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ON QUASI-HYPERGEOMETRIC FUNCTIONS 

Kazuhiko Aomoto and Kazumoto Iguchi 

Dedicated to Richard Askey on the occasion of his 65th birthday 

ABSTRACT. We define quasi-hypergeometric functions of regular singular type 
and show that they are characterized by certain fractional differential equations 
on the one hand and by certain difference-differential equations on the other. 
Two examples of quasi-hypergeometric functions are given, namely quasi-algebraic 
functions and partition functions appearing in fractional exclusion statistics. 

1. Introduction 

L. Euler studied the Lambert series 
oo 

m-'E<{\*y. 
which is intimately related to the transcendental equation 

y - 1 = xyP, 

[4, 13]. Recently, this kind of function has been given considerable attention by physi- 
cists. They play an important part in conformal field theory and fractional exclusion 
statistics. There is a pioneering work by B. Sutherland connecting them with fractional 
exclusion statistics and Calogero-Sutherland models [14-16]. The second author has 
extended some of these results to fractional exclusion statistics of multispecies of par- 
ticles [10, 11], which is based on the results in [8, 18]. This corresponds exactly to an 
extension of transcendental functions of the above type to multivariable ones. 

In this note, we would like to generalize and give a mathematical background for 
these functions which we call "quasi-hypergeometric functions". These functions ap- 
pear as an extension of general hypergeometric functions. The latter satisfy a holo- 
nomic system of differential equations of Barnes-Mellin type by means of 6-functions 
[1-3]. A modern observation also has been discussed in relation to toric analysis by 
Gelfand et al. [5, 6]. 

However, the quasi-hypergeometric functions ^(xi,..., xn) which we define here do 
not satisfy differential equations. We first present the system of fractional differential 
equations with respect to xi,..., xn which F{xu • • • > %n) satisfy. Next, we show that 
F(xi,... ,xn) also satisfies a kind of difference-differential equations with respect to 
xi,..., Xn and other extra parameters ai,..., ar; a^,..., o^ (analog of contiguous 
relations for hypergeometric functions). 
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We can characterize these functions as the unique solutions to these functional 
equations. 

2.  System of fractional differential equations 

Let a, /? G C, a = (cri,... ,crn), <Jj > 0 be given. We define a fractional derivative 
operator of order — /?, 

Pff (a, /3)/(x) = ^ jf t01"^! -1)!3-1/^!,..., r~xn)dt 

for a smooth function in a neighbourhood U of the origin of Cn (see [17]). 
We assume that U is a Reinhaldt domain, i.e., x = (xi,... ,xn) € W implies that 

(pixi,... ,pnXn) ^ ZY for arbitrary complex numbers pj, such that \pj\ < 1. 
If a and /? are positive, PCr(a, /?) is a well-defined operator, otherwise we may define 

it as a finite part of integrals at t = 0 or t = 1 in the sense of Hadamard [7]. 
The operator P0-(a,/?) is an operator reminiscent of the one which Humbert and 

Agarwal [9] defined for the function of Mittag-Leffier: 

oo 1 

71=0       V 

Pa-(a, /3) satisfies the following basic properties 

n=or(1 + ^)' 

Proposition 1. (i)   For two  arbitrary triples  (a,(3, a)   and (a/,/3/,cr/),  PCT(a,/3) 
Pcr/(a

/,/3/) commute with each other, i.e., 

PM,P) ■ PA<x',P') = PA<x',P') ■ P.W). 

(ii) Pa (a, 0) is the identity operator. 

Furthermore,  if (3 is a negative integer,  say /? =   —m, m  =   1,2,3,...,  then 
Per (a, — m) reduces to a differential operator of order m, 

m n r\ 

P(T(a, -m)f(x) = II (a _ ^ + X) ajXjfar)f^- 
k=l j=l 3 

For example, 

dxj 

d 

Pa(a,-l)/(a;) = (a - 1 + ^a^—)/(x), 
i=i 

P^a, -2) f{x) = \{a - l)(a - 2) + £(2(c 

JjK—1 

(Hi) 

P^Ca + A -/?) • P^Ca, /3) = P.Ca, /?) • P^a + /?, -/3) = 1 

50 that P<T(a + /3, —/?) can 6e regarded as the inverse of Pa(a, /?). 
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(iv) For a monomial x^1 • • • x1^1, we have 

(v) 

(vi) 

^Pa(a^)f(x) = Pa(a^akl(3)^f(xy 

The proof of Proposition 1 is almost immediate except for (iii), which follows from 
the following lemma. 

Lemma 1. 

Jo t 

where g(s) denotes the Gauss hypergeometric function, 

ff(s) = f(^o(1_s)W'"v"/3'ir(/3,'a'+/3/"a^+^1^1)- 
In particular, the following co-cycle property holds: 

Pa(a + pf,P).Pa(a,pf) = P(T(a,pf).Pa(a + (3',P) (1) 

= Pff(a,/J + /J/)i 

which implies (iii) in Proposition 1 if {3 + fS' = 0. 
We now define a system of fractional differential equations (E) as follows. 
Let ai,..., ar, ai,..., o^ be r + 5 complex numbers, and fa = (/%)£=! G R+ 

(1 < 2 < r), $ = (P,
ij)

1j==1 £ R" (1 < z < s) be r + s tuples of n-dimensional vectors 
with non-negative components. 

We assume that the following relations hold. For each j, 

£/% = X> + i- (2) 
1=1 2=1 

This condition assures that the function F(x) has tempered growth along a radial 
direction at the singularities, i.e., it has only a regular singularity. 

We consider the following system of fractional differential equations for a function 
F = F(x) depending on the variables xi,..., xn: 

(E)       -^F = f[P0i(a'i + 0'ij,-l3'ij)-f[P0i(aul3ij)F (3) 
3 2=1 2=1 

for 1 < j < n. 
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As is seen from (1), this system satisfies the compatibility condition 

J     X / J   2=1 2=1 

r s 

i=l 2=1 
r s 

2=1 2=1 

=n pfr fop**+A*) • p« (^+^+^^ -^ - /%k) ^ 
2=1 

—(—F) dxk UXJ 

because of symmetry. 

3.  Quasi-hypergeometric functions 

By using the parameters in the preceding section, we consider the following power 
series in x at the origin. 

\{ai;Pi},...,{ar;Pr} 

We first remark that the following lemma holds by Stirling's formula: 

Lemma 2.   We fix a, b G R, k = 1,2,3, Then, for a large positive number t, there 
exists a positive constant Co such that 

iW)* -Cot 

As a consequence of this lemma, we have 

Lemma 3.  There exists a positive constant Ci such that 

ai,2,...fa-
ai,2,...,r+J(-n+a-l) /   n \ al,2,...fa-
al,2,...,r+5(-n+a-l) 

^ftere 0:1,2,...^, ^1,2,...,a an^ ^j; ^ denote the sums ai+- \-ar, a^H ha^, X)I=i Pij 
and Yli=i Pij) respectively, such that bj = bj + 1. 

Proof. We assume that z/i,..., un are so large that o^ + Z)^=i ^y^i > 1- 
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We first note the inequality 

nr=ir«2_s+£;=1&^) 
_   f tai+E?-i^ii"'i-l        .«'._i+S?-i/»i-iji'i-l 
— / n "•ts-i 

Jl>ti+-+t._i,ti>0 

x (1 - ti t,_i)a'»+S?-i ^"i-1*! A • • • A <fts_i 

-(7^1)! 
since the integrand on the right-hand side is smaller than 1. □ 

On the other hand, by the log convexity of the Gamma function T(x) for x > 0, we 
have 

r n it   v^      V^TI      7 / 

r^ + ^A^jj/j.-.^i^r^ — 2—J—)    . 
2=1 j = l 

These two inequalities imply Lemma 3 from Lemma 2. 
As a consequence of Lemma 3, the series (4) converges in the polydisc D defined 

by 

Nil < (r + n)-b'\..., \xn\ < (r + n)"6", 

so that the function (4) defines a holomorphic function at the origin. 
Furthermore, we have 

Theorem 1. The function F satisfies the equations (E) and can be characterized as 
the unique solution to (E) which is holomorphic at the origin and 

F(0) = ^'=1 rK) /5\ 

Proof. Assume that the holomorphic function at the origin 

F(x)=       £       aUu...,Vnx?---xZ> (6) 
^l>0,...,iy„>0 

satisfies the equations (E). We fix j. Prom (vi) in Proposition 1, we have 

P« (a' + 8'   -8' W1 • • • T"" - r(Q:i + fij + Sfc=i ^fc^fc)   „! 

and 

1 (Qi + Pij + 2^fc=i ftfe^fc j 

The equations (E) give the recurrence relations with respect to 1/1, Z/2J • • •»vn as 

ri/.-i-n/i ,       -TT    r^+ ^=1 ^^ [ 3 + 1)a-'-^+1— -11 rioi + h + xUfavk)m 
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These relations determine uniquely the coefficients a^...^...^ except for a constant 
factor. If ao,...,o equals (5), then F(x) coincides with 

F(^i;#},...,K;#} 
\{tti;/?l}>---){ar;/3r} 

Thus the theorem has been proved. □ 

As a function of ai,..., ar, ai,..., a^ and x, the function 

F/K;/3i})...5K;^} 
\{ai;/'i},...>{ar;/Jr} 

is meromophic in ai,..., ar, a^,..., a^ in Cr+S and holomorphic in x in the poly disc 
D. 

When faj and /3^ • are integers, the functions (4) are nothing more than general 
hypergeometric functions of Barnes-Mellin type. 

4.  System of difference-differential equations 

In the preceding section, we have assumed that the parameters fiij are positive. This 
restriction is sometimes too restrictive. 

In this section, we do not impose this condition on faj. 
We consider a function F = F(x] a; a') depending on the (n + r + s) variables, 

x= (xi,...,xn), a = (ai,...,ar), and a' = (ai,... ,a/). 
We denote by Tai, Ta/ the shift operators deriving from the displacements 

ai —► ai + 1, a'i —> a^ 4-1, 

Taif(x; ai,..., ai,..., ov; o?7) = /(a?; ai,..., a* + 1,..., ar; a7), 

Ta<.f(x; ai,..., ai,..., ar; a7) = f(x; a; ai,..., a- + 1,..., a7
s), 

and also by T^., T^, the shift operators of the displacements ai —> o^-f-a, a^ —> a^ + a, 
respectively. 

We consider the system of difference-differential equations (E*): 

(E*) 

2r=U + X)A 
A;=l 

Ta'.F = 

dxkJ 

<4 + tfte>£;)F> 

TaiF, 

p — TPV ... TPro . T^lj ... T^3j F 
dxj ai ar       «i <     ' 

1 < t < r, (7) 

1 < i < 5, (8) 

l<j<n. (9) 

Then we have the following theorem. 

Theorem 2.  The function (4) satisfies the equations (E*). /£ zs characterized as the 
unique solution to (E*) which satisfies the initial condition 

F(Q; a; a7) = 
nUr(aO" 
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Proof. The function (4) satisfies (7) and (8) because of the equalities 

T^rUi + J^PikUk) = (ai + ^Afci/fcjrfai + ^Afci/fc), 
^        k=i '       ^        fc=i /     ^        fc=i ^ 

T^TU+E favk) = U+it fik**)r (^+E favk) • 
^ ib=l ^        ^ fc=l ^     ^ fc=l ^ 
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As for (9), we have 

sr^w-   S 
n;.ir(«i+/%+Ew/^'* 

dx 
•••'^0 rC=i r( ^ + AJ + ELi Afc^ )^! • • • ^n! 

= the right-hand side of (9). 

Conversely, assume that F{x) has the expansion (6) at the origin x = 0 such that 
fli/i,...,i/n = a«'i,...,i'n(a>a/) depend on a, a' meromorphically. Prom (9), we have the 
recurrence relations 

(i/j + l)aI/ll...|I/i+i,...,I/n(a,a/) 

= az/!,...,^,...,^^! + /3ij,..., OLT + /Jrj; o^i + /Jij. • • •, ^ + Z^)* 

so that o^^.^i/.^.^^Ca,^) are uniquely determined from ao,...,o(a, a'). 
The last one satisfies the difference equations from (7) and (8): 

A general solution to these can be expressed as 

(10) ao >
...>o(a>^)=ffiiy)   g(a>a/) 

lli=ir(ai) 
where i?(a, a7) denotes an arbitrary periodic function with the periods 1 relative to 
each variable o^, c^. 

In particular, if one takes H(a,af) = 1, F(x) coincides with 

>;;#},...,K;#} 
,{ai;/Ji},...,{ar;/Jr} 

We now fix a system of integers 1 = (Zi,..., lr) and 1' = (Z^,..., l's). We can take as 
iJ(a, a') the periodic function 

□ 

H(a, a') = exp 27ri f E ^^ + E ZMaA* 
V=i M=I 

then we have the solution ^(a;) to (E*) which has the expression 

V{ai;/Ji}}...,{ar;i8r} 

(11) 

F(x) = exp 27ri f E ^aM + E ^aP 
V=l A*=l 

where x* = (x|,..., x*) denotes the point such that 
r s r s 

xj = a?i exp[27ri (E ^^I + E ^^I)] >•••>< = »n exp[27ri (E ^^n + E Z^Mn)] • 
/i=i M=I M=I M=l 
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We shall abbreviate these solutions as jFii'(a;), 
Since an arbitrary periodic function if (a, a') has a Fourier expansion by using a 

sequence (11), we can conclude the following. 

Proposition 2. Every solution to (E*) is a linear combination of a countable number 
of the solutions F\y{x). 

5. Examples 

Example 1. Let ai, 0:2 E R and fiu fa € R+ be given such that /3i + fa = 1. The 
function 

F = FacKfkUwfk} \X) = ± rCox H-ftn^o, + A»)8n 

converges in the disc |a;| < Pi    P^^2 and satisfies the equation (E): 

dF 
— = PftCax + fa, -Pi)Pp2{ci2 + A, -/W (12) 

The function F({ai; /3i}, {0:2 /fe}!^) is the unique solution to (E) which is holomorphic 
at the origin and such that F(0) = r(ai)r(a2). It also satisfies the equation (E*): 

r0lF = (ai+i9ix£)FJ    T0i2F=(a2 + p2x^-)F,    £F = T%T%F.        (13) 

The equations (E*) also are satisfied by the functions 

Fiitefr) = exp[27r2(Ziai +/2a2)]i?({ai;/3i},{a2;/32} | exp[27rz(Zi/3i + hfe^x) 

forall(Zi,Z2)GZ2. 
F^fo does not satisfy the equation (E) but instead satisfies 

dF 
— = exp[27™(Zi/?i + hfoyPhfai + Pu -f3i)P(32{a2 + A, -frfiF. (14) 

It is characterized as the unique solution to (13), which is holomorphic at the origin 
and F(0) = exp[27ri(/iai + Z2a2)]r(ai)r(a2). 

On the other hand, by using the equalities 

r(a1+/31n)r(a2+^)= f* ^^ + u)-^-ndu 

r(ai+a2+n) J0 

and the binomial expansion 

E r(al + p+")an = r(ai + a2)(1 _ x)-ai-^ 
71=0 

we get the integral expression for F(x) given by 
poo 

F(x) = r(ai + as) /    u^-^l + u - u^xy^'^du (15) 
Jo 

for \x\ < P^P^2' We simply denote the number P^1 P^2 by c- 
At x = 0, the quasi-algebraic equation 

1 + u- xu^1 = 0 

has the two particular solutions u = ^(z), ^_(x) 

M+(ar) = -1 + e^x + • • • ,    ^-(x) = -1 + e'^^x + • • - , 
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whose coefficients are complex conjugates of each other. When x increases and ap- 
proaches c, then u± {x) move in the upper (lower) half plane and approach the positive 
number fii/fo- One sees that the function (15) has a singularity of the braid type at 
the point x = c. 

Example 2. Let ai, #2, /3i, /fe € R- be given such that /3i = fc + 1. 
Consider the function 

F = F, {ai;/3i} 

>2;/?2} 

in the following two cases. 

/        n=0 

rCai + jflm) 
r(a2 + i92n)n! 

Case (i) ft > 1, ft > 0. F converges for |a:| < c, c = ft^O8! - l)^1"1^ and is the 
unique solution to 

dF 
(E)        — = Pfriai + ft, ~ft)P/?2(a2,ft)F, 

such that F(0) = f7~j- ^ also satisfies the equations (E*): 

.±)F,    F = (a2 + lkl±)Ta,F,    I 

F has the integral expression 

r(a1 + l-a2) 

T^F = {<*!+fax—)F,    F = (a2 + ftx—)TQ2F,    —F = T^T^F        (16) 

F = — 
27ri 

/ "ti;"1"^! - u; + xw^-^-^^dw (17) 

for |x| < c. Assume for simplicity that 0 < x < c. Then the path of integration £ is 
constructed as follows. There exist two positive solutions wi, W2 to the equation 

l-w + xw^1 = 0 

such that I < wi < W2. 
We construct a path £ starting from 0 in the lower half plane, crossing the interval 

[wi, W2] and going to 0 in the upper half plane. 
When x tends to 0, wi approaches 1, and the integral (17) is holomorphic in x at 

x = 0. On the other hand, when x approaches c, then wi, W2 approach each other. 
Therefore, the integral (17) is no longer holomorphic at x = c. The function F(a:) then 
has a singularity of braid type there. In particular, if ai = #2, then F reduces to 

F(x) _ f^ ( oci + 0in \   n vp  

which is a well-known formula [13]. 

Case (ii) 1 > ft > 0, 0 > ft > -1. 
By using the Gauss identity r(A)r(l — A) = 7r/sin7rA, F(a;) can be written as 

F(x\ = y^ r(Q'i +ftn)r(l - az - ftn) sin7r(a2 + fan)   n 

n=0 
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Hence, F(x) can be written as F = F+ — F- where 

F+(X) = !^plF({ai;/?l}){i -a2;-/32} | explTrfAlx), 

F_{x) = exP[-^]F({ai;/?i}) {1 _ a2; _A} | ^p^^). 

Each of them satisfies the equations of the type (14) which are different from each 
other. But both of them satisfy the same equations (E*) and (16). 

Example 3. 
P   y nUrK + ^n) 

^IlLir(o* + An)n! 

for /3fc, /% > 0 and with the relation /?i H /3r + 1 = /3i H h ^ , is a general one 
in the single variable case. In a way similar to Examples 1 and 2, one can show that 

the above series is convergent for \x\ < c for c = /jf1 • • • /?fr • /?(    1 • • • /^      . 
JP satisfies the equations 

(E)       ^ - fl ^ (a*, )9fc) ft P0'k (ai + ^, -/M 
fc=l A;=l 

(E*) 

F = (ak + l3kx±)TakF,       l<k<r, 

Ta'kF = (4 + /3^^)F, 1 < k < s, 

d    TP   n-i(3l i-p(3rrpPi rp(3s Tp 
dxr  ~1a1 '      ■Lar-

La'  '   '1a'r- 

We will show in a subsequent article that F has a singularity at x = c and has a 
power series expansion near c, namely, 

F{x) = (c — rr^ao + ai(c — x) + a2(c — x)2 H ] + (a holomorphic function) 

where 5 denotes S = ai^,...^ - ai,2,...,s + i(5 — ^ — !)• 
In view of (hi) in Proposition 1, (E) is equivalent to 

f[p^ak + pk,-Pk)^F=f[Ppfk(a
f

k^Pl-pf
k)F. 

k=l k=l 

When /3k = /3'k = 1 for all A:, s must be equal to r + 1. F(x) reduces to the hypergeo- 
metric function of higher order [2, 3] 

V ai,...,ar 
r-Tr+l ' 

(E) reduces to the ordinary differential equation 

fc=l ib=l 

Example 4. We fix AQ, Ai,..., An E R. The quasi-algebraic equation with respect to 
y given by 

y 
AQ + xxy*1 + - - - + xnyXn -1 = 0 
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has a holomorphic solution in (sci,... ,xn) at the origin such that y = 1 for x = 0. 
Then, for an arbitrary p E C, yf> has the expansion in x, 

'~*»JLJ       rM.-M + iW-*!*1     *" <18) 

where A^ = 4-(p + Aii/i + h An^) and 11/1 = 1/! + h i/n, i.e., 
Ao 

In fact, assume that 2/p has an expansion 

1^ = 1+     E A; 'I/l,...,I/na'l 
^l>0,...,l/n>0,|l/|>0 

Then, by the Cauchy integral formula, we have for a small positive number e, 

^i,...,^ = f TT-. )    / sA]^1"1 • • • x'^^dxx A • • • A dxn . 
V^V     7|xi|=e,...,|xn|=e 

The change of variables of integration, (a?i,..., Xn) —* (a^i»• • • 5 #n-i> 2/), gives 

dx 
x -—^ da;i A • • • A dxn-i A d?/ 

for xn = (1 - 2/Ao - a;i2/Al ^n-i^"1)/^71 • 
Using the binomial expansion yp = X^^o (?)(2/—-O*' a^i,.-.^n ^s evaluated by residue 

calculus as in (18). 
It has been known since H. Mellin that if we put Ao = n + 1, Ai = n,..., An = 1, 

then y reduces to a general algebraic function corresponding to the singularity of the 
A-type root system (see [3, 12], etc.). 

Example 5. Consider the function 

where we assume /3^ = {5^ = -^ for i ^ j and /?^ = /?„ 4-1 = 1 - p^ for suitable 
real numbers gij. 

This function has been investigated in recent papers on statistical mechanics [10, 
11] by the second author. It is described simply by using the function tuj*1 • • • w^- de- 
pending on #1,..., a:n, which is derived from a system of the quasi-algebraic equations 

wi = 1 + Xiwl~9iiWi 9il • • • w~9in    l<i<n. (20) 

These are the fundamental equations discovered by Wu [18] for describing mutual 
fractional exclusion statistics following Haldane [8] which is an extension of an earlier 
work by Sutherland [15] in the one variable case. The equations (20) can be solved 
explicitly as a power series expansion in xi,..., xn by the Lagrange inversion formula 
in the multivariable case, see [11] for details. 

It seems an interesting problem to study the singularities and the monodromy 
property of F(x) when F(x) is analytically continued. 
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Recently Prof. V. S. Retakh pointed out to us that quasi-hypergeometric functions 
are very similar to the GG-functions defined by Gelfand and Graev [19]. They seem to 
obtain an equivalent form of our equations (E*), although we have not yet shown this. 
They define GG-functions as a wider class of functions which are not necessarily of reg- 
ular singular type. For geometric reasons, we only consider here quasi-hypergeometric 
functions of regular singular type. 

Acknowledgment. We would like to acknowledge a valuable comment by A. Gyoja. 
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