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THE REAL ZEROS OF THE DERIVATIVES OF CYLINDER 
FUNCTIONS OF NEGATIVE ORDER* 

LEE LORCHt  AND MARTIN E. MULDOON* 

To Richard Askey on his 65th birthday 

Abstract. We study the real x-zeros of the derivative CKx) of the cylinder function Cu(x) = 
Cu(x, a) = cos aJv(x) — sin aYu(x) for v < 0. For fixed a, 0 < a < TT and n = 1,2,..., we show the 
existence of a number i/n in the interval — n + CK/TT — 1 < v < — n + a/re such that the first positive 
zero of CKx) occurs after the first positive zero of Cv(x) when — n — 1 + a/ir < v < vn and before 
the first positive zero of Cu(x) when i/n < v < — n -f Q/TT. In case un < v < — n — a/ir, Cl(x) has 
two zeros which precede the first positive zero of Cu(x,a). For v = vn, C'u{—v) is a double zero. 
The first is decreasing and the second is increasing as v increases. Moreover, in the case a — 0, for 
vi = —1.117. ..<i/< —1, J'u(x) has exclusively real zeros. The present results and earlier ones on 

the zeros of J'J(x), J'J'ix) lead to some conjectures on the zeros of Jc,n)(x). 

1. Introduction. The Bessel function Jv(x) has exclusively real zeros when 
z/ > —1, as A. E. Lommel established [15, §15.25, p. 482] by way of generalizing what 
J. B. Fourier had shown for v = 0 [ibid.] and the long known results for 

_                 [2cosx                     [2sin x 
J_i \x) = \ 7=-,   Ji(x) - \ 7=-. 2Vy V  TT    y/x 2 \   TT   y/x 

For -2 < 1/ < -1, A. Hurwitz proved ([4], [15, §15.27, pp. 483-485]) that all the 
zeros of Ju(x) are real, except for two conjugate purely imaginary zeros, dtj^i. The 
positive real zeros in this case are jV^, k = 2,3,  For these is, Ju(x) exhibits other 
distinctive features, as displayed in the graphs in Figure 1, which shows parts of the 
graphs of J^ix) for the three values u = —1.184, -1.117, -1.05. 

That is, there appears to exist a value z/i (approximately —1.117) of v such that 
the first maximum of Ju(x) occurs after the first positive zero when — 2 < v < vi, 
before the first positive zero when 1/1 < v < — 1, with a negative horizontal point of 
inflection when is = vi. 

We shall prove that this value does exist. More generally, we prove a correspond- 
ing result for the zeros of Jl(x) on each of the intervals (—n — 1, —n), n = 1,2... and 
indeed for the zeros of the derivative of the general cylinder function (a independent 
of x and u) 

(1.1) Cu(x) — Cu(x,a) = cosaJu(x) — smaY1/(x) 

on the intervals — n + a/ir — 1 < v < —n -f a/ir, n = 1,2, — In each case we shall 
show that, as is t —™ + a/ir, the abscissa of the first turning point decreases steadily 
to 0, while that of the second increases. We shall also establish some inequalities. 

In the case (a = 0) of the zeros of Jl(x) in the interval — 2 < is < -1 these results 
parallel some already established for the zeros of J"(x) for the interval — 1 < is < 0 
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FIGURE 1. ^(x) versus #, for the values: 
(a) 1/ = -1.105; (b) u = -1.117; (c) u = -1.184. 

(a) begins closest to the vertical axis. 

[13] and for those of J"'(x) for the interval 0 < is < 1 [12], thus suggesting that these 
results, too, can be extended to cylinder functions of appropriate negative order. 
Our results, together with what is known already, give a complete description of the 
existence and monotonicity (in z/) of real zeros of derivatives of cylinder functions. 
For the cylinder function Cj/(x) itself, the situation is rather simple: the positive real 
zeros are all increasing functions of i/ on their intervals of definition. For the derivative 
Cl(x), the situation is more complicated as we show here. Many of our results are 
suggested by the results and numerical investigations of Kerimov and Skorokhodov 
([6], [7], [8] and other references.) 

2. Notation and main theorem. The formulations of our present result and 
of the conjectures become more compact if we introduce a notation which enumerates 
in all cases only the positive (real) zeros. This is because as v changes, real zeros 
may change to non-real and vice versa so the concept of "first" positive zero may give 
trouble if the standard notations c^fc, c'^, c"^, etc. are used.  We define c]^: to be the 

^n) » k-th positive zero of Cl   (x), with the similar notation j^ for the k-th positive zero 
(»), M of Jln){x) and y^ for the k-th positive zero of Yj ;(a;). For u > -1, j^ = jvk, the 

traditional notation. However, for -2 < v < -1, j^ = j^k+i, 'm accordance with 

Hurwitz's theorem. Similar remarks apply to the zeros j^ for n > 1. 

The open interval (—n - 1 + CK/TT, -n + a/n) will be denoted by J(n, a). 

We shall prove the following: 

THEOREM 2.1.  For each n = 1, 2,..., there exists a unique value vn — vn[a) in 
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7(n, a) with the properties that 

(i) c),! = —v is a double zero of Cl(x) when v = vn] 

{\\) 4Y < -^ < % < c\?{ < c^ when vn<v < -n + QJ/TT; 

(iii) c^V > c^, iw/ien —n + CK/TT - 1 < v < vn\ 

(iv) c^i 4- 0 and %2 t c^i 5 P = —n + a/vr, as u ^ in un < u < —n + a/ir; 

(v) For A: = 2,3..., c^  is an increasing function of v in J(n,a), and c^ is an 
increasing function of v when —n 4- a/yr — 1 < v < vn. 

A consequence of these results is that for v < 0, every zero of C'u(x) which exceeds 
—z/ is an increasing function of u while every zero on0<x<—z/isa decreasing 
function of z/. 

Remark. For each fixed n = 1,2,..., it can be shown that vn(a) is a decreasing 
function of a, 0 < a < TT. 

3. Preliminary results. The Bessel function satisfies the differential equation 

(3.1) x2y" 4- xy' + (x2 - z/2)?/ = 0. 

Every nontrivial solution of (3.1) is a nonzero multiple of (1.1). 

When z/ G I(n,a), n = 1,2,..., we have (7^(0+) = ±oo and for the discussion 
of the zeros, we can assume, without loss of generality (replacing the solution by its 
negative, if necessary) that 6^(0+) = —oo while (7^(0+) = +oo. Hence, if c^ < c^ , 

then Ci/(c^) < 0. Using this information in (3.1) with x = c^ , we note that the first 
term is non-positive and the second is zero. Hence the third must be non-negative. 
When 4V < $ the factor of [c^]2 - v2 is negative, so that [c^]2 < u2 if $ < c^. 

Similarly, [c^]2 > v2 if <yvl < c^ < c-li\ since in this case c^ gives rise to a 
local minimum. Were c^ also to precede c^, we would have the contradiction that 
1/2 < [cu2 ]2 < [^3 J < l/2- Further, it is clear that if c^ , which gives rise to a local 
maximum or an inflection-point, precedes c^, then c^ < c^^ unless c^ yields an 

inflection-point. In the latter case [c^]2 = z^2, in the former, [c^V]2 < z/2 < [c^ ]2- 

Summarizing, we have 

THEOREM 3.1. If v e /(n,a), and if c$ < $, then either fc^l < z/2 < 

kU     <   cli     <   c^3      or cli = —v is a double zero ofCl(x). 

Now is a good moment to recall a formula due to Watson [15, §15.6(4), p. 510], 
namely 

(3.2) 5^ = /    (c72 cosh2t - v2)Ko(2c' amht)e-2vtdt, 
dv      c   — is   Jo 

where we write c' for c^. Together with Theorem 3.1, the Watson formula yields 
immediately the first half of Theorem 2.1 (v). We state it separately now as part of 
the next result. 

THEOREM 3.2.  If v € 7(n,a), then c^ is an increasing function of v for each 

.dk = 2,: 
v in J(n,a). 
fixed k = 2,3, — Moreover, if c^ > c^', then also c^ is an increasing function of 
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Proof. The first assertion is verified by (3.2) and Theorem 3.1. To justify the 
second statement, it suffices to establish that in this case [c^]2 > v2. 

Substituting x = c^ in (3.1), we find that [c^]2 > i/2, since c„i gives now a 
positi\re maximum (in which case [q,^]2 > v2) or a positive inflection point (in which 
case [c$]2 = is2). 

The latter cannot occur. To see this, replace x2 in (3.1) by a value slightly larger 
than v2. The third term becomes positive. The middle term would also have to be 
positive; otherwise c^ would have given a maximum. Thus the first term would 
be negative. This, however, would require C^x) to decrease from zero after passing 
x = ~v, again a situation which makes the supposed point of inflection really a 
maximum. Hence, Cl(x) cannot have a point of inflection at c^ when c^ > c^. 
This completes the proof of the theorem. Further, it is clear from the differential 
equation (3.1), by way of a converse to part of Theorem 3.1, that if C'u(—v) = 0, v ^ 0, 
then x = —i/ is a double zero of C'v(x). 

In the special case a = 0, applying the fsolve command of Maple V, Version 
4 to either J'v{-v) = 0 or to J"(-v) =0, -2 < z/ < -1, yields the value v = 
— 1.117123077,..., i.e., the value z/i, the same as calculated otherwise in [2] and [7]. 
This provides a numerical support for Theorem 2.1 (i). 

4. Further results and proof of Main Theorem. In the interval /(n, a), [15, 
§15.6, pp. 508- 509], each cuk varies continuously, including one-sided continuity at 
the end-points. Moreover, [15, §15.6, p. 509], no zero of C^^x^a) either appears or 
disappears as v moves in /(n,a). These properties depend on Watson's formula [15, 
§15.6 (3), p. 509] for dc/dv, which is analytic in v. We need below, e.g., in the proof 
of Theorem 4.6, the consequence that c increases with v in I(n,a). 

For C^x), the situation is somewhat altered, since the analyticity of dc'/du, on 
which we must now rely, is more restricted. Here the relevant Watson formula for 
dc'/dv [15, §15.6 (4), p. 510], recorded here as (3.2), has 2c'/{d2 - v2) as a factor of 
the integral. Hence, analyticity of c' as a function of z/ cannot be asserted for c'2 = v2. 
Thus if, as we shall see, there is a unique vn such that C^n (—z/n) =0, while the Watson 
reasoning for c applies to c' in the subintervals (—n — 1 + CK/TT, z/n) and (z/n, — n + a/vr) 
of /(n, a), it cannot be used for /(n, a) regarded as a single interval. The function c' 
is continuous in each of these subintervals of /(n,a:), including one-sided continuity 
at the respective end-points of /(n, a). 

In other words, while we can infer (a la Watson), that no zero of C^x) can appear 
or disappear in either (—n — 14- a/n, v-n) or {^m —n + c*/71")? we cannot assert that 
no new zero can arise in I(n,a). That is, we may have a new zero, say c', of C'u(x) 
present itself for which c' = — v. Indeed this can happen. From Bessel's differential 
equation, it is clear that it can happen only when x2 — v2. 

LEMMA 4.1. The ratio J£(M)/^(M) increases from —oo to oo between consec- 
utive zeros of 3^(M), — oo < v < oo; between the first zero v = —0.5971610161 of 
5^(1^1) and v — 0; the ratio increases from —oo to 0. 

Proof. For v > 0, where the denominator is never zero, this is already known [14, 
(2)]. For z/ < 0, and for the interval between 0 and the first zero of Y^di/J), the cases 
to be applied below, the proof is the same as that for [14, (2)], except that x must 
be replaced by the positive quantity — v in the expression two lines below [14, (2)] 
instead of by v. 
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We require somewhat more. Preliminary to that, we need a further property of 
CUx). 

LEMMA 4.2. Ifx2 > v1, the positive zeros of the derivatives Cl(x), Cl/(x) of any 
pair of linearly independent cylinder functions are interlaced. 

Proof. The assumption that x2 > v2 implies (via Bessel's differential equation) 
that each maximum of either function is positive, each minimum negative. 

Let, with OL8 — fi^ > 0, 

Cv{x) = aJv{x) + PYv[x),   Cv{x) = JMX) + SYv(x). 

Then 

f(x) := CAxtfA*) - CvWAx) = tW-M > 0. 

Now, f(cul) = C^(c^)C^(c^) > 0, k = 1,2,— Inasmuch as the successive 

Cv((yvl) alternate in sign, so do the successive Cz/(c[/A:). Hence Cv(x) has an odd 

number of zeros between a pair of successive zeros of C'v{x). Considering now f(cvl) 

where C^cjJ) = 0, we see that C'v{x) has an odd number of zeros between any pair 

Sfc> ^lifc+i* T*1*8 establishes the interlacing asserted. 
With this property known, we can extend Lemma 4.1. 

LEMMA 4.3. The function JX(-i/)/YJ(-z/), v < 0, i/ € I(n,a), for a fixed 
n = 1,2,..., is univalent and piecewise increasing in c^ < — v < c^ 'k+1. 

Proof. We consider Cu and Yu to be linearly independent, the case where they are 
linearly dependent being covered by Lemma 4.1. The zeros of C^x) and Yl(x), x > 

—i/, are interlaced, according to Lemma 4.2. We distinguish two cases: (a) y^jj < cjj 

and (b) y^jj > c^. In case (a), applying Lemma 4.1, the function Jl(—i/)/Yl(—i/) is 

increasing in y™ < cl$ < -v < y{^k+1 and again in y{^k+1 < -v < c^^ < y{^2. 
However, 

^(4V) -ttfcS+i) ^j   - tana ^— 

and so the Lemma holds in this case. 

Case (b) can be included in case (a), with an obvious change in notation, except 

for c],! < yli . Here too, Lemma 4.1 shows that J^(—v)/Yl(—i/), v < 0, increases in 

(0 <)41
1
) < -v < y™ and again in y™ < -v < c^1

2
)(< y™). As before, 

J,v(Cvl)   _   J'v(Cv2)   _ tana 

so that JK-rf/YK—v) is univalent in c^ < — z/ < c^, as asserted. 

In sum, 

THEOREM 4.4. For a given cylinder function Cv(x, a), with v < 0, there is exactly 
one value un of v in each I(n, a) for which C'u(x) has a double zero for x = —v. 
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Proof. Such a value of v occurs for tana = Jl{—v)jYl{—i/) and so the existence 
follows from the increase of J'v(—v)lYl(—v) in I(n,a). For the uniqueness, suppose 
that 1/ = —r and u = — s each give rise to a double zero in /(n,a), r < s. Then 
C'v(r) = Cl(s) =0, so that 

Y'(r)-Y'{8)-tima- 

But this is impossible in view of the univalence assertion in Lemma 4.3. 

Next we show that increasing z/ past i/n in /(n, a) causes the double zero to split 
into a pair of simple zeros, each still smaller than c^i. 

THEOREM 4.5. If C'x(x) has a double zero, x = — A, in I(n,a) for some fixed 

n = l,2,...,andif0>»>\,»e I(n, a), then [eg]2 < ^ < [eg]2 < [eg]2. 

Proof We consider the case where CA(0) = —oo. When CA(0) = +oo, only minor 
changes in the proof will be required. Here, therefore, C\(—A) < 0. 

Motivated by Bessel's differential equation in the form 

(xy'y +X   ~ U y = 0,   y = C1/(x), 
x 

we define W(x) = (xy^Y — (xY')y, where now y = C\(x) and Y = C^x). Then 

XW' = (A2 - fj,2)yY. 

Therefore, W'fe) > 0 and so W(x) t when 0 < x < c^, since cj^ > c^, while 

CA(0) = -oo. Since ^(c^) = c^C^c^C^c^) < 0, we have 

0 > W(-X) = -AC;(-A)CM(-A) - (-A)C;(-A)CA(-A) = AC;(-A)CA(-A) 

and so ^(-A) < 0. 

Thus C^x), which is — oo when x = 0, has passed a local maximum by the 

time x = —A.   Accordingly, c^{ < — A < c^ < c^, so that CM(c^) < 0.   Hence, 
cui   < cii2   ^ cLi i since C^{x) must have a local minimum before it reaches 0 at 

(o) 

As part of the proof of Theorem 2.1, we need to verify its assertion (iv). For 
convenience, we restate this as a separate Theorem. 

THEOREM 4.6.   If u < 0 and if c^ < c^, then (i) c$ I 0 and (ii) c$ t 

C^n+a/T.:,!'   aS V t -n + a/lT, 71 = 1, 2, . . .. 

Proof. As before, it suffices to consider the case in which (7^(0+) = —oo. Again, 
we employ the function W{x) = {xy')Y — {xY')y, with y = Cj/(x), Y = Cfl(x), 
0 > fi > v, and JJ,, v both in J(n, a). 

Further, xW = {y2 — fJ>2)yY > 0,    0 < x < c^ so that W(x) increases in 

0<x<c^. 

Now, 
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The first two factors are positive.   The third is negative, since c^l > c),-/.   Hence 

W{x) <0,  0<x<c[o
1
). 

Therefore, 

0 > W(cU) = -c«C;(c«)a(c«), 

and so C^c^) < 0, k = 1,2. Thus <&> > eg and eg > eg. 

This confirms the monotonicity of c^, k = 1,2, in the direction stated in (i) and 
(ii), i/G J(n,a). 

Their respective limits as v t — n + CK/TT remain to be determined. First we note 
that Ai = limc^i > 0. If Ai > 0, then by the inequalities proved in Theorem 4.6, 

there would have to be a fj, with A < /J, < —n 4- a/V with the property that c^ = —/x, 
contradicting the uniqueness assertion of Theorem 4.4. Hence Ax = 0, as claimed. 
The limit of c^ , an increasing function, follows from the continuity of c^ in 7(n,a), 
especially the one-sided continuity at the (upper) end-point —n + a/ir of the interval. 

The proof of Theorem 4.6 is complete. 

We may now complete the proof of Theorem 2.1. The existence of un(a) with 
property (i) is a consequence of Theorem 4.4. (ii) is a consequence of Theorems 3.1 

and 4.5. Part (hi) of Theorem 2.1 follows from Theorem 4.6. If we had c^ < c^, 
when -n + a/ir — 1 < u < i/n, then Theorem 4.6 would assert the existence of a pair 
of zeros with the same monotonicity and the same limits as those arising in part (ii) 
of the Theorem. This would lead to the existence of double zeros at these limits and 
would contradict the fact that such double zeros can occur only for x = —v. Finally, 
part (iv) of Theorem 2.1 follows from Theorem 4.6, while part (v) follows from part 
(iii) and Theorem 3.2. 

Remark. The increasing character of c^., k = 2,3,... in I(n,a) and of c^ in 

(—n + a/7r — 1, Vn) follows from Watson's formula for dd jdv since [c^]2 > z/2 in these 
cases. 

COROLLARY 4.7. If x > 0 then 

m = / (x2 cosh2t - p2)Ko{2xsmht)e-2vtdt > 0. 

Proof. For x2 > is2, this is obvious. When x2 < i/2, construct the cylinder 
function Cu(x), v < 0 for which the specified x = c^. According to Theorem 2.1 
(iii), and Watson's formula (3.2) 

0 > -T- =    9 X 9f(x)> ^ > 0, x2 < i/2, dv      xz — vz 

and so f{x) > 0 also when x2 < v2. 

Special cases of Theorem 4.4 are among results already found by other methods. 
Cf. [7] and [8] and the references provided there. In particular, C^XjO) = 3v{x) 
and C^x,71-/2) = Yv{x). In these respective cases, Theorem 4.4 yields the following 
Corollaries, already known ([7] and [8]). 

COROLLARY 4.8. On each interval -n — 1 < z/ < —n, n — 1,2,..., there is a 
single value un of u for which J^x) has a positive double zero. 
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COROLLARY 4.9. On each interval -m - 1/2 < i/ < -m + 1/2, m = 1,2,..., 
there is a single value vm of v for which Yl(x) has a positive double zero. 

5. Reality of zeros. It is well known ([7], [9]) that the smallest positive zero of 
J'v(z) approaches 0 as v \, 0 and that it becomes purely imaginary when — 1 < v < 0 
returning to the origin when i/ J. — 1. But it becomes real again as u is further 
decreased: 

THEOREM 5.1. For i/i < z/ < —1, the zeros of Jl(z) are all real. 

Remark. This adds the interval [i/i, —1) to the known sets [0, oo) and {—1, —2,...} 
of real values of u for which Jl(z) has exclusively real zeros. 

Proof of Theorem 5.1. The squares of the non-zero zeros of J'v(z) are the zeros 
of 

*..) - r(. + ^r^W) = „+1 - fc±2£ + ^L -.... 

Suppose that /i(i/, z) has a nonreal zero for some u in the interval in question. Then 
it has a pair of conjugate complex zeros, which vary continuously with v. But as i/ 
increases towards —1 such zeros must become real and at the point where they become 
real there occurs a double zero of J'v(z*). But [2], for — 2 < v < — 1, the only such 
double zero can occur for v = vi. Hence there can be only real zeros of /i(z/, z) for the 
i/-values in question. Furthermore the series expansion for /i(z/, z) shows that when v 
is close to and less than —1 the smallest real zero of h(v,z) is, in fact, positive. Thus 
all its zeros are positive and so all the zeros of J^z) are positive. 

Figure 2 gives a graph of the zero of /i(z/, z) which is in question here. 

FIGURE 2. Squares of the small zeros of J'v{x) as functions of v (horizontal axis). 

6. Conjectures. Results analogous to what we have found for the special case 
Cvk = ji/i, were found for j^ in Theorems 1 and 2 of [13], and for j^ in [12]. 
Together, these three sets of properties suggest the following conjecture: 

CONJECTURE 6.1. There exists a unique value ^n\ n - 3 < v^ < n - 2, such 
that for n = 1,2,..., 
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(ii)^^?,   n-3 <!/<.>>; 
(iii) ji^ is a double zero of Jy   {x) when v — v^; 

(iv) $ 10 and $ f j Wail as v t n - 2 ; 

(v) j^ is an increasing function of u, k = 2,3,..., m n — 3 < i/ < n — 2, and j^ 
is an increasing function of v inn — Z<v< z/n). 

Numerical tests suggest strongly not only the existence of the successive v^ but 
also simple relations among them, roughly, that the fractional parts decrease and may 
even be completely monotonic or at least multiply monotonic. This leads to a second 
conjecture about the real double zeros of Jv(x)\ 

CONJECTURE 6.2.  Let fin := i/M - (n - 3). Then 

A*i > /i2 > • • • > j^n > Vn+i > • • • > 0, 

and fin — fin+i 10, as n -> oo. Moreover, the sequence {^n) is multiply monotonic, 
perhaps even completely monotonic. 

We display supporting numerical evidence as a table.  All available (backward) 
differences are positive. 

n Mn Mn - Mn+l 
1 0.882876923 0.082247704 
2 0.800629219 0.045050926 
3 0.7555783929 0.027464629 
4 0.728113763 0.018306585 
5 0.709807178 0.013021454 
6 0.696785724 0.009717458 
7 0.687068266 0.007521549 
8 0.679546717 

Our conjecture does not extend to the case n = 0. J^rc) has no double zeros 
except x = 0 and then only for v > 1 or v = —2, —3,  

The decrease of these fractional parts contrasts with (but does not contradict) 
the increase of the fractional parts noticeable in the table of zeros of JLv{z) due to B. 
Doring [2]. He shows that each interval A;<z/<fc + l, fc = 1,2,..., contains precisely 
one positive double zero of «/.!_„ (2), as had been conjectured by J. Lense [10]. His table 
lists those double zeros for k — 1,..., 100. An examination of this table suggests that 
the first differences of the fractional parts form a completely monotonic sequence. 

M. K. Kerimov and S. L. Skorokhodov ([6], [7], [8]) have investigated, chiefly from 

the numerical standpoint, double zeros of Ju (x) for n = 1,2,3. Values obtained here 
(using Maple V, Version 4) are consistent with their values which resulted from dif- 
ferent software, and also with Boring's. 

The regularity of higher differences observed in Boring's table persists, though in a 
more complicated way, in connection with double zeros of J"(x). Here the situation is 
that there appear to be two values of v in each interval — k — 1 <v < — fc, fc = 1,2,... 
for which double zeros occur.  These values occur in two families on the respective 
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curves 

/2*/2 + l±V8z/2 + l 
2 

The double zeros correspond to roots of 

(6.1) J'U 
f2z/2 + l±\/8i/2 + l 

What appears to be true is that for the upper (+) sign the first differences of the 
fractional parts of the zeros form a completely monotonic sequence but for the lower 
(—) sign the second differences of the fractional parts of the zeros form a completely 
monotonic sequence. 
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