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A STUDY OF THE GENERALIZED CHRISTOFFEL FUNCTIONS 
WITH APPLICATIONS* 

E. BERRIOCHOAt, A. CACHAFEIRO*, AND F. MARCELLAN§ 

To Richard Askey on his 65th birthday 

Abstract. In this paper we solve the problem of minimizing the norm of polynomials of degree 
less than or equal to n, verifying linear restrictions. This case extends in a natural way a problem 
studied by Grenander and Rosenblatt. We obtain algebraic properties of the solution which enables 
us to compute it and we present some applications. 

1. Introduction. Let fj, be a finite positive Borel measure on [0,27r) with an 
infinite set as support. In the linear space P of algebraic polynomials with complex 
coefficients we consider the inner product: 

< P,Q >= f * P(ei9)Q{^)dfi{e),   VP,Q G P. 
Jo 

We denote the Gram matrix of {zk}^=0 by Mn+i = [< z^z^ >]*=<>,... ,n   and the 

corresponding moments by Ci-j =< z\ z^ >    i, j = 0,1,2, • • • . We denote || P \\2= 
<P,P>. 

By applying the Gram-Schmidt process to the sequence {2;n}n>o, we can obtain 
the sequence of orthonormal polynomials {(pn}, such that 

(Pn{z) = knz
n + lower degree terms, 

with kn > 0. 

Also we consider the sequence of monic orthogonal polynomials, {(j)n}n>o, defined 

by 0n = T-. 

If we denote by Pn the linear subspace of polynomials of degree at most n, it 
is known that there exists a unique polynomial function of two variables, Kn(z,y), 
and degree n in z and ?/, such that it has the reproducing property on Pn, that 
is < Kn(z,y),P(z) >= P(y) VP <E Pn.   The function Kn(z,y) is called the nth 

reproducing kernel and Kn(z,y) =   X) Vk(z)ipk{y), (see [Aro]).   In the theory of 
k=0 

orthogonal polynomials, it is well-known that the monic orthogonal polynomials and 
the kernels satisfy some extremal conditions, (see [VAss]): 
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1. min        {|| P ||2} = — and it is attained at P = (f)n. 
PGpn,^(o)=1 K 

2. If ZQ is an arbitrary point in the complex plane, then: min       {|| P ||2} 
P€Pn,P(zo)-=l 

1 .    . . Ti/   \ ^nl^j^o) and it is attained at P(z) = 
Kn(zo,zo)                                                 Kn(zo,zo) 

In the same way, we can consider the minimal problems corresponding to interme- 

diate cases, see (fBel). For 0 < r < n min 11 P \\2= —-,—r and it is 

K£*r)(z  Zo) (rr) n        (r) 
attained at P(z) = —^r— , where we denote by K<£'r (ZQ^ZQ) = ^ I^L  (zo)|2 

K^,r)(zo,zo) k=0 

and K^'r\z,ZQ) = £ Vkiz)^ (ZQ) • 
k=0 

Another extremal characterization for these polynomials is the following: 

min {|| P ||2 -2SftpW(zo)} = -K^(zo,z0) 

and it is attained at P{z) — Kn     (z, ZQ). We are going to prove this property in the 
next section (Theorem 3) in a more general situation. 

Thus, if we introduce the Christoffel function w^dfj,), defined by wn(dfj,)(z) = 

, then it holds that the minimum value in property 2 is wn(d/jL)(zo), (see 
Kn(z,z) 
[Nevl]). 

In the sajne way , using generalized Christoffel Functions wn(d/j,,m), one can 
write min || P \\2= wn(dijL,m)(zo), (see [Nev2]). 

PePn,P(Z0) = l,P' (Z0)=0,- ,P("l)(2o)=0 

A more general case is studied in [GrRo], where the following problem is solved. 
Find the minimum: 

min || P ||2, with the restrictions P^ (ctj) = /?* for j = 1, • • • , m, k = 0, • • • , n^; 

where the aj are different points in the closed unit circle and the /?* do not all vanish. 
The explicit solution of this minimum problem is given in terms of determinants 
involving the kernel function and its derivatives. Moreover, they also say that the 
results are valid with appropriate modifications when the restrictions are of the form: 
P(k\aj) = Pj, k G Sj, j = 1, • • • ,nj where 5^ is a finite set of nonnegative integers. 
All these problems appear in the theory of linear prediction of stationary discrete-time 
stochastic processes. In fact they allow to construct best predictors. 

The: preceding problems can be extended in a natural way to the following. 

Let /i, • • • , fm be m linear functionals in P, such that fj \Fn ^ 0. If /i, • • • , fm 

are linearly independent, find the minimum of the quadratic form || P ||2 given by the 
matrix Mn+i, under the restrictions fj(P) = % ,j = 1, • • • , m. 

Our aim is to study this last problem. In Section 2 we solve the problem with only 
one linear restriction. We obtain algebraic properties of the solution which enables us 
to compute it. In Section 3 we solve the general problem and in Section 4 we present 
some applications. 
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2. Generalized christoffel functions. Throughout this section, let / be a 
linear functional on P, such that / |p ^0, Vn. We are going to analyze the following 
problem. Find min{|| P ||2: P G P and f(P) = 1}. In order to do this, we introduce, 
in the following definition, a family of polynomials. 

DEFINITION 1. We denote by fij)n the polynomial in Pn, such that f{fipn) = 1; 
and < /V>n, P >= 0 for all P <E Pn, such that f(P) = 0. 

It is clear that, for each n, there exists a unique polynomial fipn verifying the 
preceding definition. Taking into account Pn = Ker(f |p ) 0 span{q} for some 

q e Pn, such that f(q) ^ 0, then we choose fipn = -jrT'  The polynomials in the 

above definition were introduced in [Be], and the following minimal property can be 
deduced. 

THEOREM 1. The minimum of the norm, taken over all polynomials q € Pn; with 
the constraint f(q) = 1, is attained for q = f^)n.  The minimum is equal to || ftj)n ||. 

Proof See [Be]. D 

The polynomials satisfying the above extremal conditions can be related with 
the generalized Christoffel functions, see [Nev2]. Next we are going to find explicit 
expressions in order to compute them. 

THEOREM 2. The sequence {/^njn^o satisfies the following forward recurrence 
relation: 

(1) /</Wl = fPn(fll>n + /an</Wl)    n > 0, 

with fijjo = {f lp0)~
1(l)- The coefficients fan and fPn are complex numbers, fPn ^ 0 

given by: 

m n fitn+l) || f^n ||2 .    R h   ,   |/(0n+l)|2||/^n||2rl (2)      fan=     ll^+1||2     aBrf/A' = (1 + —N^TIP—)   • 

Proof Since 

(3)       Pn+i = Pn ©^ span{(i)n+i} = span{/^n} ©^ Ker(f |Pn) ^ span{(f)n+i}, 

we introduce the polynomial fipn 4- /Q^n^n+i, with fan a complex number. 

If gePn and f{q)=0, then </^„ + /an^n+i,g>=</^n,g>+/an <0n+i,g> 
= 0. Let q = 2;n+1 + lower degree terms, such that f(q) ^ 0, and impose that 
< f&n + fan(t)n+i,q >= 0. This yields 

(4) /an -      „ ^       l|2 II 0n+l 

If < /^nj 9 >= 0 for every q = zn+1 + Zower degree terms, such that /(g) =0 then 
^n = fipn+i and (1) is true. In other case fan ^ 0. 
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On the other hand, it holds that fipn+fanfin+i ¥" 0 because <fipn+f®n(f>n+i, fipn> 
=||/^n||27^ 0. Moreover, it is easy to see that fifipn+fandn+i)^®- Indeed, if we as- 

sume that f(fipn+fan(t>n+i) = 0, we deduce /(0n+1) = . Then (f)n+i gKer(f \F     ) 
fOLn 

and so (j)n+i = Afil)n+i for some A G C.   Therefore < </)n+i,fipn H- f^n^n+i >= 0, 
which implies Ja^ || ^n+i ||2= 0, and /an = 0, leading a contradiction. 

Thus there exists //3n ^ 0 such that fPniftpn + /^n^n+i) = fiftn+i, which proves 
a). 

Next we obtain explicit expressions for the coefficients. By applying / in (1) we 
obtain 

(5) 1 = fPn(l + /an/fan+l)) =* /^n = T" ^7T >• 

From (4), fan = — with q = zn+1 -f lower degree terms and /(g) = 0. 
II 0n+l  N 

Taking into account (3) we have q = Afipn+R+cfrn+i, with A G C and R G Ker(f |p ). 
Since /(g) = 0, then A = —f(</)n+i). Therefore 

< /^n, -f(</>n+l)fll>n + ^ + 0n+l >        /(^n+l) II /^n ||2 

/an II ^n+l ||2 || 0n+l ||2 ' 

from which, combined with (5), it follows (2). □ 

COROLLARY 1.  The sequence {/^njn^o verifies the following backward recurrence 
relation: 

(6) flpn = {fPn)~l{f^n+\ " /^n fMn+l)- 

Proof It is an immediate consequence of (1). Moreover, when / is the linear 
functional defined by f(P) = P(6), then fipn = 0*, and therefore relation (6) is the 
well-known Szego's backward recurrence relation, (see [Sze]). □ 

Next we develop another way for the computation of the sequence {fipn}n>o- 
Following the usual notation for the kernels we can write: 

(7) ^-"A = 5>*/fa0, K^=Kk-J), andifp) = ^|/(^)|2. 

Taking into account that        min || q \\2= (iiTA    M-1 and the fact that it is 
<7€Pn, /(«)=! 

attained for q = —n
(f f) , (see [Be]), from Theorem 1 we deduce that fipn = —7777 

and || f^n ||2= —(Tl)' Therefore we can obtain fipn by computing K^       and K^ f , 

and it holds that: 

(8) tf (-•» = (/(I), • • • ,7(^))(M-^f (1, • • • , zn)T 

as well as 

(9) !#./) = (/(I),--- ,7(ry)(M^1)
T(/(l),--- ,/(^))r 
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Some other properties concerning the polynomials f^n can be deduced. 

THEOREM 3. 

unn{\\Pr-2^f(P)} = -K^ 
Jr €:lrn 

and it is attained for P = Kn       = ,,    f 
n,,0 . 

II /^n ||2 

Proo/. Let P(^) = £ \k<pk(z). Then: 
fc=0 

|| F ||2 -2»/(P) = ^ |Afc|
2 - 2SR(^ Afc/(v>fc)) = 

fc=0 k=0 

ElAfc|
2-EA,/(^)-^W(^) = ^|Afc-7(^y|2-El/(^)|2- 

fc=0 fc=0 fc=0 k=0 k=0 

Thus min{||P||2 -2SR/(P)} = -Ki/'/) and it is attained for P{z) = ^Lo f(<Pk)<pk(z) 

THEOREM 4.   Le^ fir" ifm be m linear functionals in Pn w/wc/i are linearly 
independent.  Then the polynomials /^n, • • • , fmipn wz linearly independent. 

Proof. Let ^ Ajf.ipn — 0, that is, £) Aj—77—FT ~ 0. Taking into account (7), 
3=1 i=i   irr,/ij 

we have: 

Since {^jfc}fc=o are linearly independent, we get 

which yields V^ —(f
J. , fj = 0 and therefore Aj = 0 for j = 1, • • • , m. D 

3. Minimizing quadratic forms with linear restrictions. 

THEOREM 5. Let m and n be nonnegative integer numbers, with m < n. Let 
fi 5 • * * , fm be m linearly independent linear functionals in P, such that fj |p ^ 0 
Vj = 1, • • • ,ra, and let ai, • • • , am 6e m complex numbers. Then: 

1. There exists q G Pn sitcft £/m£ fj(q) = a^- /or j = 1,-- ,m if and only if there 
exists p G span^i/Vi, • • • , /m^n} 5^c^ ^a^ /J(P) — ai /or i — 1J * * * 5rn' 

j8. // there exists p G spanf^^n, • * * j/mV'n} ^wc/i t/ia^ /^(p) = o^ /or j = 
1, • • • ,ra tften p is uniquely determined. 
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Proof. 

1. Let q £ Pn such that fj(q) = dj for j = 1, • • • ,ra. It is clear that q may be 
written as: 

q=p + l, with p e spanifripn, • • • , fmtpn} and  I G span{hipn, • • • , /^n}"1. 

Taking into account that / € spanj/^n}-1- for j = 1, • • • ,m, then fjil) — 0 
for j = 1, • • • , m. Therefore /^(p) = /^(g — /) = a? for j = 1, • • • , m. 
The converse is straightforward. 

2. Let p1,p2 E spanif^n,-- ,/m^„} verifying ^(pi) = /^fe) = ^ for j = 
!,••• ,m. Since fj(pi — P2) =0 for j = 1, • • • ,ra, then pi — P2 £ 
spanif^n, • • • , /m^n}"1. On the other hand, pi -p2 G 5pan{/1^n, • • • , /m V'n} 
and therefore pi = P2. □ 

Notice that if there exists q 6 Fn such that /<7(^) = a^ for j = 1, • • • ,m, then 
all those solutions can be written p + spanlf^n, • • • ,/^n}"1", with p the unique 
polynomial in spanfarpn, • • • , /m^n} satisfying /^(p) = a^ for j = 1, • • • , m. 

THEOREM 6. Let m and n be nonnegative integer numbers, with m < n. Let 
/1»• " 5 fm be m linearly independent linear functional in P such that fj |p ^ 0 \fj = 
1, • • • ,m and let ai, — - , am &e m complex numbers. If there exists q G Pn swc/i £/m£ 

mm 
pePn 

p 

Z5 attained at a unique polynomial p G span{/1^n, • • • , f^n} satisfying fj(p) = a? 
/or j = I,.-- ,m. 

Proof. If g G Pn satisfies /j(p) = %• for j = !,••• ,m, we have proved that 
q=p+l,-mthpe,span{f1il>n,>'' ,fmMJ € spanif^n,'- 3/Tn'0n}J- and /^(p) = a, 
for j = !,••• ,m. 

Therefore, || g ||2=|b II2+ IMII2>lb II2. 0 

THEOREM 7. Lei m and n 6e nonnegative integer numbers, with m < n. Let 
fi ? • • • j /m be m linearly independent linear functionals in P such that fj \F ^ 0 V7 = 
1, • • • ,m and let ai, • • • , am 6e m complex numbers. Then: 

(10) mm 
p€Fn 

fj(p) = aj>   3 = 1,'•• ,rn 
\P\\2 = 

KUmJl) 

Oi 

KUuh) 

TsUlJrn) —- 
An «! 

Ifi 
\fm,fm)        —  

0 
TfUlJm) 

MfmJl) . TfifmJm) 
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The minimum is attained at: 

1 

(11) P = -- 

K(h,h) 

fii>n f2ll>n 

1 

flu  

J<-(/l./2) 

x(/2,/2) 

1 

^■(/m./l) J(Um,f2) 

K\ (/l./l) K(f2'f2) 

TfiflJm) 

K<JM ai 

1 am 

^(/l./m) 

ry-ifm ,fm ) 

KU2'frn) 

KUm,fm) 

333 

Proof.   Under our hypotheses there exists p G span-jj^n? • • • , fmipn} satisfying 
m 

fi(p) = ^ for z = 1, • • • ,771. Indeed, let p = ^2 Ajfjipn- If we assume that fi(p) = a* 

for i = 1, • • • ,m, then we have: 

^ = ^2Ajfi(fjipn)    i = 1,... ,m, 

that is, 

ai 
/       1 fi(f^n) 

/2(/i^n) 1 

\/m(/i^n)      fm(hlpn) 

or, equivalently, we can write 

' 1 K(f2,f2) 

K(f2,fl) 

1      / 

K;(fi,fm) \ 

Ts(fm tfm.) 

\A.m/ 

K ■(/i./i) i^, (/m./m) 

^(/m,/l) jr(/m,/2) 

\ ^(/l./l) K(f2,f2) 

Next we prove that xVn = f 1Q    ' j i=1     Tn is a nonsingular matrix. Indeed xVn = 
j=l,-'- ,Tn 

^  jBn, where Bn = (/j(^i))j=i,. 

Let X = (xi,    • • • ,    a;m) G Cm and assume that BnX
T = 0. Then J^ x^/i = 0, 

i=l 

and taking into account that the linear functionals fc (i = !,••• ,m) are linearly 
independent, we obtain X = 0, which implies that rank of Bn is m.   Thus, rank 

JLVn — 771. 



334 E. BERRIOCHOA, A. CACHAFEIRO, AND F. MARCELLAN 

Therefore the coefficients Aj (j = 1, • • • , m) are given by: 

,A1 

f    l 

Kui,n) 

—a  
JXTl 

1 

K(/TO./m) 

TS- ( /m »fm ) 

i 

ai 

/ 

and applying the preceding Theorems 5 and 6 we obtain the result. Indeed 

P= (/iV-'n      •••      fml/>n)   \     ] 

Y^-mJ 

Kk-'M ' 
Ty-{fm,fm) 

f      1 
K^2,fi) 

K\ (/i./i) 1 
K(f2.fm) 

-1 

(/m,/m) 

^(/rrx./l) KUmJ2) 

= (&>*>   .••   *£-•'»>) 

k=l 

K{hJl) K(h,f2) 

yKu^n)   Kum,w   ...   Kum,Mj 

K\ 

(/m,/m) 

\0'mj 

J 
-1 

/ai\ 

where the; polynomials ^^ are given by the following expressions: 

(12) 1pn,k = 

Kkh'h)      ■ •    KP>M 

KU^,h)    . '. ^A:../™) 

tfjbA)   • •   tfjb'-> 
^A + L/l)       .. •   ^(AH--/-) 

7>-(/m,/l) TftfmJm) 

det iTLn 

It is clear that ^^ satisfies the condition fi('ipn,k) — ^i,fc- Finally, 

I ^ II2-    XI   ^^  "^ ^k^nj > = 
k,j=l 

Kkh'M K{hJm) — 

TfifmJl) Tf(fmJm)  

ai • • • am 0 

de^ K, 
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Therefore, the minimum is a quadratic form in terms of the constraints and the matrix 

of coefficients is JLVn , which is a positive definite hermitian matrix. D 

4.  Some applications. 

1. In [Nev2], the following problem is raised. 

min || p ||2 

peFn 

fpdv = 1 

with v a positive Borel measure on [0,27r) with finite moments. We know that 
n 
E VkiJvkdv) 

Besides, the minimum is and it is attained at k=0 

EIMH2 
k=0 

if we denote by dn =< zn, 1 >u, then: 

EIMH2 

fc=0 

Y,<Pk{ I Vkdv) = {do,   di,    ■•-,   dn) (M^Ji)    (1,   z,   ■■■,   zn)A 

1 r» •/ A;=0 

and 

^2 | / (pkdi>\2 = (do,    di,    • • • ,    dn) (Af^iJ    (do,    di,    • • • ,    dn)T . 

2. In [GrSz, Chapter 10, Section 9] the prediction of a stationary discrete-time 
stochastic process m units of time ahead is considered. The best predictor is 
constructed either from the moving-average representation of the process or 
from the spectral representation. 
Here, we will present an alternative approach using the following extremal 
problem: 

mm || p ||z 

pern 

p(0) = 1, 1/(0) = 0, • • • ^-^(O) = 0, m > 1. 

From Theorem 7, taking into account (12) we obtain as solution of it: 

VwC*) = 

Kn(z,Q) 

KST-^M 
ifn(0,0) 

K^-^M 

^(m-Lm-l)^^ 

If^-^ (0,0) 

• Ktr-^-^M 
Notice that the best predictor can be easily deduced in terms of the coefficients 
Of ^n,l(z) - 1. 
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In the same way, from (10), we obtain an explicit expression for the minimum 
error of prediction: 

^1,1)(o,o)    • ■      K^-VfrO) 

k,i ll2= ■ 
K{rr~l'l){o,o) ■■ ■   ii:iro-1,m-1)(o>o) 

Kn(0,0) •    ^•"'-^(o.o) 

Kim-m(0,0)    ■■ •    ^m""1,m~1)(0,0) 

3. G. Freud showed in ([Pre]) that if / is a real linear functional on the space of 
all polynomials, then 

mm 
JP'da 

and the minimum is attained by 

3=0 

Here {pj} are the orthonormal polynomials for the positive measure da. Freud 
went onto use this with f{P) = P1 to establish Markov-Bernstein inequalities. 
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