
Methods and Applications of Analysis © 1999 International Press 
6 (2) 1999, pp. 165-174 ISSN 1073-2772 

ON THE UNIQUENESS OF ASYMPTOTIC SOLUTIONS OF 
LINEAR DIFFERENTIAL EQUATIONS 

F. W. J. Olver 

Dedicated to Richard Askey on the occasion of his 65th birthday and 
in celebration of his many contributions to classical analysis 

ABSTRACT. We consider the characterization of solutions of a linear differential 
equation of arbitrary order in the neighborhood of an irregular singularity of rank 
unity, on the assumption that the characteristic values are distinct. We show 
that some solutions can be defined uniquely simply by their asymptotic behavior 
along a single ray, whereas for other solutions the asymptotic behavior must be 
maintained along two rays to ensure uniqueness. The results are needed in the 
construction of algorithms for the computation of solutions. 

1. Introduction 

We consider solutions of the differential equation 

dnw      ,      , .cP"1™      „      , sd
n-2w „ , x ,     x 

in the neighborhood of the point at infinity, on the assumptions that n > 2 and the 
coefficients fe(z), £ = 0,1,.. .,n — 1, are analytic at infinity, that is, they can be 
expanded in power series of the form 

fsi 
/<(*) = £ IT M 

s=0 

that converge for all sufficiently large values of \z\. Thus, the singularity of equation 
(1.1) at infinity is no worse than an irregular singularity of rank 1. 

Formal solutions of (1.1) are given by 
oo 

e^V'X)2?'       j = l,2,...,n, (1.3) 
~ z 

3=0 

with aoj = 1. The characteristic values Aj, indices /Zj, and remaining coefficients aSj 
are obtained by substituting into (1.1) by means of (1.2), (1.3), and the differentiated 
forms of (1.3), and equating coefficients. We shall restrict our attention to the case in 
which the Xj are distinct; however, the main conclusions in this paper will carry over 
to more general situations. 
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In order to describe the sectors in which the formal solutions furnish asymptotic 
expansions of actual solutions for large z, we denote 

eijb = ph(Afc-Ai),        fc^j, (1.4) 

resolving the ambiguity in the choice of these phase angles by requiring Ojk to lie in 
a prescribed, but arbitrary, half-closed interval 1 of length 2TT. Next, we define Sj{X) 
to be the open sector 

Sjil) = [z : —Tr-a,- <ph* < ■£*-&} ' (L5) 

in which 

otj = minfyfc*        f3j = maxOjk . (1.6) 

Theorem 1.1. For each j = 1,2,...,n, fftere ea^te a unique solution Wj(T\z) of 
(1.1) w;2Y/i the property 

oo 

s=o z 

as z —> oo, uniformly in any closed sector properly interior to Sj(X). This asymptotic 
expansion can be differentiated n — 1 times in the same circumstances, and the n 
solutions Wj{l\z) are linearly independent. Furthermore, the sectors of validity Sj(X) 
are maximal, in general. 

This theorem is proved in [5], and this reference includes strict bounds for the 
remainder terms in the expansion (1.7) and its differentiated forms. 

The conditions of Theorem 1.1 (and also Theorems 2.1 and 2.2 below) require the 
property (1.7) to hold uniformly on sectorial domains in order to ensure the uniqueness 
of the solution Wj(X\z). The purpose of the present paper is to simplify this condition. 
We seek unbounded point sets T in C, for example, rays, such that if w(z) is a solution 
of (1.1) with either the property 

w(z) ~ eXjZz^,        z -» oo   on T , (1.8a) 

or the stronger property 

oo 

w(z) ~ e^'z"' Y) ^f,        2-00   onT, (1.8b) 
s=o *" 

then 

w(z) = wj(X\z). (1.9) 

Another way of characterizing solutions uniquely is by their hyperasymptotic be- 
havior along a single ray [2]. The advantage of the present approach is that it provides 
a basis for the boundary-value methods needed in the numerical computation of the 
solutions anywhere in C, not merely in the neighborhood of the singular point; see [3]. 
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2. Preliminary results 

The common region of validity of the expansion (1.7) for j = 1,2,..., n is given by 

S{i) = Si (I) n 52(1) n • • • n 5n(i), (2.1) 

that is, 

3 , 3 
5(1) = {* : --TT - a < phz < -TT - /?}, (2.2) 

where 

a = minfl:7fc,        (3 = max8jk, (2.3) 

the minimum and maximum now being taken over all possible values of j and k. 

Theorem 2.1. There exist linearly independent and unique solutions Wj(X\z), j = 
1,2,..., n, such that (1.7) applies as z —► oo, uniformly in any closed sector properly 
interior to 5(2"). 

This theorem follows immediately from Theorem 1.1, except for the uniqueness 
property associated with the smaller sector 5(2"). The proof of this property was 
supplied in [5, §10]. 

The following results were stated in [3, §2] and also appear in earlier literature. 
(See [1] for Theorem 2.2 and [6, Chapter 4] for Theorem 2.3.) Since they are important 
in subsequent analysis, we include brief proofs here for completeness. As usual, by an 
"anti-Stokes line", we mean a ray on which 9pq+ ph z is an odd multiple of ^TT for at 
least one unequal pair of values of p and q. 

Theorem 2.2. Let Z he an arbitrary closed sector of angle TT whose boundaries do 
not coincide with anti-Stokes lines. Then there is a set of linearly independent and 
unique solutions Wj(z), j = 1,2,... ,n, such that 

oo 

ti^CO'-e^V'jr^ (2.4) 
s=0 

uniformly as z —> oo in Z. 

Theorem 2.3. Let Z be an arbitrary ray or an arbitrary closed sector of angle less 
than TT. Then there is a set of linearly independent (but not necessarily unique) solu- 
tions Wj(z), j = 1,2,..., n, such that (2.4) applies uniformly as z —> oo in Z. 

Proof of Theorem 2.2. Let Z be bounded by the rays ph z = (j) — TT and ph z = (j). In 
Theorem 2.1, take X = (—^TT — </>, §7r —0]. Then it is easily verified that — |7r — a + S < 
(j) — TT and |7r — /3 — 5 > </> where a and /? are defined by (2.3) and S is the smaller of 

afak + ^n+ <!>),        minfjTr-.A-^), 

the minima being taken over all possible values of j and k. Because 9jk € 
(—^TT — 0, |7r — (j)] and 9jk + 0 cannot be an odd multiple of ^TT, S is necessarily 
positive. Accordingly Z C 5(J), and the existence of the Wj(z) follows from Theorem 
2.1. The uniqueness property is proved again as in [5, §10]. □ 
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The condition that the boundaries of Z are not anti-Stokes lines cannot be omitted 
from Theorem 2.2. An example is provided by Bessel's equation 

Here n = 2, Ai = z, A2 = —i, /ii = /i2 = — ^J and the anti-Stokes lines are the positive 
and negative parts of the real axis. Using the well-known properties of the solutions 
Hi, \z) and Hi, \z) of this equation [4, Chapter 7], we can prove, for example, that 
no solution exists that is asymptotic to e^z""1/2 uniformly in the sector —TT < ph 
z < 0, except when the parameter v is half an odd integer.1 

Proof of Theorem 2.3. Theorem 2.3 is an immediate consequence of Theorem 2.2, 
inasmuch as any closed sector of angle less than TT is always properly interior to a 
sector of angle TT whose boundaries are not anti-Stokes lines. □ 

Theorem 2.3 also can be deduced directly from Theorem 2.1, as follows. Let the 
boundaries of Z be the rays ph z = ^i and ph z = (fo, with 0 < ^2 — </>i < TT. 

(By permitting 02 — </>i = 0, we include the case in which Z is a ray.) In Theorem 
2.1, take X — (-TT — \<f)i — \(j)2^ — |0i — \<i>i\- Then it is easily verified that Z is 
properly interior to <S(J), and the result follows. (The uniqueness property now has 
been sacrificed.) 

The final topic in this section is the relative behavior, as z —> 00, of any two distinct 
members Wj(z) and Wk{z) of the set of solutions furnished by Theorem 2.3 in the case 
when Z is a single ray £, given by 

£ = {z : z = teie, 0<t<oo}. (2.5) 

We have three cases to consider: 

(i) Re{(Afc - A^)*} ^ 0 on £, 
(ii) Re{(Afc — Xj)z} = 0 on £, and Re fik ^ Re /Xj, 

(iii) Re{(Afc — \j)z} = 0 on £, and Re fik = Re //j. 

In Case (i), if, for example, Re{(Afc — Xj)z} is negative on £, then Wk(z)/wj(z) —> 0 as 
z —► 00, and we say that Wj(2) dominates Wk(z) exponentially as z —> 00 on £. Simi- 
larly in Case (ii), if, for example, Re(//fc — fij) is negative, then again Wk(z)/wj(z) —> 0 
as z —► 00, but this time we say that ^j(^) dominates Wk(z) algebraically as z —> 00 
on £. Lastly, in Case (iii), ^(^/^-(z)! —► a nonzero constant as z —► 00, and we 
say that ^j(^) and Wk(z) are equidominant on £. 

Uniqueness problems are not difficult to resolve when only exponential dominance 
is involved. To handle other cases, we shall make frequent use of the following result: 

Lemma. On a given ray £; no nontrivial linear combination of a set of equidominant 
solutions can be dominated by a member of the set. 

1This is a consequence of the Stokes phenomenon. When the Stokes ray ph z = — ^TT is crossed, a 
multiple of the solution that is exponentially small on that ray is switched on. This multiple vanishes 
iff 2u is an odd integer. 
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Proof. Let the solutions be enumerated in such a way that the equidominant set is 
wp(z),Wp+^z),...,wq(z),p and q being integers such that 1 <p < q < n, and let 

w(z) = ApWp(z) + Ap+1wp+i(z) H h Aqwq(z), (2.6) 

where the J4'S are constants. Let us assume that 

w(z) = o{wk(z)},       z —> oo on £, (2.7) 

where p < k < q. Then we have to prove that Ap = Ap+i = • • • = Aq = 0. 
By hypothesis, 

Xje10 = a + ibj,       Hj = c + idj,       j = p,p + 1,..., g, 

where o, fy, c, and dj are real constants, a and c being independent of j, and the bj 
being unequal. Hence, on £, 

On replacing the w's in (2.6) and (2.7) by means of their limiting forms, and then 
substituting by means of (2.8), we find that 

q 

Y^Aje^H^ =o(l) (2.9) 

as t —* oo, where 

Aj^e-^Aj,        i=p,p+!,...,«. (2.10) 

Now let a be an arbitrary constant such that 

max\bj — bk\ 

the maximum being taken over j, k G [p,#].   In (2.9), set t = (r 4- 5)0" with 5 = 
0,1,..., q — p in turn, and then let r —► 00. Since 

tidJ = {(r + a)(7}<di = (ar)^ {1 + O^"1)} 

uniformly for s = 0,1,..., q — p, we have 

9 

]n Ay^+^aT)**- = 0(1), 
J=p 

^ije^
<Tr+i(9-p^^(ar)^ = o(l). 

J=P 

This is a system of q — p +1 inhomogeneous equations for the q — p +1 unknowns Ap, 
Ap+i,..., Aq. The determinant JD, say, of this system is given by 

jr) _ ei(bp+~>+bq)<rT/aT\i(dp+-+dq)       TT      (e^fc^ _ g^M) # 
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Clearly |D| is independent of r, and in consequence of (2.11) and the fact that bj ^ bk 
when j ^ k, \D\ does not vanish. Applying Cramer's rule and letting r —► oo, we 
deduce that Ap = Ap+i = • • • = Aq = 0, and, hence from (2.10), Ap = Ap+i = • • • = 
Aq = 0. □ 

3. Explicit solutions 

In [3], new classifications of the asymptotic solutions given by Theorem 1.1 were 
introduced as follows. If (3j — ctj € [0, TT), then the corresponding solution Wj(X\z) 
is said to be explicit Alternatively, when flj — ctj G [TT, 27r), Wj(X\z\) is said to be 
implicit. In the explicit case, Sj(l) contains the nonempty open sector 

(X) = {^:--7r~a,< ph z < -TT - &} . (3.1) 

This is called the recessive sector for Wj(T\z), because if z —► oo along any chosen 
ray £ in Tljil), then ^(TIJZ) is dominated, indeed dominated exponentially, by any 
solution with asymptotic form eXkZzfJ'k (k ^ j) on £. 

When n = 2, we have /3j = a/; hence, both asymptotic solutions are explicit, and it 
is easily seen (and already well known) that w(z) is specified uniquely by (1.8a) with 
T = £, provided again that £ C TljiT)- We begin this section by proving that this 
result holds for explicit solutions for all values of n. 

To simplify notation, we may suppose that j = 1, so that (1.8a) becomes 

w(z) - eXlZzIAl,        z -H. oo on £ , (3.2) 

with £ C TZi(X). Also, we let wi(z),W2(z),... ,Wn(z) denote solutions furnished by 
Theorem 2.3 with Z = £. Then constants Ai, A2,..., An exist such that 

w(z) = Axwiiz) + A2W2(z) + -" + Anwn(z) . (3.3) 

Suppose first that none of the solutions are equidominant on £. Then they may be 
ranked in order of dominance, and by relabelling W2(2), ^3(2),..., Wn^z), if necessary, 
we may suppose that the ascending order of rank is given by wi(z), W2(2),..., wn(z). 
On dividing (3.3) by wn(z), letting z —> 00 on £ and using (3.2), we see immediately 
that An = 0. Similarly, An-i = An-2 = * • * = A2 = 0, and Ai = 1. Since wi(l\z) 
satisfies (3.2), it follows that any solution that satisfies (3.2) must be the same as 
wi(Zl*)- 

In the general case, we group the sets of equidominant solutions in blocks when we 
arrange the solutions wi(z),W2(z),...,wn(z) in ascending order of dominance on £. 
If we follow the previous method of proof, and Wp(z)iWp+i(z),... ,wq(z) is the first 
block of equidominant solutions that we encounter, then we have 1 < p < q < n and 

ApWp(z) + Ap+iWp+i(z) H h Aqwq(z) = o{wp(z)} 

as z —► 00 on £. Accordingly, from the Lemma of §2, Ap = Ap+i = • • • = Aq = 0. 
Similarly for the other blocks, and the remainder of the proof is completed as before. 
Therefore, we have proved the following result: 

Theorem 3.1. Let £ be any ray within the recessive sector TZj(I) of an explicit so- 
lution Wj(X\z) o/(l.l). Then condition (1.8a), with T = £, implies (1.9). 

If we substitute (1.8b) for (1.8a), then we may permit £ to coincide with a boundary 
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Theorem 3.2. Let £ be any ray in the closure of the recessive sector TZj(X). Then 
condition (1.8b), with T = £, implies (1.9). 

Proof. The difference in the proof of this result from that of Theorem 3.1 stems from 
the possibility that if £ coincides with a boundary of 7^i(I), then there are members of 
the set W2(z)^ws(z)J ...,wn(z) that are equidominant with, or dominated algebraically 
by, ^i(^) as z —> oo on £. Let the latter set be W2{z))ws(z),...,Wp(z), where 1 < p < 
n, and assume that in nondescending order of dominance the complete set of solutions 
is given by 

W2(z),W3(z),...,Wp(z),W1(z)}Wp+i(z),Wp+2(z),...,Wn(z) . 

On following the proof of Theorem 3.1, we first conclude that equation (3.3) reduces 
to 

w(z) = A2W2(z) H + Apwp(z) + -Ai^i^) + Ap+iwp+i(z) H 1- Aqwq(z),   (3.4) 

where p < q < n, and the solutions ^1(2), Wp+i(>z), • • • > Wq(z) are equidominant on £. 
Hence, on using the assumption (1.8b) with j = 1, we have 

(Ai - l)wi(;s) + Ap+iWp+i(z) H h Aqwq(z) = o{wi(z)} 

as z —> 00 on £. Application of the Lemma of §2 then shows that Ai — 1 = Ap+i = 
• • • = Aq = 0, so that (3.4) reduces to 

A2W2(z) + --- + Apwp(z)=w(zy-wi(z). (3.5) 

Again, from (2.4) and (1.8b) with j = 1 in both cases, it follows that the right-hand 
side of (3.5) is 0(eXlZzfll~m) where m is an arbitrary integer. This estimate may 
be included in o{w2(z)} by choosing m large enough, and proceeding again as in the 
proof of Theorem 3.1, we conclude that A2 = ^3 = • • • = Ap = 0. □ 

4. Implicit solutions 

Unlike explicit solutions, in general it is not possible to characterize an implicit solution 
Wj(I\z) by its asymptotic behavior along a single ray £. This is because, for all choices 
of C in the sector Sj(X) of asymptotic validity, there is always a nontrivial solution 
of (1.1) that is dominated exponentially by Wj(T\z) as z —► 00, the only possible 
exception arising when /^ - aj = TT [3, §3]. However, two rays, suitably restricted, 
always suffice: 

Theorem 4.1. Let Z be a nondegenerate closed sector within Sj(T) with boundaries 
£ and £'. Assume that either: (i) Z is of angle less than TT; or (ii) the angle of Z is 
TT and neither £ nor £' is an anti-Stokes line of (1.1). Assume also that in Case (i), 
no nontrivial solution of (1.1) is dominated exponentially by Wj(X\z) on both £ and 
£' as z —► 00. Then condition (1.86), with T = £ U £', implies (1.9). 
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Proof. The proof of Theorem 4.1 is similar to the proofs of Theorem 3.1 and 3.2, and 
proceeds as follows. With the given conditions, there is a set of linearly independent 
solutions Wk(z), k = 1,2,..., n, such that 

wk(z) - eXkZz^k ]r 
zs 

5=0 

as z —> oo on both £ and £'. This is a consequence of Theorem 2.3 in Case (i) and 
Theorem 2.2 in Case (ii). We may express w(z) in the form 

w(z) = Aiwi(z) + A2W2(z) H h Anwn(z)} (4.1) 

in which the A's are constants. If we let z —► oo on £, then it follows that Ak = 0 
for those values of fc^ j) for which iyfc(^) dominates, or is equidominant with, or 
is algebraically dominated by, Wj(z) on £, and Aj = 1. Similarly, Afc = 0 for those 
values of &(^ j) for which Wk(z) dominates, or is equidominant with, or is algebraically 
dominated by, Wj(z) on £' (and Aj = 1). In both Cases (i) and (ii), only the term 
Wj(z) survives on the right-hand side of (4.1). And since Wj(X\z) satisfies (1.8b) with 
T = £ U £', it follows that (1.9) applies. □ 

It should be observed that Theorem 4.1 actually applies to any of the solutions 
Wj(T\z). If Wj(X\z) is explicit, then the theorem provides a way of specifying Wj(I\z) 
uniquely by its asymptotic behavior on two rays that lie outside its recessive sector. 

There is one case in which an implicit solution can be characterized by its asymp- 
totic behavior along a single ray: 

Theorem 4.2. Assume that /3j — aj = TT and 

£ = {* : phz = --TT - aj (= -TT - &•) }. 

Then condition (1.86), with T = £, implies (1.9). 

The proof of Theorem 4.2 is essentially the same as that of Theorem 3.2. In 
fact, Theorem 4.2 may be regarded as a limiting form of Theorem 3.2 because, as 
Pj ~" a3 ~> ^ t*16 boundaries of the recessive sector TZj(X) coalesce into £. 

5. Examples 

We first note that the conditions of Theorem 4.1 always can be satisfied by taking 
£ and £' to be within Sj(X) and the images of each other in the origin, provided 
that they are not anti-Stokes lines. For numerical purposes, however, it is sometimes 
desirable to locate £ and £' instead along anti-Stokes lines. 
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Thus, in [3, §8.2], to compute an implicit solution Wi(li\z) of a certain fourth-order 
differential equation, rays £ and £' were used along anti-Stokes lines as depicted in 
Figure 8.5 of this reference. On £, only multiples of the solution to*(z) are dominated 
exponentially by wi(z), and on £', only multiples oiws(z) are dominated exponentially 
by wi(z). In consequence, the conditions of Theorem 4.1 (Case(i)) of the present paper 
are satisfied; accordingly, wi(li\z) is defined uniquely by its asymptotic behavior 
on £ and £'. This is the underlying reason that in [3], we were able to place the 
boundary values for computing wi(li\z) on £ and £'. (Even so, as in [3], perturbation 
analysis is needed to determine precisely how the n necessary boundary values must 
be distributed on £U£/ to ensure stability in the computation of the wanted solution.) 

Another interesting situation is to suppose that all the A's lie on the imaginary axis 
(and are, of course, distinct). An example is provided by the differential equation 

d5w     /4      l\cfiw     ^dsw     7d2w     Adw      / .   1\2        n ,„ «\ 

Here, Ai = —2z, A2 = —i, A3 = 0, A4 = z, A5 = 2z; correspondingly, /^i = — |, 
fi2 — — |, Ms = 0, /X4 = — |, /X5 = — §. Let us take 1 = (—7r,7r]. Then, for the extreme 
values of A, we have, from (1.6), ai = fc = ^TT and 0:5 = 0$ = — ^TT. Accordingly, the 
corresponding solutions wi(I\z) and W5(l\z) are explicit. For the remaining solutions, 
we have aj = -^TT and fy = ^TT, j = 2,3,4. Accordingly, W2(I\z), ws(I\z), and 
W4(X\z) are implicit. Next, as z —> 00 on ph z = 0, there is no exponential dominance 
among the five solutions, and by applying Theorems 3.2 and 4.2, we conclude that 
condition (1.8b), with T taken to be ph z = 0, determines Wj(X\z) uniquely in all 
cases; in particular, for the overall dominant solution ws(l\z) on ph z = 0. It also 
follows from the Lemma of §2 that if we were to modify equation (5.1) in such a way 
that the A's are unchanged, but the /i's all have equal real parts, then the weaker 
condition (1.8a) can be substituted for (1.8b). 

6.  Conclusions 

We have shown that at an irregular singularity of rank 1, with unequal characteristic 
values, an explicit solution of the differential equation is always defined uniquely by 
its asymptotic expansion along any ray in the closure of the recessive sector of the 
solution. For an implicit solution, the asymptotic behavior needs to be maintained on 
two properly chosen rays, in general, in order to specify the solution uniquely. 

Acknowledgment. The author is indebted to A. B. Olde Daalhuis and the referee 
for helpful comments. 
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