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SPECTRAL TRANSFORMATIONS AND GENERALIZED 
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To Richard Askey on his 65th birthday 

Abstract. The Christoffel and the Geronimus transformations of the classical orthogonal poly- 
nomials of a discrete variable are exploited to construct new families of the generalized Pollaczek 
polynomials. The recurrence coefficients wn, bn of these polynomials are rational functions of the 
argument n. The (positive) weight function is known explicitly. These polynomials are shown to 
belong to a subclass of the semi-classical orthogonal polynomials of a discrete variable. We illustrate 
the method by constructing a family of the modified Charlier polynomials which are orthogonal with 
respect to a perturbed Poisson distribution. The generating function of these polynomials provides 
a nontrivial extension of the class of the Meixner-Sheffer generating functions. 

1. Introduction. The formal orthogonal polynomials Pn(x) are defined through 
the three-term recurrence relation ([8]) 

(1.1) iVfiOc) + unPn-i(x) + bnPn(x) = xPn(x) 

with the initial conditions 

(1.2) Po(x) = l,    Pi(x)=x-bo. 

The polynomials Pn(x) are monic (i.e. Pn{x) = xn 4- 0(a;n_1)). It can be shown that 
for arbitrary complex coefficients bn and (non-zero) un there exists a linear functional 
C such that 

(1.3) £{Pn(x)xk} = hn5nk, k<n, 

where 

(1.4) hn - u1U2"'Un ^ 0 

are normalization constants. 
The functional £ is defined on the space of polynomials by its moments 

(1.5) cn = £{xn}, n = 0,l,---. 

The standard normalization condition is ho = CQ = 1. 
The condition (1.3) can be rewritten in the form of the orthogonality relation [8] 

(1.6) £{Pn(x)Pm(x)} = hn5nm, n,m = Q,l,-' • 

If, in addition, the coefficients bn are real and un > 0 then there exists a positive 
Borel measure fi on the real line such that 

/oo 

xndfi(x) 
-oo 
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and hence the orthogonality condition can be presented in the form (the so-called 
Favard theorem [8]) 

/oo 
Pn(x)Pm(x)dfi(x) = hn6nm. 

-co 

Sometimes it is convenient to deal with the weight function w(x) defined by dfi(x) = 
w(x)dx. In the case of a purely discrete measure the weight function can be written 
in terms of Dirac delta functions w(x) = J2k Mkd{x — £&)) where the discrete masses 
Mk are located at the spectral points Xk- 

The Stieltjes function F(z) is defined as [8] 

(1.9) FW^CUz-x)-1}, 

where the functional C acts upon the x variable. The Stieltjes function is the gener- 
ating function of the moments 

(1.10) F(z) = £ 
OO 

Ck 
zk+l' 

k=0 

On the other hand there is an important expansion in terms of the continued fraction 

([1]) 

(1.11) F(x) = 1 

x - bo  

x — bi — 
x - 62 - 

Formula (1.11) allows one to find (in principle) the Stieltjes function F(z) from the 
given recurrence coefficients Uj^bn. The measure /x can then be restored by means of 
the inverse Stieltjes transform ([1]). Obviously such procedure is rather implicit (one 
should evaluate infinite continuous fraction (1.11)). 

Hence it is desirable to have a list of "nice" orthogonal polynomials such that 
both the measure and the recurrence coefficients are known explicitly. 

We will call that OP belong to the generalized Pollaczek class (GPC) if their 
recurrence coefficients un, bn are rational functions in n whereas the weight function 
w(x) is known explicitly. 

Note that Pollaczek [23] proposed to study a class of OP such that the recurrence 
coefficients are rational functions in n with the additional restrictions 

(1.12) lim un = const,   lim bn = const. 
n—KX) n-+oo 

These restrictions are quite natural, for they lead to OP generalizing the Jacobi poly- 
nomials with the measure located on a finite interval of the real axis. 

Pollaczek stressed that such polynomials are important because their generating 
function satisfies some linear differential equation (of the order > 2), hence some 
properties of these polynomials can be restored from the behavior of solutions of the 
corresponding differential equation. 

Our definition of GPC is slightly less restrictive: we do not impose asymptotic 
conditions upon the recurrence coefficients, but on the other hand we demand that 
the weight function should be known explicitly. 
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The following OP belonging to GPC are known today: 
1) the classical Jacobi polynomials and their specializations (i.e. the Laguerre 

and Hermite polynomials); 
2) "non-classical" the Krall's polynomials satisfying a higher-order linear differen- 

tial eigenvalue equation (the so-called polynomials of the "Jacobi-type", "Legendre- 
type" etc. , see, e.g. [18], [17]). The measure of these polynomials is obtained from 
the measures of the classical Jacobi and Laguerre polynomials by adding of one or 
two discrete masses at the endpoints of the orthogonality interval. Koornwider [15] 
considered the polynomials obtained by inserting of two arbitrary masses at the end- 
points of the orthogonality interval of the arbitrary Jacobi polynomials. Some classes 
of the Koornwinder's polynomials also belong to GPC. In all these cases restrictions 
(1.12) are fulfilled. 

3) the Wilson polynomials [32] and all their specializations: Hahn, Meixner, Pol- 
laczek, Krawtchouk etc. - see [14] for a full list. In this case, instead of Pollaczek 
restriction (1.12), we have 

(1.13) un oc n4, bn oc n2, 

for the Wilson and continuous dual Hahn polynomials; 

(1.14) un oc n2, bn oc n, 

for the continuous Hahn, Meixner and Pollaczek polynomials and 

(1.15) un oc n, bn oc n 

for the Charlier polynomials. 
4)the so-called Random Walk Polynomials studied in [3]. For these polynomials 

the Pollaczek restriction (1.12) is fulfilled and the spectrum contains both continuous 
and discrete parts. These polynomials admit a generalization studied in [7]. 

5)OP connected with the elliptic functions [8]. There are several examples. For 
one of them un = ^2(2n)2(4n2 - 1), bn = {K

2
 4- l)(2n + I)2, where 0 < K < 1. The 

orthogonality measure of these polynomials (found by Stieltjes) is purely discrete one. 
For other OP related with this example see, e.g. [30]. 

The main goal of this paper is to present a new class of GPC polynomials which 
are a generalization of the above class 3). We construct infinitely many such OP with 
somewhat unusual spectral property. Namely, all these OP have a purely discrete 
spectrum. This spectrum is obtained from the spectrum of the classical OP of a 
discrete variable by cancelling of some spectral points. 

In the next section we give a brief introduction to theory of spectral transforma- 
tions of OP. These transformations play an important role in studying of the classical 
and semi-classical OP (see also [25], [34]). 

2. Spectral transformations of the orthogonal polynomials. In this sec- 
tion we describe spectral transformations of the orthogonal polynomials on the in- 
terval. These transformations were introduced by Christoffel (1858) and Geronimus 
(1940). 

The Christoffel transform of OP is defined by the formula [29] 

(2.1) Pn(x) = Pr+lto - AnP»(*) 
x — a 
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where An = Pn+i(a)/Pn(a) and a is an arbitrary parameter which does not coincide 
with the roots of the polynomials Pn(x). 

The weight function w(x) and the Stieltjes functions F(x) are transformed as 

(2.2) 

(2.3) 

w(x) = 

F(x) = 

(x — a)w(x) 
ci — a 

{x - a)F(x) - 1 
ci — a 

It is easily seen that the condition w(x) > 0 leads to the restriction a < ai or a > 0,2, 
i.e. the auxiliary spectral parameter a should be outside the spectral interval. This 
restriction is evident from theory of the kernel polynomials [8]. 

Consider a chain of N CT with the parameters ai,a2, • • • ,ajv.  For the trans- 
formed recurrence coefficients we have 

un    —un 
Dn+lDn-l 

Dl 

(2.4) bk   ) =0n+N + 75 77-, 

where Dn, Vn are N x N determinants defined as 

(2.5) Dn = 

Pn+N-lfai)       Pn+N-2(ai) 

Pn+N-1 (^2)       Pn+N-2 fa) 

and 

(2.6) Vn = 

Pn+N-l ((XN)     Pn+N-2 (OLN) 

Pn+N fa )       Pn+N-2 fa ) 
Pn+Nfa)       Pn+N-2fa) 

Pn+N (^Ar)      Pn+N-2 {OiN) 

Pnfa) 
Pnfa) 

Pn(0LN) 

Pnfa) 
Pnfa) 

Pn(OLN) 

Geronimus transform GT was found in 1940 [11], [12] (see also [21] and [9], [13] 
where the similar problem was considered). GT is written as 

(2.7) 

where 

(2.8) 

Po - 1,    Pn(x) = Pn(x) - £nPn_i(a;),    n = 1,2, ■ 

Bn = 0n/^n-l 

and the function (f)n is a solution of the recurrence relation (1.1) with auxiliary spectral 
parameter a: 

(2.9) </>n = Fn(a) + xPnfa,    n = 0,1, 

The parameter x is arbitrary, however there are some restrictions needed to pro- 
vide positivity of the weight function w(x) of the polynomials Pn(^) (obviously the 
restrictions for a are the same as in the case of CT). 



SPECTRAL TRANSFORMATIONS 265 

The recurrence coefficients are transformed according to the formulas 

4>i h 91 i        <Pi \ 

<Po   V <PoJ 
un = 

Un-lBn 

(2.10)        bo =bo + —, 
00 ' 

Bn-1 

bn = bn + Bn+i — Bn, 

n = 2,3,---, 

n=l,2,"- . 

(2.11) 

(2.12) 

For the transformed weight function and the Stieltjes functions one has [11] 

xS(x — a) + w(x)(a — a:)-1 

w(x) =- 

F(x) 

X4-F(a) 
F(a)+x-F(g) 
{x-a)(x + F(a)y 

It is easily seen that the Geronimus transform (2.12) is reciprocal to (2.3). However, 
in contrast to CT the transform (2.12) contains two free parameters a and %. The 
second free parameter x determines the value of an additional discrete mass inserted 
to the spectrum of the polynomials Pn(x) as is seen from (2.11). 

For the transformed recurrence coefficients under JV Geronimus transforms we 
have 

(2.13) 

where the N x N determinants are defined as 

W2 

h(N)       ,       ,     ^n+1   _ ^_ 

(2.14) 

and 

(2.15) 

Wn = 

Un = 

</>n-l(ai)        (f)n-2{ai) 

0n-l(tt2)       ^n-2(^2) 

<l>n-l(OLN)      0n-2 (aw) 

^n(ai)       0n-2(^l) 

^n^)       0n-2(«2) 

0n(^iv)      <t>n-2(0lN) 

<j)n-N(0Li) 

(j)n-N(a2) 

(l)n-N(aN) 

<f>n-N(<Xi) 

(j)n-N{0L2) 

(j)n-N(aN) 

Note that strictly speaking the formulas (2.13) are valid for n > N. For 0 < n < 
N one should reconsider these formulas. We will not write down these (auxiliary) 
formulas here. 

3. The Christoffel transforms preserving the positivity property of the 
weight function. Assume that the weight function w^N\x) (obtained from w(x) 
after JV CT) preserves the positivity property. For the single Christoffel transform (i.e. 
N — 1) it is necessary that the auxiliary parameter a lies beyond the orthogonality 
interval. There is a situation, however, when one can perform arbitrary many CT 
with the parameter ai chosen inside the orthogonality interval such that the weight 
function w W {x) is still positive. 
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Assume that the spectrum of OP is discrete one and bounded from the below: 

AT 

(3.1) w(x) = YJ
Mis(x-xi) 

2=0 

where Xi are locations of the jumps and Mi > 0 are corresponding concentrated 
masses. We assume that 

(3.2) Xi+i > xi,    i = 0,1,-•• 

Choose K parameters cti, 2 = 1,2, — • ,K coinciding with a subset of spectral points, 
i.e. cti = Xff^i) where a(i) is an increasing function of the integer argument i = 
0,1,2, • • • taking natural integers. 

For the transformed weight function we thus have 

N 

(3.3) wW (x) = Y, M\K)5(x - Xi) 
i=0 

where the transformed masses are 

(3.4) M$K) = /cAfi(ai - xjfa - xj - - (aK - Xi) 

Obviously some masses vanish in the sum (3.3): Mj ' = 0 iff oij = Xi for at least one 
l<j<K. 

The transformed weight function w(x) is positive iff all the rest masses M- ,i = 
0,1,--- , iV are positive. Thus we need the condition (ai—Xi) (0^2— xi) ••• (otK—Xi) >0 
for i — 0,1, • • • , iV (excepting those for which M- ' = 0). Taking into account that 
all Xi are monotonic with respect to i we find that the criterion of the positivity can 
be formulated in the following manner. 

Divide all indices k of a^ into groups of "nearest neighbors" {k} = U^_1Ym(rm), 
where Ym(rm) is a group joining rm indices going without gaps between them: ym(rm) 
= {fc(m), jk(m) + 1, k^ + 2, • • • , k^ +rm- 1}, and m is a label of this group (L is 
the number of all these groups). Obviously K = 7*1 + r2 + • • • + r^. We assume a 
natural ordering for these groups fc(m+i) > k^ + rm. The numbers k^ denote the 
starting numbers inside each group. If A^1) = 0 then the first ri spectral parameters 
a^ coincide with the first 7*1 spectral points XQ, XI, ■ • • , xri. 

We will call that the set of indices {k} (divided into the groups Ym(rm)) is ad- 
missible if the following conditions hold: 

(i) if k^ ^ 0 then all numbers rm, m = 1,2, • • • , L are even; 
(ii) if A^1) = 0 then the number 7*1 may be arbitrary whereas the rest numbers rm 

are even. 
For example the set of indices {k} = {0,1,2,7,8,9,10,15,16} is admissible be- 

cause it contains 3 groups with n = 3 (fci = 0), r2 = 2 (£2 = 7), 7*3 = 2 (ks = 15). 
On the other hand the set {k} = 1,2,3,4,7,8,9,13,14 is not admissible because it 
contains 3 groups with n = 4, 7*2 = 3, 7*3 = 2, and 7*2 is odd which is forbidden. 

Now we can formulate the following 

PROPOSITION 1. Assume that some OP Pn{x) have a purely discrete positive 
weight function with the masses Mk > 0 located at the points Xk, k = 0,1, • • • ,N<oo 
such thatxk+i > Xk- Assume that OP Pn    {x) are obtained from Pn(x) by application 
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of K Christoffel transforms taking at the points cti, i = 1,2--- yK coinciding with 
some subset of Xk. Then OP Pn (x) have positive discrete weight function iff the set 
{k} is admissible. 

Proof Assume first that A^1) ^ 0 and at least one of the numbers rm is odd. Then 
it is obvious that the masses M^(J)_1 and M^(m) have different signs and hence the 
weight function cannot be positive. Thus the condition of the proposition is necessary. 
The sufficiency of the condition is obvious because then all masses M^ ^ have the same 
sign. This sign is positive as is seen from the first non-zero mass. If A^1) 7^ 0 then 
the first 7*1 masses M^ ^ are zero and should be excluded from consideration and we 
return to the previously considered situation. Hence the proposition is proven. D 

As a by-product (by the Favard theorem) we get that for the admissible case one 

obtains OP with the positive recurrence coefficients uh    > 0. 

REMARK 1. The proposition is obviously valid if the polynomials Pn(x) have only 
discrete spectrum bounded from the above. Then the "admissible" set {k} is defined 
in analogous manner. 

Note that M. G. Krein [16] considered a continual analogue of this problem for 
a set of the Darboux transformations of the Sturm-Liouville equation (see also [5] 
for the modern interpretation of this situation for the Schrodinger equation with the 
"nodeless potentials"). 

4.  General scheme of construction for the Racah polynomials. In this 
section we show how our scheme works for the case of the Racah polynomials. 

The Racah polynomials are defined as [14] 

/A i\ D /  / \      a      s:\       IT-   f—n,n + a + P + 1,-5,s + 7 + S + 1 
(4.1) Rn(x(8);a,P,>r,5)=iF3{ a+h0 + 5 + ln+\ 

where 

(4.2) x(s) =5(5 + 7 + 5+1) 

and one of three conditions 

(4.3) a + 1 = -N, or 0 + 5 + 1 = -N or 7 + 1 = -N 

is fulfilled, where iV is a positive integer. 
The Racah polynomials satisfy the three-term recurrence relation [14] 

(4.4) fn-Rn+ifa(s)) - (fn + r]n)Rn(x(s)) + r}nRn-i(x(s)) = x(s)Rn{x(s)), 

where 

_ (n + a + (3 + l)(n + a + l)(n + f3 + 5 + l)(n + 7 + 1) m 
?n ~ (2n + a + /? + l)(2n + a + (3 + 2) ' 

n(n + a + P - i)(n + /?)(n + a - S) 
1 ' ' ^ (2n + a + /3 + l)(2n + a + ^)      ' 

The monic Racah polynomials Pn(x(s)) = anRn(x(s)) satisfy the recurrence re- 
lation (1.1) with 

(4.6) Un — U-lVn,  bn = -€n - 7]n. 
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The coefRcients an satisfy the relation 

(4.7) ^±1 = £„• 

The Racah polynomials are orthogonal with respect to a finite discrete measure: 
the jumps are located at the points x(s) such that 

(4.8) 5 = 0,1,--- ,N. 

As is seen from (4.1) the polynomials Rn(x(s)) possess an important duality 
property: if x(s) coincides with one of the spectral points (i.e. if s belongs to the 
set (4.8)) then Rn(x(s)) are also polynomials of 5-th order in the argument /in = 
n(n 4- a + ft 4-1). This property is crucial for the further construction. 

Consider K Christoffel transforms with 

(4.9) ak=jk(jk + T + 5 + l),k = l,2,---,K<N, 

where jk are arbitrary chosen integers among the set 0,1, • • • ,N . Then from (2.4) 
we derive the following formulas 

uiK) =Ur 
^K^Pin+liiqVin-liK) 

£n-l V2(n;K) 

(4.10) 

where 

{K) V(n + 1;K) 

(4.11) 

V(n;K) = 

V(n]K) = 

Rn+K-l (®i)       Rn+K-2 (ai) 
Rri+K-l(o^2)        Rn+K-2(OL2) 

Rn+K-1 (OLK)     Rn+K-2 (OLK) 

Rn+K(0Ll)       Rn+K^ia-l) 
Rn+K{OL2)        Rn+K-2{U2)       ' 

Rn+K(0LK)     Rn+K-2{0LK)      ' 

■VfaKY 

• -Rn(ai) 
• Rnfa) 

• Rn(aK) 

Rn(cX2) 

RU^K) 

From the duality property of Rn(oLk) we see that the transformed coefRcients Un \bn ' 

are rational functions of the argument n. Hence the transformed polynomials Rn ' {x) 
belong to GPC. 

We thus get 

PROPOSITION 2. // the parameters ai,i = 1,2, ••• ^K satisfy the "admissible" 
conditions, then OP obtained from the Racah polynomials after K Christoffel trans- 
formations at the points ai belong to GPC and have the positive weight function. 

Clearly, this statement is valid for specializations of the Racah polynomials (Hahn, 
Meixner, Krawtchouk, etc.): OP obtained from these polynomials by applying of K 
Christoffel transforms with admissible parameters ak satisfy needed conditions for 
GPC: their recurrence coefficients are rational of the argument n whereas their weight 
functions are positive and explicitly known. One can obtain infinitely many different 
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OP belonging to GPC. All such OP can be treated as "closest" to the "classical" OP 
of a discrete variable in the following sense. 

As was shown in [25] all OP obtained from the "classical" OP (such as Askey- 
Wilson, Racah, etc.) by a finite number of linear spectral transforms (i.e. CT and GT) 
belong to the class of semi-classical OP (SCOP) in a sense of definition [19]. SCOP 
possess many useful properties similar to those of the classical OP (in particular, the 
discrete masses Mk (if they exist) satisfy the linear first-order recurrence equation 
(see, e.g. [19], [25]). However the recurrence coefficients for the generic semi-classical 
polynomials cannot be expressed in terms of the elementary functions; they are rather 
discrete analogies of the Painleve transcendents [20], [25]. Hence the polynomials 
obtained by the our procedure from the "classical" OP form a subclass of SCOP with 
the rational recurrence coefficients. In this respect these polynomials are "more close" 
to the classical OP than the generic semi-classical OP. 

Note that, in contrast to CT, the Geronimus transform does not preserve this 
property for the Racah polynomials. However, for some special values of the pa- 
rameters cti, Xi this property holds. We consider one such special case in the next 
section. 

5. Example: modified Charlier polynomials on "defected" lattice. Con- 
sider the simplest example connected with the Charlier polynomials satisfying the 
recurrence relation (1.1) with the coefficients [14] 

(5.1) un — an, bn = a 4- n, 

where a > 0 is an arbitrary positive parameter. The spectral points of the Charlier 
polynomials are located at x = 0,1,2, • • •. Corresponding masses form the Poisson 
distribution: 

(5.2) Mk = exp(-a)a*7fc!, fc = 0,1, • • • . 

The explicit expression of these polynomials is [14] 

(5.3) Pn{x) = (-a)n
2Fo f-^"*; -1/a 

Perform now K Christoffel transforms choosing the parameters c^ from a subset of 
the set of spectral points a* = #;, i = 1,2, • • • , K. Then from the formulas (2.4) and 
(5.3) we get 

7>(n + l)P(n-l) 
Un    ~an V*(n) 

n       a + n + iV     alp(n+l)     V(n)    ' (5.4) 

where V(n) and V(n) are defined by the formulas (4.11) with 

(5.5) Rn(ai) = 2F0(-n>-ai;-l/a). 

Thus Rn((Xi) is a polynomial in the argument n of the order xi. Consequently, P(n) 
and V(n) are some polynomials in n. 
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Taking all possible admissible sets {k} for the parameters o^ we can construct 
infinitely many modified Charlier polynomials with the positive discrete weight func- 
tions. The corresponding masses form the "perturbed" Poisson distribution: 

(5.6) Mk = K
exP(-Q)Qfc JJ (fc _ aj)i k = o, 1, ■ ■ ■ , 

i=i 

where K is an appropriate normalization constant. In expression (5.6) the discrete 
masses Mk are positive at the infinite number of the points k = 0,1, • • • excepting the 
points ai, a2, •' • , a^ where Mk — 0. 

Note that if one performs the single CT with a = 0 then one gets the same 
Charlier polynomials with the shifted argument: Pn (x; 0) = Pn(x — 1). Hence if one 
performs K Christoffel transforms with the parameters a^ coinciding with the first 
K levels of the Charlier polynomials (ai — 0, #2 = 1, • • • , OLK — K — 1) then 

(5.7) pW(x;0,lr",K-l) = Pn(x-K). 

Thus all CT at the first levels are "non-interesting" and in order to get non-trivial 
examples we should consider CT with the parameters a^ such that ai ^ 0 (here ai 
denotes the smallest a^). 

Consider a simple non-trivial example. Assume that K = 2 and ai = 1, a2 = 2. 
This means that we perform 2 CT removing the spectral points x = 1,2 from the 
measure of the Charlier polynomials. This choice is admissible, i.e. the corresponding 
weight function is positive at the points x = 0,3,4,5,6, • • • Corresponding recurrence 
coefficients are given by formulas (5.4) with 

n2 + (1 - 2a)n + a2 

V[n) = -^ , 

(5.8) P{n) =2("2 + 2(l-;)" + °a-«). 

It is easily seen from (5.4) and (5.8) that uh' > 0, n = 1,2, • • • in agreement with the 
Favard theorem. 

The masses 

r^                                  Af  -        e~a        (k-l)(k-2)ak 

(5-9) Mk - ai-2a + 2 jbi  

are located at the points k = 0,3,4,5, • • • These masses are normalized, i.e. J2T=o ^-k 
= 1. 

Note that this example can be considered as a discrete analogue of the potential 
constructed in [10] (see also [5]) by the Darboux transformations of the Schrodinger 
equation for the harmonic oscillator. 

There is one more possibility to construct "perturbed" OP with positive discrete 
weight function starting from the Charlier polynomials. 

For this goal note that when Xk = —k,k = 1,2,-— the recurrence relation 

(5.10) 0n+i + an(pn-i + (a + n)</>n = -A;0„ 

admits the following (special) elementary solutions 

(5.11) 0n = (-l)nn!7r,_1(n), 
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where 

(5.12) irk(n)=2F0(*l + ];-k;l/a 

are some polynomials in n of the order k. (Actually these polynomials coincide with 
the Charlier polynomials with a -> — a as is seen from (5.5)). 

Performing one GT with the function 0n at a = — J we get new polynomials with 
the rational recurrence coefficients as is seen from (2.10) 

/c-.'^  - 7rj_i(n)7rj_i(n-2)   ~ 7rj_i(n) 7rj-i(n + l) 
(5.13) un = an Y— ^- L, bn = a + n-l + — -r-r—. 

rf^ (n - 1) 7rj_i (n - 1) 7rj_i (n) 

According to the transformation of the weight function under the Geronimus trans- 
form (2.11) we have 

oo 

(5.14) w(x) = M-jS(x + J) + J^MkSix - fc), 
k=o 

where Mj is the mass inserted at the point x — -J and 

k 

(5.15) Mk = K 
(k + J)k\ 

(K > 0 is a normalization constant). 
Obviously, the weight function w(x) will be positive iff M_j > 0. In turn, this 

condition depends on the sign of the parameter x entering the linear combination (2.9). 
Instead of direct determining the sign of x we propose an alternative method allowing 
to decide whether or not the weight function W(x) is positive. Observe firstly that 
GT with the spectral parameter xi = -1 (i.e. 0n = (-l)nn!) yields the same Charlier 
polynomials with the shifted argument Pn(x) = Pn(x + 1). Hence after J Geronimus 
transforms with the functions 0n at the points xi — —1^X2 — —2, • • • ,a;j = — J we 
get Pn {x) = Pn(x + J). Then perform J - 1 Christoffel transforms at the points 
xi = —1,X2 = — 2, • • • xj-i = 1 — J. After this procedure we get the polynomials which 
are obtained from the Charlier polynomials by the Geronimus transform (5.13) at the 
point xj — —J (because composition of CT and GT at the same point is equivalent 
to identical transformation). On the other hand, this is equivalent to performing of 
J — 1 Christoffel transforms with respect to the initial Charlier polynomials at the 
spectral points Xfc = 1,2,•••,«/ — 1. Thus the transformed weight function (5.14) is 
positive iff J is odd. 

In particular, taking J = 3 we return to the above considered case of two CT at 
the points x — 1,2. 

Thus, for the Charlier polynomials performing of the single GT with the function 
(5.11) at the point a = -J is equivalent to performing of J - 1 CT at the points 
a*; = 1,2, • • • , J — 1. More exactly: 

(5.16) ^(0){P„(a:-J)}=C(l,2,..-,J-l){Pn(a;)} 

or, equivalently, 

(5.17) Pn{x -J)= C(0,1,2, • • • , J - l){Pn(x)}. 
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Relation (5.17) coincides with relation (5.7). 
Relations like (5.17) (or (5.16)) are special cases of more general self-similar clo- 

sure conditions for the chain of spectral transformations of OP. Generic solutions of 
such conditions lead to the so-called semi-classical polynomials on the uniform grid 
(for details see [25]). 

6. Duality properties. Return to the polynomials Pn(x) obtained in the pre- 
vious section with K = 2 and ai = 1, a2 — 2. These polynomials can be written in 
the form 

^..x 6 / x      Qn-i Pn+2(x) + rn Pn+i(x) + a2 qn Pn{x) 
(6.1) Pn(x) = j-——r-— , n = 0,1,2, • • • , 

where Pn(x) are the standard (monic) Charlier polynomials (5.3) and 

(6.2) <7n_i = n2 + (1 - 2a)n + a2, rn = 2a(n2 + 2n(l - a) + a2 - a). 

Alternatively, (from (5.16)) these polynomials can be obtained by the single Geron- 
imus transform: 

(6.3) Pn{x + 3) - Pn{x) + Z^p^x). 
Qn-l 

The polynomials Pn(x) defined by (6.1) (or (6.3)) can be presented in a concise form 
in terms of hypergeometric function 

(6.4) Pn(X) = (-D'V^Nn-i-n^) ^ /-„, -x + 3,1 + 9n 

Qn-l V 9n 

where 

-a-1 

(6.5) gn = -n + 
Qn 

The polynomials Pn(x) are orthogonal on the "defected" uniform grid x — 0,3,4,5, 
• • •. The orthogonality relation reads 

oo 

(6.6) ]r^*-Pn(fc)-Pm(*0 = K8nm, 
k=0 

where 

e-a        {k-l)(k-2)ak 

(6.7) wk a2 - 2a + 2 kl 

(6.8) ^=  2    f a^nl-glL.. 
a2 - 2a + 2 gn_i 

The Charlier polynomials Pn(x) form a complete system. Clearly, the polynomials 
Pn(x) form a complete system as well (because the moment problem for these poly- 
nomials is determinate [1]). Hence we have the dual orthogonal relation [4] 

(69) yPn(k)Pn(k') _8kk, 

n=0 hn m 
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where fc, k' = 0,3,4,5, • • •. 
For k = 0,3,4,5, • • • it is convenient to write down the polynomials Pn(k) in the 

form 

(6.10) Pn(k) = ^^ Qk(n). 
Qn-l 

It is easily seen from (6.4) that Qk(n) are monic polynomials of k-th order in the 
argument n, namely 

Qo=l, 

(6.11) 

Qk{n) =(-l)*o*-3(a9n_i - ngn) 3F1 (""' _fc+n
3'1 + 9n  - a"1) , & = 3,4,5, • • • . 

The first 4 polynomials are 

Qo=l, 

Q3(n) =n3 + 3(1 - a)n2 + (3a2 - 3a + 2)n - a3, 

Q4(n) =n4 + 2(1 - 2a)n3 + (6a2 - 4a - l)n2 + 2(a2 - 2a3 - l)n + a4, 

Q5(n) =n5 - 5an4 + 5(2a2 - l)n3 + 5a(l - 2a2)n2 + (5a4 + 4)n - a5. 

From (6.9) we get that the polynomials Qk(n) are orthogonal on the uniform grid 

00 k\ak 

(6.12) Y,Pn Qk{n)Qk'(n) = fk_^\fk_2)Skk, 

with the weight function 

(6.13) pn = 
e-aan+2 

n\qn-iqn 

Thus the polynomials Qn(k) can be considered as orthogonal polynomials but with 
absent Qi(n) and Q2(n). Hence these polynomials are not the ordinary OP in a 
sense of [8] (recall that all the orders A; = 0,1,2, ••• should be presented for the 
ordinary OP). Nevertheless the polynomials Qk(n) possess many properties similar 
to those of the ordinary OP. The most important from them is completeness of the 
system Qk(ri). This means that any sequence <l>n such that Y^Lo Pn\<t>n\2 < oo can 
be uniquely expanded in terms of the polynomials Qk(ri) 

(6.14) <f)n=     ^     tkQk{n), 
fc=0,3,4,". 

where the coefficients tk obey the Parseval identity 

oo 

(6-15) X)     l*l2* = E<*l2- 
A;=0,3,4,--- n=0 

The completeness property and the Parseval identity follow from general results 
concerning orthogonal polynomials having only a discrete measure consisting from a 
numerable number of jumps (see, e.g. [4, Theorem 5.3.3]). 
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The polynomials Qk(x) satisfy some linear difference second-order Sturm-Liouville 
equation in argument x. In order to find this equation we start with the recurrence 
relation for the polynomials Pn(x) 

(6.16) Pn+i(x) + unPn-1(x) + bnPn(x) = xPn{x), 

where 

(6.17) un =an —^ , 
Qn-l 

(6.18) bn=a + n + 2- 
\   Qn Qn-l 

Then using definition (6.10) we arrive at the difference equation for the polynomials 
Qk{x) 

(6.19) LQk(x)=kQk{x),    A: = 0,3,4,5,-■-, 

where L is a second-order difference operator acting on the argument x and defined 
as 

(6.20) L = _a^A + ^V 
Qx Qx-i 

(A, V are the standard difference derivative operators defined on the space of functions 
ip(x) by Aip(x) = ip(x 4- 1) — ip(x), V^(a;) = ip(x) — ip(x — 1)). It is interesting to 
compare the operator L with the corresponding operators for the classical OP on 
uniform grids (i.e. for the Charlier, Krawtchouk, Meixner and Hahn polynomials). 
These operators have the expression [22] 

(6.21) L = -(<T(X) + T(aO)A 4- a(x) V, 

where cm(x) is a polynomial of degree < 2 and T(X) is a linear function of x. The 
operator (6.21) possesses a remarkable property: it sends any polynomial p(x) to 
another polynomial of the same degree (for theory of operators with this property see 
[19]). 

Our operator (6.20) has more complicated properties. Obviously L{1} — 0, but 
generally for any polynomial p(x) of arbitrary degree n we have L{p(x)} = ^ _ , 
where p(x) is a polynomial of degree < n + 4. Thus the operator (6.20) sends a set 
of polynomials to a set of rational functions. Only if p(x) coincides with some of the 
polynomials Qn(a;), n = 3,4,5, • • • we get the eigenvalue property (6.19). Note that 
the operator L defined by (6.20) has no polynomial eigenvalue solutions if the degree 
of the polynomials is 1 or 2. 

7. Generating functions. We already noted that the generating function of 
OP belonging to GPC satisfies a linear differential equation of. However for the 
case of OP obtained from classical OP (of a discrete variable) by a finite number 
of spectral transformations it is possible to construct generating functions explicitly 
without solving this differential equation. 

In this section we find two generating functions for the polynomials Pn(x) and 
Qjfe(n) constructed in the previous section. 
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Introduce the generating function for the standard Charlier polynomials [14] 

(7.1) $(*,*) =e-«*(l + t)* = f;£i^. 
n=0 

In order to construct the generating function for the polynomials Pn(x) we take 
the representation (6.3) and get the relation 

n=0 n=0 n^O 

The problem is thus reduced to calculating of two sums in the rhs of (7.2). To do this 
we note that 

„        n! 
71=0 

^"("-yn(*)t"=^g(t>a;)> 
n=0 

Using these identities we can easily calculate both sums in rhs (7.2). Omitting the 
technical details we present the result: the generating functions $(t,x) for the poly- 
nomials Pn(x) is 

oo ,n 

(7.3) ${t,x) = <i>(t,x)e-at(l + tr-i = J2 Sl^Pn(x), 
n=0 

where 0(t, x) is the polynomial in t and x\ 

(7.4) 
0(t, x) = a2t4 + 2a(2a - x)t3 + (x2 - (4a + l)x + 6a2)t2 + 2((1 - a)x + 2a2)i + a2. 

The generating function for the dual polynomials can be found analogously. We start 
from the generating function for the standard Charlier polynomials 

Pn(x)z* 
! XI 

(7.5) (2_ayv = £ 
x=0 

Taking then the representation (6.1) and using (7.5) we get 

(x-l)(x-2)zxPn{x) 

x=0 
X\ 

(7.6) ez ({z - aY+2 + ^-{z - a)n+1 + ^(z - a)n\ . 

Now from (6.10) we get finally the generating function for the polynomials Qn(x) 

^-^ k\ 
k=0 

where ^{x^z) is the polynomial in x and z\ 

(7.8) %j)(x, z) - qx-i (z - a)2 + rx (z - a) + a2 qx. 
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8, Algebraic scheme: connection with factorization chain. In this section 
we consider relation of the obtained OP with the so-called discrete factorization chain. 

Recall basic definitions and relations connected with the discrete factorization 
chain (see, e.g. [27]). 

Consider a set of (monic) orthogonal polynomials Pn(x] t) depending on an addi- 
tional discrete parameter t = 0,1,2, • • • and satisfying the recurrence relations 

Po(s;t) = l, Pi(x-t)=x-bQ{t), 

(8.1) Pn^X^t) +bn{t)Pn{x-t) ^-Un^Pn-^t) = xPnix'.t),      * = 0, 1, 2, • • • . 

Let #(£), t = 0,1,2, • • • be a set of parameters such that the following relations 
between the polynomials hold 

(8.2) P^ + l)^1^-^"^, 
x — a{t) 

where 

Pn+i(a(t);t) 
(8.3) An(t) - 

Pn{a(ty,t) 

Comparing (8.2) with (2.1) we see that the polynomials Pn(x; t +1) are obtained from 
Pn(x;t) by means of the Christoffel transform with the spectral parameter a(t). 

The reciprocal transformation from Pn(x] t + 1) to Pn(x] t) is given by the Geron- 
imus transformation 

(8.4) Pn(a;; t) = Pn(x-1 + 1) - Bn(t)P„-i(re; t + 1), 

where the coefficients Bn(t) can be presented in the form (2.8). 
It is useful to inverse the problem and consider the set of the coefficients An(t) 

and Bn(t) as independent parameters. 
Then we obtain connections between these coefficients and the recurrence coeffi- 

cients 

(8.5) un(t)=An-1(t)Bn(t), n = l,2,..., 

(8.6) bo(t) =a(t) - AoW, bn(t) = a(t) - An{t) - Bn{t), n = 1,2, • • • . 

Moreover, there are two basic relations between the coefficients An(i), Bn(t) them- 
selves: 

(8.7) An(t + l)Bn+1(t + 1) = An+1(t)Bn+l{t),    n = 0,1,2, • • ■ , 

and 

Ao(t + 1) - a(t + 1) = Ao{t) + Bi(t) - a(t), 

(8.8) An(t + 1) + Bn{t + 1) - a(t + 1) = An(t) + Bn+1(t) - a(t),    n = 1,2, • • • . 

The set of equations (8.7), (8.8) is called the discrete factorization chain [27]. 
Smarting from the given solution An (t), Bn (t) of the discrete factorization chain 

DFC (8.7), (8.8) we can reconstruct a family Pn(x\t) of OP depending on the ad- 
ditional discrete parameter t and related with one another by the Christoffel and 
Geronimus transforms (see, e.g. [28] where the most general "classical" OP (i.e. the 
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Askey-Wilson and the Askey-Ismail OP) are reconstructed from self-similar solutions 
oftheDFC). 

REMARK 2.   Note that the apparent asymmetry between the first (n = 0) and 
other relations in (8.8) can be removed if one formally puts 

(8.9) Bo(t) = 0. 

Note also that the DFC is equivalent to the so-called extended g-algorithm pro- 
posed by F.Bauer [6] in theory of numerical approximations (for details concerning 
this equivalence see, e.g. [28] and [34]). 

Following [24], [25], consider periodic closure conditions for the corresponding co- 
efficients (the idea of introducing of such conditions in the case of the Sturm-Liouville 
equation is due to Veselov and Shabat [31]) 

(8.10) An(t + N)= An(t), Bn(t + N) = Bn(t). 

The polynomials (6.4) provide an example of N = 3 quasiperiodic closure. Indeed, 
consider the following expressions 

a(n + 1 — a)    „ ^ n(n — a — 1)      _x ^ J-, Bn(0) = ^ J-, a(0) = 1; 
n — a n — a 

a(n-a)qn n{n - a + l)qn-2      m -, Bn{l) = , a(lj = 2, 

(8.11) An(0) = - 

(8.12) An(l) = - 

(8.13) An(2) = - 

(n + 1 - a)qn-1' (n - a)gn_i 

^l,Bn(2) = -^L,a(2) = 0 
Qn Qn-1 

and define other coefficients (for t > 2) by the periodicity An(t + 3) = Anfy, Bn(t -h 
3) = Bn(t). 

It is easily verified that such defined coefficients An(t), Bn(t) do satisfy the rela- 
tions (8.7), (8.8) with quasiperiodic conditions (8.10). In our case a = 3. Note that 
Bo(t) — 0 in accordance with (8.9). This solution corresponds to the Jacobi matrices 
if (0), if (1), H{2). The matrix ii'(O) corresponds to the ordinary Charlier polynomi- 
als Fn(x;0) with the recurrence coefficients un = an, bn = a -\- n. The matrix H{1) 
corresponds to the polynomials obtained from the ordinary Charlier polynomials by 
CT on the level a(0) = 1. These polynomials Pn{x] 1) have the recurrence coefficients 

,.. (n + 1 - a)(n - I - a) 
un{±) =an , 

(n — a)2, 

,   ^x ^      a(n + 2 — a)      a(n+1 — a) 
n + 1 — a n — a 

It is seen that the coefficient un(l) < 0 for n = [a] + 1, where [a] denotes the integer 
part of the number. Hence the polynomials Pn(x; 1) do not possess a positive weight 
function. This is expected because the polynomials Pn(x] 1) are obtained from Pn(x; 0) 
by the single CT at the point a(0) = 1 which is inside the spectral interval. 

Finally, the polynomials Pn(x; 2) coincide with the polynomials (6.4) because they 
are obtained from Pn(x] 0) by two CT at the points a(0) — 1, a(l) = 2. 

The quasiperiodic condition (8.10) means that 

(8.14) Pn(x; t + N)= Pn(x - TV; t). 
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As it was shown in [25], the closure condition (8.14) leads to the class of semi-classical 
polynomials on the uniform grid. Equivalently, the semi-classical polynomials on the 
uniform grids are characterized by quasi-periodic solutions of the factorization chain 
(8.7), (8.8). 

9. Conclusion. We showed how to construct infinitely many orthogonal poly- 
nomials with the properties: 

(i) the recurrence coefficients un and bn are rational functions of the argument n; 
(ii) the weight function is positive and known explicitly; 
(iii) these polynomials are expressed in terms of a finite linear combination of 

hypergeometric functions. 
These polynomials belong to a wide class of the so-called semi-classical polyno- 

mials of a discrete variable [19], [33]. Nevertheless, polynomials constructed in this 
paper can be considered as "intermediate" between the "true" classical and the "true" 
semi-classical OP. Indeed, it is known that for generic semi-classical polynomials the 
recurrence coefficients un,bn have rather complicated form and cannot be expressed 
in terms of elementary functions. In fact, these coefficients are related to the so- 
called "discrete Painleve transcendents" [20]. In our case, however, the recurrence 
coefficients have elementary expression and hence can be considered as degenerated 
(rational) solutions of the nonlinear discrete Painleve equations. 

Finally note an interesting problem arising in connection with generating function 
(7.3). There is the well known result by Meixner and Sheffer concerning all possible 
OP Sn(x) arising from the generating function 

oo 

(9.1) A(t)ea"'<'> = X)Sn(aOtn, 
n=0 

where A(t) and v(t) are some functions such that A(0) = vf(0) = 1, v(0) — 0. The 
polynomials Sn{x) are called the Sheffer polynomials. It appears (see, e.g. [2]) that 
the only Sheffer OP are Hermite, Laguerre, Charlier, Meixner and Meixner-Pollaczek 
polynomials. Al-Salam showed [2] that the condition of this problem can be weakened: 
consider the generating function 

oo 

(9.2) exp{F(x,t)} = J2sn(x)tn, 
n=0 

where F(xii) is a polynomial in x with coefficients depending in t. We then arrive at 
the same classical Sheffer polynomials. 

Now we can formulate the problem: 
Find all OP Pn(^) generated by the function 

oo 

(9.3) Fi(M) exp{F2{x,t)} = Y,pn(x)tn, 
n=0 

where both Fi(x,i) and F2(x,t) are polynomials in x with coefficients depending in 
t. As far as we know this problem was not yet studied. The expression (7.3) provides 
a non-trivial example of such generating function leading to non-classical OP. In this 
case F2(x,t) is a first-order polynomial whereas Fi(xyt) is a second-order polynomial 
in re. It would be interesting to characterize all such functions (and corresponding 
OP) satisfying (9.3). 
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