6) and the resulting application of 
the transplantation theorem (5) yields a definite improvement of a necessary condition 
resulting from the choice 5 = 0 (when no transplantation is needed). Consider e.g. 
the case p = 7/6, 0 < 8 < 1/18 which implies at least A < 1/6. Take as test multiplier 

on LL0) the one corresponding to the partial sum operator, i.e., mfc
n = 1, 0 < k < n, 

and = 0 otherwise. 
Choosing 8 = 0, A = ft = 0, only gives 0(1) as lower bound whereas 8 = 1/18, /? = 

0 leads to the admissible A = 2/15 and a divergence behavior of the same multiplier 
family on the same ZAspace of at least 0((n + I)2/15). Corollary 1.1 in [5, I], which 
describes a necessary condition based on forward differences with increment 1, gives 
for this example the slightly better result 0((n + I)1/7) (with the present backward 
differences one can still try to optimize 8 < p/6). There it is also shown that for 
p = 1 [5, Corollary 1.1] cannot be improved though it does not yield the correct 
divergence behavior of the partial sum operator. In [5, II] it is shown that via the use 
of differences with mixed increment 1 and 2 one can obtain the "right" divergence 
behavior 0((n + I)3/14). 
The example just considered again makes clear the need for a transplantation theorem 
with full range power weights. 

5.  The value of Corollary 4.1 is more to be seen in the fact that it allows one 
to integrate the Kalnei-type necessary conditions, which looked a bit isolated in the 
framework of those conditions known till now (see [5] and [16]). In [8] the following 
sharp criterion is shown: 
Let a > 0 and m = {rrik} be a finite sequence with mk = 0 for k > n + 1.  Then 

£M(^9^-c||m|lM»- k=0 K , 

Intuitively it is clear that the left hand side is an upper bound for 
Va+1/2(mnLn+1/2(0)), the type of condition occurring in Corollary 4.1. Unfortu- 
nately it is not clear to the authors why the difference order is 1/2 higher than in 
Corollary 4.1. 
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