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LENS-SHAPED REGIONS FOR STRONG STIELTJES MOMENT PROBLEMS 

Olav Njastad 

Dedicated to Professor Richard Askey on the occasion of his 65th birthday. 

ABSTRACT. It is shown that the values of the Stieltjes transform of solutions 
of the strong (or two-sided) Stieltjes moment problem cover lens-shaped regions 
determined by two related strong Hamburger moment problems. Conditions for 
determinacy of the strong Stieltjes moment problem are given. 

1. Introduction 

The classical Stieltjes moment problem can be described as follows: let a sequence 
{cnj^Lo of real numbers be given. Find positive measures // on the non-negative real 
axis such that 

poo 

cn= /    tndix{t)   for   n = 0,1,2,.... (1.1) 

Similarly, the classical Hamburger moment problem consists of finding positive mea- 
sures ii on the whole real axis such that 

/oo 
tnd/i(t)    for   n = 0,l,2,.... (1.2) 

-OO 

These problems were treated first by Stieltjes [39] in 1894 and then by Hamburger 
[15] in 1920-1921. These initial works were followed by an extensive development of 
a theory of moment problems where the connection with the theory of orthogonal 
polynomials plays a central role. See [1-5, 8-10, 12-13, 22, 25-26, 33-35, 40-42]. 

The strong Stieltjes moment problem (SSMP) and strong Hamburger moment prob- 
lem (SHMP) are defined analogously for doubly infinite sequences: 

Let a double sequence {cnj^L-oo of real numbers be given. Find positive 
measures // on the non-negative real axis or on the whole real axis such 
that 

poo 

cn=        tndfi(t)    for   n = 0,±l,±2,... (1.3) 
Jo 

/oo 

tndfi(t)   for   n = 0,±l)±2,..., (1.4) 
-OO 

or 

Cn 

respectively. 
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These problems were introduced around 1980 by Jones et al. [21] for the Stieltjes 
case, and by Jones and Thron [19-20] for the Hamburger case. A theory of these 
problems and their connection with a theory of orthogonal Laurent polynomials has 
been developed. This theory is, to a large extent, parallel to the classical theory, but 
there also appear phenomena that do not seem to have obvious classical analogues. 
We also mention that just as the classical theory of the Stieltjes moment problem 
is closely connected with the theory of Pade approximation, so the theory of the 
strong Stieltjes moment problem is closely connected with the theory of two-point 
Pade approximation; see [16] for further references. This is a special case of the very 
general theory of multipoint Pade approximation, originally studied by Gonchar and 
Lopez; see [14, 23-24] for further references, and also [7]. 

As in the classical situation, a moment problem is called determinate if it has 
exactly one solution, indeterminate if it has more than one solution. The values at 
an arbitrary point z outside the real axis of the Stieltjes transform of all solutions of 
an indeterminate classical Hamburger moment problem exactly cover a proper disk. 
See [1, 3, 26, 37-38]. The values of the Stieltjes transform of all solutions of an 
indeterminate classical Stieltjes moment problem exactly cover a lens-shaped region. 
See [12, 41], where more general situations are considered. Here the Stieltjes transform 
F(zi fi) of a measure fi is defined by 

F(z,n) = J_ 
oot 
^ . (1.5) 

For the SHMP, an analog of the classical result has been proved (see [17, 29, 32]): 
the values at an arbitrary point outside the real axis of the Stieltjes transform of 
all solutions of an indeterminate SHMP exactly cover a proper disk. In this paper, 
we obtain a result on lens-shaped regions for indeterminate SSMPs analogous to the 
classical one and discuss criteria for determinacy of SSMPs. We make some use of 
properties of two interrelated disk systems associated with a SSMP, as discussed in 
[27,31]. 

2. Orthogonal Laurent polynomials 

An important tool in the study of strong moment problems is the theory of orthogonal 
Laurent polynomials. A Laurent polynomial is a finite linear combination of monomials 
zn, n = 0, ±1, ±2,...   . For any pair (p, q) of integers with p < q, we define 

Ap,g = Span{^,...,^}> (2-1) 

where the span is taken over the complex numbers. 
Thus the space A of all Laurent polynomials is the union of all the spaces Ap^. 
Let a doubly infinite sequence {cn}^^^ be given. For simplicity, we assume that 

the sequence is normalized such that CQ = 1, but this is not essential. We define a 
linear functional M on A by its value on the basis elements zn: 

M[zn] = Cn,        n = 0, ±1, ±2,.... (2.2) 

We shall, in the following, always assume that M is positive on (0, oo) (i.e., M[f] > 
0 for all / G A which satisfy /(£) > 0 for t > 0, f{t) =£ 0). The SSMP for the double 
sequence {cn} then is solvable.  Thus, there exists at least one measure /x on [0, oo) 
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such that 
/•OO 

M{f] = /    f(t) dfj,(t)   for all / e A. (2.3) 
./o 

An inner product on the space of real Laurent polynomials is defined by 

(P,Q) = M[P(x)Q(x)}. (2.4) 

By orthogonalization of the basis sequence 

{l,z-\z,z-2,z2,...} (2.5) 

with respect to this inner product, we obtain an orthonormal sequence {^n}^Lo 0^ 
Laurent polynomials. They satisfy (with J_ denoting orthogonality) 

<P2m £ A_m}m,      <p2m-l-A_m,m_l, 771 = 1,2,..., 

Wm+l € A_(m+1))m,      <£2m+l-LA_m)m, m = 0, 1, 2,. . . 

These functions may be written in the form 

+ V2m^m, V2m(z) = — + ' 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

The coefficients vn are called leading coefficients, and the coefficients wn are called 
the trailing coefficients. They satisfy 

Vn>b,        (-l)nun>0. (2.10) 

The associated orthogonal Laurent polynomials ipn are defined by 

^(z) = M[^:^],    n = 0,l)2,. (2.11) 

(the argument considered as a function of i). The sequences {^nhi^n} satisfy the 
following three-term recurrence relation: 

!Ph(z)m 
= (gn. + 'hhz^T) 

Ipn-l(z) 

<Pn-l(z) 
■'■+ fn 

^n-2{z) 
<Pn-2(z) 

(p-l =0, ^0 = 1, 

x, gmhn are givei 

/l = Ui,      /n = 

'^-1 = 71 z 

,    n=l,2,. (2.12) 

(2.13) 

The coefficients fn, gn, hn are given in terms of leading and trailing coefficients by 
UnVn-2 

gi = Ml,      0n = 

/ll = Vi,      /ln = 

Un-lVn-1 
Un 

n = 2,3,. 

Vn 

Un-l' 

n = 2,3,..., 

n = 2,3,.... 

(2.14) 

(2.15) 

(2.16) 

The quasi-orthogonal Laurent polynomials (pn(z,T) of order n are defined by 

<Pn(z,T) = tp.n(z) - TZ(-1)TVn_i(2). (2.17) 

Here reR = R U {oo}. (For r = 00, (pn(z,T) means — (pn-i(z). Similar conventions 
are used throughout.) These functions play a similar role in the theory of orthogonal 
Laurent polynomials as the quasi-orthogonal polynomials do in the classical theory of 
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orthogonal polynomials. The associated quasi-orthogonal Laurent polynomials ^Vifo r) 
of order n are defined by 

M^r) = fl>n(z) - TzWfltn-iiz). (2.18) 

The pseudo-orthogonal Laurent polynomials $n(2:,r) of order n are defined by 

$n(z, r) = <pn(z) - r^n-i^). (2.19) 

These expressions are formally like the quasi-orthogonal polynomials in the classical 
theory, but they do not behave in the same way. The associated pseudo-orthogonal 
Laurent polynomials ^n(z,T) of order n are defined by 

*n(^r) = ^n(z)-r^„-i(2;). (2.20) 

For more information on fundamental properties of orthogonal Laurent polynomials 
and strong moment problems, we refer to [11, 18-19, 27-30, 32, 36]. 

3.  Systems of circles 

For proofs and more detailed treatments of the topics discussed in this section, see 
[17, 27-32]. 

The quasi-approximants of the continued fraction determined by the recurrence 
formulas (2.12)-(2.13) are the quotients 

Rn(z,r) = ^-. (3.1) 

The zeros ^n)(r) of tpn(z,T) are real and simple, and at least n - 1 of them are 
positive. All the zeros are positive if and only if r E [^mjco] when n = 2m and 
T £ [—oo, /i2m+i] when n = 2m +1. In particular, the values r = 0 and r = oo belong 
to these r-intervals. (Note that r = -oo and r = oo represent the same point on 
R.) For the above values of r, quadrature formulas with nodes at fj^ (r) and positive 

weights define discrete measures /if1  with support in [0, oo) such that 

Rn(z,r) = -F{z,^). (3.2) 

For the remaining values of r, discrete (positive) measures //>    satisfying (3.2) are 
still determined by quadrature formulas, but with support not contained in [0,oo). 

For each z outside R, the Mobius transformation 

r —► w = wn = -jRn(*, r) (3.3) 

maps R onto a circle in the open upper half-plane U. We use the notation An(z) for 
the open disk bounded by this circle, dAn(z) for the circle itself and An(z) for the 
closed disk An(z) UdAn(z). We denote by Qn(z) the subarc of dAn(z) corresponding 
to those r-values which determine measures on [0,oo). 

The pseudo-approximants of the continued fraction determined by the formulas 
(2.12)-(2.13) are the quotients 

s^'w (3-4) 

The zeros Cfc^M of ^ni^.r) are real and simple, and at least n - 1 of them are 
positive. All the zeros are positive if and only if r 6 [-oo,#2m] when n = 2m and 
r e [#2m4-ib oo] when n = 2m + 1.   The values r = 0 and r = oo belong to these 



LENS-SHAPED REGIONS FOR STRONG STIELTJES MOMENT PROBLEMS        199 

r-intervals. For the above values of r, quadrature formulas with nodes at Q (r) and 

positive weights determine discrete measures (7T    with support in [0, oo) such that 

Sn(z,T) = -F(z,<7^). (3.5) 

For the remaining values of r, quadrature formulas determine general discrete mea- 
sures with support not contained in [0, oo) such that (3.5) holds. These measures are 
not positive measures. 

For each z outside E, the Mobius transformation 

r —> u) = ojn = -Sn(z, T) (3.6) 

maps M onto a circle in U. We denote by Dn(z) the open disk bounded by this circle, 
by dDn{z) the circle itself, and by A^z) the closed disk Dn(z)UdDn{z). We denote by 
Tn(z) the subarc of dDn(z) corresponding to those r-values which determine positive 

measures erf    on [0, oo). 
The following equalities hold: 

nn{z) = dAn(z)nDn-1{z), (3.7) 

rn(z) = dDn(z)nAn-i{z). (3.8) 

We note that ^ = a^n) = /i^+1) = cr^+1) and denote this measure by pW. The arcs 
Sln(z) an<i rn(z) have a common end point at F(z, /x^71"1^ and intersect at F(z, ^(n)). 

The sequences {An(^)} and {Dn(z)} are nested, i.e., 

An+i(2)cAn(z),    Dn+iiz) C Dn{z). (3.9) 

We define the limiting disks A00(^) and i^oo(^) by 
oo oo 

AZ(z) = fl Mz),    DZ(z) = fl D^(z). (3.10) 
71=1 71=1 

The limiting disk A00(z) consists of a single point for every z (the limit point case) 
or a proper closed disk for every z (the limit circle case). Also, each i^oo(^) is either a 
single point or a proper closed disk. It can be shown that a similar invariance property 
holds for D00(z) as for A00(z); we prove this in Section 5. 

The arcs fin(2) tend to a limiting subarc £loo{z) of ^00(2), and the arcs rn(z) tend 
to a limiting subarc Too(z) of dD^z). (dAoolz) and dD^z) denote the boundary 
of Aoo(s) and D^z), respectively.) The arcs Q.oo(z) and T^z) may (simultanously) 
reduce to a single point. For these arcs, we have 

Uoot*) = ^00(20 nB^(*), (3.ii) 

Y00{z) = dD00(z)nA^{z). (3.12) 

The sequences F{z^^2rr^) and .F(z,//(2m+1)) tend to the common end points of 
ft00(2) and Foo^). 

For each point w £ 9A00(^), there is a sequence of measures 04- } tending to a 
solution fj, of the SHMP such that F(z, n) = w. When w G ^00(2), this /x is a solution 
of the SSMP. The set of solutions of the SHMP is convex; therefore, there is for each 
w € A00(z) at least one solution /x of the problem with F(z, /JL) = w. It can be shown 
that F(z,ii) e A00(^) for every solution //; see [32]. Thus, the values of the Stieltjes 
transform at z of all solutions of the SHMP exactly cover A00(^). 
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For each point UJ e TQQ (Z), there is a sequence of measures {erf1 } tending to a 
solution a of the SSMP such that F(z,a) = u>. In particular, the sequences {^2m^} 
and {^(2m+1)} converge to solutions /Z0) and /x^00), with F(Z,/JL^) and F{z,ii{oo)) as 
the common end points of fiooOz) and ^(z). 

Let Loo^z) denote the lens-shaped region bounded by the arcs ^00(2) and Too, i.e., 

LZ(z) = a^(s) H DZ{z). (3.13) 

The set of solutions of the SSMP is convex; therefore, it follows from the foregoing 
that for every point w in Loo (2)* there is a solution /i of the SSMP such that F(z, fi) = 
w. Thus, the region L^z) is covered by values of the Stieltjes transform at z of 
solutions of the SSMP. We shall prove in Section 5 that all such values exactly cover 

Remark 1. The argument above shows that the values of the Stieltjes transform 
cover the convex hull of L^z). It follows from Theorem 6.1 that all the values of the 
transform are contained in L00(z)] hence, the region Loo(^) is convex. 

4.  Shifted moment problems 

As before, we assume that the sequence {cn}^.^ determines a solvable SSMP. We 
now define 

7n = cn+i,        n = 0,±l,±2,.... (4.1) 

We see that if fjb is a solution of the SSMP for {en}, then the measure given by 

du(t) = tdfi(t) (4.2) 

is a solution of the SSMP for {7n}, and vice versa. Thus, the formula (4.2) describes 
a one-to-one correspondence between solutions of the SSMP for {cn} and for {7n}- 

The linear functional L on A defined by {7™} determines an inner product with an 
orthogonal sequence associated with the basis (2.5). (Each element then is determined 
up to a constant.) We shall express these orthogonal Laurent polynomials in terms 
of the Laurent polynomials {<Pn}« All measures which solve a given moment problem 
give rise to the same inner product, that determined by the functional. For notational 
convenience, we shall use measures in the orthogonality arguments. Thus, in the 
following, let /i be a solution of the SSMP associated with {cn}, and let u be given by 
(4.2). 

We define 

^2m-l(z) = -[<P2m(z) - ff2m¥>2m-l(*)], m = 1, 2,. . . , (4.3) 
z 

^2m{z) = lp2m(z) +  <P2m-l{z), m = 1, 2, . . . . (4.4) 
92m 

(We set TTQ = <£o- The system {7rn}, in general, will not be normalized.) 

Theorem 4.1. The sequence {7rn} is an orthogonal sequence associated with the basis 
(2.5) with respect to L, i.e., 

7r2m-l € A_m)m_i,      7r2m-lJLA_(m_i)|m_i, (4.5) 

fl"2m € A_m)m, 7r2m-LA_m>m_i (4.6) 

where the orthogonality ± is with respect to the functional L. 
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Proof. It follows from the form of ipn(z) given in (2.8)-(2.9), together with (2.15), 
that 7r2m_i G A_mjm_i and ^m € A_m)m. 

Let p £ {—(m — 1),..., m — 1}. We have 
/»oo poo 

/      X^m-lWdvix) =   /      XP[(p2m(x) - g2mV2m-l(x)] dfJ,(x) . (4.7) 
7o ./o 

It follows from (2.6)-(2.7) that both ip2m and (p2m-i are orthogonal to xp with 
respect to //. Consequently, 7r2m_i is orthogonal to A_(m_i))m_i with respect to v. 

Next, let p € {—m,..., m — 1}. We have 
poo poo -^ 
/    xp7r2m(x)diy(x) = /    x?*1 \(p2m(x) + (p2m-i(x) dfi(x). (4.8) 

JO JO L ^2m J 

It follows from (2.6)-(2.7) that both (p2m and ^2m-i are orthogonal to xp+1 with 
respect to // for p = —m,...,m — 2; hence, 7r2m is orthogonal to A_m)m_2 with 
respect to z/. We need to show that 7r2m also is orthogonal to x171'1. 

We have 
poo 

/    xm~17r2m(x)du(x) 
JO 

poo -1 pco 

=        xm<p2m(x)dn(x) +  /    xm<p2m-i(xW(x).    (4.9) 
Jo 92m Jo 

We may write 

Xm = AmWmix) + Bm(p2m-l(x) + f(x) (4.10) 

with / € A_(m_i)}m_1. By comparing coefficients of x171 and x~m in (4.10), we find 
that 

Am = — ,Bm = ^2—. (4.11) 
V2m V2m-l'V2m 

Consequently, by orthogonality 
poo -l poo -l 

/      XmW2m(x)dll(x) = —  /      (ip2m(x))2dfjL(x) =   (4.12) 
Jo v2m Jo V2m 

and 
poo poo 

/    x^m-iWd^x) =-^        (ip2m_1(x)fdii(x) = -^. (4.13) 
Jo v2m Jo v2m 

By substituting from (4.12)-(4.13) into (4.9), we find that 7r2m is orthogonal to a;772-1 

with respect to v. D 

We denote by pn the Laurent polynomials associated with the orthogonal Laurent 
polynomials 7rn with respect to the functional L, or to the measure v, i.e., 

Pn(z)= /   —7—:—dz/W = /   —7—:—td^'        (414) Jo t-z Jo t-z 

The auxiliary functions ujn are introduced as 

U2m-l(z) = -[ifami?) - 92m^2m-l{z)), (4.15) 
Z 

U2m(z) = ^2m{z) + fam-l (z). (4.16) 
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(These are easily seen to be the Laurent polynomials associated to 7rn with respect to 
//.) We shall show how to express the functions pn in terms of 7rn and a;n. 

Theorem 4.2.  The associated orthogonal Laurent 'polynomials pn(z) can be written 
as 

Pn{z) = -T:n{z)^ZUn{z), 71=1,2,.... (4.17) 

Proof. We may write 

hence, 

fo^-^ = ^(t) - ^z) + *to»®-V»tol (4.18) 

r ^(t)-Mz)}tMt) = _Vn(2) +   w (419) 

Jo *_ ^ 

since Co = 1 and /Q
00
 ipn(t)dfji(t) = 0. We also may write 

*(«-«)    - "i^^ + —r^—' (4-20) 

hence, 
roo .-i^ /.\ _   -i 
r tr^W-^M*)^ =   1 n{z) + Mz). (4.2i) 

Jo t - z z 

It follows that 
rOC t~1(P2m{t) - Z-1ip2m{z) 

P2m-l(z) =   / J td/JL(t) 
Jo t-z 

-92m /       ; Ltd/JL(t) 
Jo o t-z 

= V2m(z) + ^2m(z) - 02m [ - -^2m-l(z) + ^2m-l(z)) 
Z Z 

= -^2m-l(z) + ZUJ2m-l(z) . (4.22) 

Similarly, 

P2m{z) =   /        T tdfl{t) 
Jo t-z 

+ _l_r <P»n-l{t)-<p^l(z) 
92m Jo t — Z 

= -Wmiz) + Z1p2m(z) +  h^2m-l(^) + Z^2m-l(z)] 
92m 

= -^2m{z) + ZU>2m-l(z)> (4.23) 

This completes the proof. D 

5. Shifted system of circles 

We shall now discuss the disk systems Qn(z) and Tn(z) determined by the quasi- 
approximants and pseudo-approximants associated with the sequence {7n}. We ob- 
serve that the circles and disks will be the same if in the definitions (3.1), (3.3), (3.4), 
and (3.6), the orthonormal functions are replaced by any orthogonal functions and 
their associated functions, given in analogy with (2.11). Thus, we may (by a slight shift 
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of notation) write the quasi-approximants rn(z,r) and pseudo-approximants sn(z, r) 
associated with {7n} as 

rn(z,r)=^;\-TZ{:^-fv (5.1) 

Sn{z, T) = —T-T — T-T . [&•*) 
KnKZ) — r7rn_i^; 

We denote by Q^(z) the closed disks determined by the quasi-approximants rn(z, r) 
and by T^(z) the closed disks determined by the pseudo-approximants sn(z,T). The 
limiting disks are written as 600(2) and T^z), i.e., 

00 00 

e^(*) = f) e;(z),  ?£& = f) %(z). (5.3) 
n=l n=l 

We define for each z outside M the mapping Hz: C —> C by 

^ _> ^* = Hz(w) = z'1^ + w). (5.4) 

Theorem 5.1. For each z € C — R, the mapping Hz maps the disks determined by 
the even quasi-approximants with respect to v onto the disks determined by the even 
pseudo-approximants with respect to fj,, i.e.. 

Hz(@2m{z)) = D2m{z))    /orm = l,2,.... (5.5) 

Proof. Straightforward calculation, making use of (4.15)-(4.17), shows that 

,        v -   ,   z[U2m{z) - TZU2m-l(z)] 
r2m{z, r) = -1 + ——777—— T^T" 

^2m{z) - TZ7r2m-l{Z) 

(1 - r)tp2m{z) + {92m + Tg2m)^2m-l(z) 

(1 - r)ip2m{z) +" (^ + r5f2m)^2m-l(2) 
= "I + Z-  ,   v   .   ,   .1 

= -l + ,52m(,,^±^). (5.6) 

The mapping r —► (^ + Tg2m)/(T - !) maPs ^ one-to-one onto R. Thus the 
boundary circle #©2™ (3)5 obtained as the values of r2m(^,r) for r € R, equals the 
circle dD2m(z), since dD2m(z) is obtained as the values of 62™(^M) for t G R. Con- 
sequently, dD2m{z) equals ^~1(l + ^@2m(^)) = Hz(d®2m(z)). The mapping JET^ then 
obviously maps the interior of 902m{z) onto the interior of dD2m{z). This completes 
the proof. Q 

Corollary 5.2. For each z G C — R, we have 

Hz(0^(z)) = D^(z). (5.7) 

Proof. This follows immediately from Theorem 5.1 and the definitions of 600(2) and 
Doofy when we take into account that the sequences @n(z) and Dn(z) are nested.    □ 

Theorem 5.3. For each z G C — R, the mapping Hz maps the disks determined by 
the odd pseudo-approximants with respect to u onto the disks determined by the odd 
quasi-approximants with respect to /i, i.e.. 

Hz{T2m+i(z)) = Aam+iW,    form = 0,1,2,.... (5.8) 
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Proof. We see from (2.12) that 

^2771+2(2) — g2m+2<P2m+l{z) = ^2m+2^2m+l(^) + /2m+2^2m(^) (5.9) 

and 

<P2m{z) + f-^±1V2m-x{z) = -^—Wm+M - ^tL^^z). (5.10) 
92m+l 92m+l Zg2m+l 

Substituting into the defining expressions for 7r2m+i and ^m and taking into account 
the relationships (2.14)-(2.16), we find 

^2m+l(z) - T7r2m(z) 

-1/, xf /  x       ('rh2m+l — 92m+2)     1 /  xl       /C11\ 
= 92m+l(h2m+2g2m+l " r) \<P2m+l(z) - 77 — "7 ' -</>2mU)   •     (5.11) 

L (^2m+2^2m+l — T)     Z J 

Similarly 

= ^m+l(ft2m+202m+l - r) [^2ni+l(^) - ,?"   2m+1 ^±L. . -^2m WJ •     (5.12) 
L ^2771+2^2771+1 -T)     Z J 

By using (4.15)-(4.17), we see that 

S2m+l{Z,T) = -1 + — pr p-r— 

= -1 + *iWi (*, f2m+1"g2ro+2) • (5.13) 
V       ^2771+2^2771+1  — T/ 

Arguing as in the proof of Theorem 5.1, we conclude that 0A2m+i(^) equals 
the image by Hz of the boundary circle dT2m+i(z), and hence that A2m+i(^) = 

#z(5W(2)). □ 

Corollary 5.4. For each z € C — R, ^e /love 

ft(5^W)=S^W. (5.14) 

Proof. This follows from Theorem 5.3 in the same way as Corollary 5.2 follows from 
Theorem 5.1. □ 

We formally establish an invariance property of the limiting disks D00(z) analogous 
to that of the limiting disks A00(z). 

Theorem 5.5. The limiting disk D^z) is either a single point for every z outside 
R or a proper disk for every z outside R. 

Proof This follows immediately from Corollary 5.2 and the fact that the disks 600(2) 
have this invariance property. □ 

The measure a given by 

da(t) = t2diJ,(t) (5.15) 

is a solution of a SSMP when // is, and vice versa. We introduce the mapping Gz of 
C->C as 

Gz(w) = Hz{Hz(w)) = l+l+2Lm (5.i6) 
z* 

The following result is an immediate consequence of Corollaries 5.2 and 5.4. 
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Theorem 5.6. The mapping Gz maps the limiting disks determined by the quasi-ap- 
proximants with respect to a onto the limiting disks determined by the quasi-approxi- 
mants with respect to /i, and the limiting disks determined by the pseudo-approximants 
with respect to a onto the limiting disks determined by the pseudo-approximants with 
respect to fi. 

6. Solutions of the SSMP 

We recall that F(z,n) denotes the Stieltjes transform of /i at z (see (1.5)). We also 
recall that the lens-shaped region Loo(^) is defined as the intersection A00(z) fl D^z) 
(see (3.13)). 

Theorem 6.1. The values of the Stieltjes transform at z of all the solutions of the 
SSMP exactly cover L^z), i.e., 

Loo(z) = { w e C : w = F(z, /x) for some solution fi of the SSMP}. (6.1) 

Proof We have already seen (in Section 3) that for every point w in L(z), there is a 
solution /x of the SSMP associated with the sequence {en} such that w = F(z, /i). 

Let fi be an arbitrary solution of the SSMP associated with the sequence {cn}. Then 
the measure v defined by (4.2) is a solution of the SSMP associated with the sequence 
{7n}, and a fortiori v is a solution of the corresponding SHMP. Thus, F{z, v) G 600(2)- 
Direct calculation shows that 

F(2,z/) = -l + 2F(z,/z) (6.2) 

and, hence, 

F(z,/x) = ^(F(^,i/)). (6.3) 

It follows from Corollary 5.2 that F(z,\i) G Dooiz). Since /x is a solution of the 
SHMP for the sequence {cn}, we also have JF(2, /X) 6 A00(^). Thus, F(z, fi) G A00(z)r\ 
Doo{z) = £00(2)> which completes the proof. □ 

Obviously, the SSMP is determinate if, and only if, LQO (Z) reduces to a single point 
for z outside R. We now give the following characterization. 

Theorem 6.2.  The SSMP is determinate if and only if at least one of the limiting 
disks A00(z)f 1)00(2) reduces to a single point. 

Proof Obviously, the condition of the theorem is sufficient.   Now, assume that the 
SSMP is determinate and that Aoo(z) is a proper disk. We need to show that D^z) 
reduces to a point. A proof of this is given in [31]. For completeness, we briefly sketch 
this central argument. 

We set 

[ZZ   ^C   !)   ipnKZ)ipn-x\Z) - Wn-\\Z)ipn{z) 

and 

Wn(z)Vn-\{z) - (Pn-l(z)<Pn(z) 
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It follows by elementary properties of Mobius transformations that the radius of 
^n(^) equals |^n(^)|j and the radius of Dn(z) equals |en(z)|. We find that 

1      [i-(^-i)(-ir^ziM| 
1     _ J: <Pn-i(z) -1 

en(z)       en(z) "" r ll>n(z) _ Ipn-l(z) l 
L <pn(z)       (Pn-l(z) J 

We have assumed that A00(z) is a proper disk. Then the radius of An(z) tend 
to a positive value, and hence l/en(z) is bounded. We also have assumed that 
LZ(z) reduces to a single point. Since ip2m{z)/'ip2m{z) = #2^1(2,0) = S2m{z,Q) 
and ^2m+i(^)/^2m+i(^) = #2771+1(2,0) = £2771+1(2,0), in general, converge to the 
two common end points of the arcs ^00(2) and Foo (z), it follows that in our situation 
the sequence {'^n(z)/(Pn(z)} converges. (This convergence is a well-known property 
of the even and odd approximants ifrniz)/(Pn(z) associated with a determinate SSMP; 
see [6, 21, 27-28].) Consequently, the right-hand side of (6.6) is unbounded (for every 
z outside R). It follows that l/en(z) is unbounded, which means that the monotonic 
sequence |en(2:)| tends to zero. Hence, ^00(2) reduces to a single point. 

This completes the proof. □ 

Theorem 6.3. The SSMP associated with {cn} is determinate if, and only if, at least 
one of the two SHMPs associated with {cn} and {7n} is determinate. 

Proof The statement is equivalent to the statement that at least one of the disks 
^00(2) and 600 (z) reduces to a point, for some z or equivalently for every z outside 
R. By Corollary 5.2, @oc(z) reduces to a point if, and only if, D00(z) reduces to a 
point. The result now follows from Theorem 6.2. □ 
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