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STRONG ASYMPTOTICS FOR JACOBI POLYNOMIALS 
WITH VARYING WEIGHTS 

Christof Bosbach and Wolfgang Gawronski 

Dedicated to Richard Askey on the occasion of his 65th birthday 

ABSTRACT. Generalizing classical and recent results for Jacobi polynomials 
Pnn(z)y strong asymptotics are established as n —► oo where, in contrast 
to the standard situation, the real parameters an, /3n depend on the degree n 
and satisfy certain limiting conditions. By rescaling the argument z suitably, 
extensions of the well-known Darboux formulae are derived. 

1. Introduction and summary 

In this paper, we deal with generalizations of asymptotic forms for Jacobi polynomials 
P}i     . As usual, we assume these functions to be defined via the orthogonality relation 

pta>fi(x)P£>fl(x)(l - x)a(l + xf dx 
f-i 

2o+0+1 r(n + a + l)r(n + /?+!) 
/: 

-2n + a + /3 + l       n! r(n + a + /3 +1)      *nm'    *' ^>    ^ (L1) 

which we take from Szego's book [25, Chapter IV] together with the normalization 
and some standard formulae as well. 

The classical asymptotic theory of Pn       is concerned with large degrees n and 
fixed parameters a, /? [25, Chapter VIII]. We mention Darboux's formulae [25, p. 196] 

y/Tm (w2 — I)1/2 \w — 1J     \itf + l/   v ' 

for z 6 C[_iji] and 

for 9 G (0,7r) as n —> oo. Here and throughout, for real r, s with r < s, we use the 
notation 

CM:=C\[r,5], 

Received November 4, 1997, revised May 23, 1998. 
1991 Mathematics Subject Classification: 30E15, 33C45. 
Key words and phrases: Jacobi polynomials, strong asymptotics, Darboux formulae. 

39 



40 BOSBACH AND GAWRONSKI 

i.e., the complex plane with a cut along the interval [r, s], and Jukowski's function 

yjz + 1 + y/z - 1 r^  

mapping C[_i}i] conformally onto the exterior of the unit circle \w\ > 1 such that 
z = oo corresponds to w = oo. Both asymptotic forms (1.2), (1.3) hold uniformly 
on compact subsets of C^i] and of (—1,1), the interval of zeros, respectively. It is 
customary to denote this property by the phrase strong asymptotics, in contrast to 
the so-called weak asymptotics, that is the limit distribution for the zeros. We shall 
use this terminology throughout for the Jacobi polynomials pfr*"'**1' in this paper as 
well. 

Questions of weighted polynomial approximation led Lachance, Moak, Saff, Ullman 
and Varga [12, 18, 23] to investigate the modified Jacobi polynomials pjfi*"^ where 
the real parameters an, /3n may depend on n. If both an, (3n > — 1, then it is well 
known that the zeros of p}l

an>f3n\ xnv, v — l,...,n, say, are located in the open 
interval (—1,1), and that all of them are simple. In addition, suppose that 

A   — OLn n   — Pn n c\ 

and that the limits 

A := lim An,        B := lim Bn (1.6) 
n—KX) n—►oo 

both exist. Then, by using Sturm's comparison theory in [18], Moak et al. proved that 
the set 

oo 

{^J \^nl5 • • • ? %nnj 
n=l 

of zeros is dense in the interval [r, 5] where 

r := B2 - A2 - VD,        S := B2 - A2 + VZ), (1.7) 

and 

D:=(l-A + B)(l + A-B)(l-A-B)(l + A + B). (1.8) 

Note that (1.6)-(1.8) imply 0 < A, J5, A + B, D < 1 and [r,s] C [-1,1]. Sharpening 
the latter result in a series of papers [4-6, 9, 10, 16, 17, 22, 23], weak asymptotics 
for p}L

an,Pn' have been established, as well as in a more general frame for orthogonal 
polynomials with varying weights Wn(#) satisfying limn_>00^n(a;)1/n = w(x) [9, 10, 
13-15, 21, 24, 26, 28]. The recent publications [4, 5], among others, treat weak 
asymptotics for p^™^71' under the general assumptions ani/3n > —1 and 

lim ^ = a, lim ^ = b (1.9) 
n—►00   ft n—+oo   77, 

where, in particular, the cases a = oo and/or b = oo are admissible. 
It is the main purpose of this paper to derive strong asymptotics for p^ari,f3n^ under 

the general condition (1.9). For the very special case of linear parameter sequences 
an = an + a, f3n = bn + /?, with a, b > 0 and a, /? € R being independent of n, this 
has been done in [3, 8]. Besides (1.5), we put 

Dn := (1 - An + Bn)(l + An- Bn)(l -An- Bn)(l + An + J5n), (1.10) 
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and we distinguish two cases. If both limits a, b in (1.9) are finite, that is A + B < 1 

in (1.6), then we consider the polynomials Pn (z), whereas in case a = oo or 
b = oo in (1.9), that is A + B = 1 in (1.6), we consider the rescaled polynomial 
Pn \\/Dnz + Bn — An). This particular scaling of the argument is made in light 
of the weak asymptotics treated in [4, p. 231; 5, p. 244]. The resulting generalizations 
and extensions of Darboux's formulae in (1.2), (1.3) are derived in Sections 3 and 4. 

The proofs of the various asymptotic forms rely on the saddle point approximation 
of certain contour integrals combined with Vitali's theorem on compact convergence 
for sequences of analytic functions. Also we mention that strong asymptotics for 
Laguerre polynomials Ln     with varying weights are proved in [2]. 

2. Preliminary results 

In this section, we collect some auxiliary results and formulae which are fundamental 
for the proofs of our main theorems. 

We start with the well-known representation 

by means of a contour integral [25, p. 70, (4.4.6)], a, /? G C, n G No. Here C is a 
simple closed contour with positive orientation enclosing the point t = z but not the 
points t = ±1. The fractional powers of (1 -£)/(! — z) and (1 + £)/(! + z) are assumed 
to reduce to 1 for t = z. 

For the real sequences (an), (/3n) with an, /?n > -1, we suppose that (1.9) is 
satisfied. Obviously, we have a, b G [0, oo] and, on account of (1.5), (1.6), that a = oo 
or b = oo occur if and only if A + B = 1. Thus, in view of the above mentioned weak 
asymptotics, we consider the modified Jacobi polynomials Pn (z) when both a, b 
are finite, and if a = oo or b = oo, then we deal with the rescaled Jacobi polynomials 
P^M^y/D^ z + Bn- An) where Dn is given in (1.10). Now (2.1) can be written as 

P^^\z) =^-. f e-^dt,        z ^ ±1, (2.2) 

if a, b G [0, oo) where 

qn(t) := n log ^ I f + <*» log J^f + Pn log y^| + log(* - z). (2.3) 

If a = oo or b = oo, then from (2.1), we infer 

Pia"'M(VD;z + Bn-An) = ^   f   e-P»Wdt, (2.4) 
2-KiDn'     JCn 

z ± (±1 + An - BnVVE^ with 

*w :=- ■"(^-^XP-I)+1<>g(f -" ^ 
+ an log _     ,     . 7=^     H-^n  log' 

and Cn being a simple closed contour with positive orientation enclosing t = z but not 
the points t = (±l+An — Bn)/y/D^. Further, according to the choice of the fractional 
powers in (2.1) for the logarithms in (2.3) and (2.5) we have to choose that branch for 
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which log£ is real, when £ is real and positive. In the sequel, an asymptotic evaluation 
of the modified Jacobi polynomials is performed by a saddle point approximation of 
the contour integrals in (2.2) and (2.4). The special case of linear sequences, that is 
an = an + a, f3n = bn + ft, a, b > 0, in (2.2) [8, p. 384], could be dealt with by the 
saddle point method in standard form [11, 20, 27, 31]. A treatment of the general 
cases in (2.2) and (2.4) requires a variant of the saddle point approximation which we 
take from [1, Section 20.2]. It is given by the following lemma (also compare with the 
corresponding Laguerre case [2]). 

Lemma 2.1. Suppose that G C C is a domain and gn are complex-valued functions, 
n G N; being twice differentiable on G. Further, let tn G G, ujn be complex numbers 
such that the straight lines Tn = [tn — un, tn + u)n] are contained in G, n G N. // 
(e>0) 

g'n{tn) = ^    n€N, (2.6) 

lim K^^l^oo, (2.7) 

|axgK g^{tn)l'2)\ < | - e,    n > no(e), (2.8) 

0n(*)=0n(*n)(l + 0(l))      OS n - 00, 
uniformly with respect to t G Tn, 

then we have 

[   e-9n^dt=J^-^e-9n^(l + o(l)),        n-oo. 
JTn V 0»"n' 

Condition (2.8) is to fix the correct branch of the square root g'^tn)1/2. 
Further, we need the following Poisson integrals which are important for transferring 

asymptotics ofP}ian'M(x), x being real, to P7l
Q!ri^n)(z), z being complex [25, pp. 275- 

277; 7, p. 40; 2]. 

Lemma 2.2. Suppose that the real numbers c, d satisfy c > 0, c > \d\ and C is a 
complex number with |C| < 1. Then 

(i) ^y    log(c2 + d2 + 2cdcoSd)T^ZrSde = 2log(c + dC), 

log being the principal branch (i.e., logx is real ifx is real and positive), and 

oo ^£l06(s^)l±i£>=1<Jg^(c_i))2}. 

3. The case an/n —► oo or /3n/n —► oo 

In this section, we suppose that at least one of the quantities a, b in (1.9) is infinite and, 
in addition, that an, /3n > 1 for n G N. Strong asymptotics for the modified Jacobi 
polynomials p^n^n^(y/D^ z+Bn—An) now is derived via saddle point approximation 
of the parameter integral in (2.4). Therefore, basically, we follow ideas used in [2, 7, 
8]. 

The saddle point equation pf
n(t) = 0 for the integral in (2.4) takes the form 

n + 1 an+n /?n + ^ = 0 ,3 ^ 
t-z     t-(l-Bn + An)/y/D^     t + (l + Bn-An)/VD^ 
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with the explicit solutions 

where 

K-/3n)(n + l) /(n + l)(an + /3n + n-l) 
2^(71 + an)(n + Pn)(n + an + /?„)     y n(an + l3n + n) 

(3.3) 

Sn = (an-A»)(n + l) +   Kn + l)(an + f3n + n-l) 
2^n(n + an)(n + pn){n + an + pn)     V        n(an + 0n + n) 

In view of (1.9), obviously we have rn —> r, sn —► s as n —» oo where 

r=-1+vm'   s=1+vro'   ««=«». ^[0,00),    (3.5) 

r = -1-2^'        S = 1-Vm'        tf^ [0,00), 6-00, (3.6) 

r = -1,        5 = 1,       if a = 6 = oo (3.7) 

(compare Theorem 2, ii) in [5]). In order to determine the proper branch of the square 
root function in (3.2) for z E C[rnjSn], we introduce the variable wn by 

rn + Sn  , sn - rn wn + w'1 

z = h 
2 2 

(an-Ai)(n+l) 

/(n + l)(an + i8n + n-l) ^n + iy"1 

(3.8) 

n(n + an + )8n) 2 

|^n| > 1; that is, the exterior of the unit circle in the ^n-plane is mapped conformally 
onto the domain C[rn>an] in the ^-plane such that the points wn = oo and 0 = 00 
correspond to each other. Moreover, the upper and the lower edge of the cut in the 
z-plane is mapped onto the upper and lower half of the unit circle in the wn-plane 
respectively. Inverting in (3.8) yields 

^n =    /  7= =  [z — + y/Kz-rn^z-Sn)) 

n(n + an + /3n) 
(n + l)(n + an+/3n-l) 

V       2y/n{n + an){n + l3n)(n + an + /3n) ) 
Now putting 

we have 

tn := -(2n + an + pn)J-r— ,a
n+^f   _, -"TT Wn, (3.10) 

2V 'y n(n + an + /3n- l)(n + an+^n) 

2n + an + ^n      /       rn + sn       r r-x 
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that is, in (3.2) we make the choice of the branch such that the cut z-plane C[rnjSn] is 
mapped conformally onto the exterior of the circle \t\ = pn, pn being the factor of wn 

in (3.10). On the cut (rn,sn) in the z-plane, in view of (3.8) and (3.10), we have 

Tn "T Sn        Sn       rn 
z = — 1 — cos y, wn 

JO 0 < 6 < TT, 

2 y n{n + an + /3n - l)(n + an + /3n) 
(3.12) 

Now straightforward computations lead to the following connection formulae [7, 
Lemma 1; 2, Lemma 2.1; 8, Lemma 3]. 

Lemma 3.1. If the complex variables z, wn, andtn are related by (3.8)-(3.11), then 
we have 

0) 
n + 1 

2wn ^ 

n + 1 

x \wn 

n(n + an + /3n - l)(n + an + /?n) 

/(n + an + /?n - l)(n + an)\ 
(n+l)(n + /9n) 

x       1^71 + 
f(n + an + /3n-l)(n + /3n) 

(ra+l)(n + an) 

(ii) 

(hi) 

1 - Bn + An - x/A^ tn        2n + an + /3n 

1- Bn + An- y/D^, z      n + an + f3n-l 
Wr, 

W I (n+l)(n+/3w) 
Wn       V (n+an+i9n-l)(n+a„) 

1 + Bn - An + x/2^ ^n        2n + an + /3n 

1 + Bn - An + y/D^ z       n + Q;n + /3n - 1 
^n 

...      i      / (n+l)(n+an) 
Wn ^ V (n+CKn+/3n-l)(n+/3n) 

(iv) 
2(*„ " z) 

Next, from (2.5), we compute 

tfu\          n+1 n + an 
PnW ^-T ^ + 

/        n(n + an+ Pn) 

y (n + l)(n + a„ + i9„-l) 

(n + an)(n + /?n) 
(2n + an + /3n)2  tl,w- 

+ ■ 
(* " ^)2        (t - (1 - Bn + AnM^/BTnY        (t + (1 + Bn - An)/^)2 ' 

yielding the following identities via Lemma 3.1. 
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Lemma 3.2. If the complex variables z, wn, andtn are related by (3.8)-(3.11), then 
we have 

»(+   \ - i72 + l^n + ^n + /3n - 1) 1 - Wl 
PnV"n) — 2n + an + /9n wl(tn - z)2 

2(n + an+/3n- 1)\2 n(n + an + /3n) ^ _ ^2>v 

/ (n + an + /3n - 1)(n 4- an) 
^     Y (n + lKn + i^) 

_,_   /(n + an + /3n-l)(n + /3n) 

-2 

-2 

(n + l)(nH-an) 

Now we are in a position to derive the strong asymptotics for the Jacobi polynomial 
in (2.4) on the cut plane C[rjS] (see (3.5)-(3.7)). In this context, we observe that by 
passing to the limit n —+ oo in (3.9), we get the function 

\/z — r + y/z — s r + s 
v = lim wn = 

V
/     V

/ = = z - -^- + y/(z-r){z-s), (3.13) 
n->oo y/z — r — \JZ — s 2 

mapping C^j conformally onto the exterior of the unit circle |i;| > 1. 

Theorem 3.3. Suppose that the real sequences (an), (/3n) satisfy (1.9) with at least 
one of the limits a, b being infinite and an; f3n > 1. // the function wn is defined in 
(3.8), then for z € C[r?sj; the Jacobi polynomial rescaled according to (2.4) satisfies 

P^^^VD^Z + Bn-An) 

2n + an-\-(3n \      (       (^H-an)(n + i9n)       x n'2 

27r(n + l)(n + an + f3n - 1))      \{n+ l)(n + OLn + (3n - 1) 

f   2n + an + /3n ^n 1 an 

X \n + anH-/3n-l / (n+l)(n+/3n) f 
^n       y (n+an+i9n-l)(n+an) 

2n + an 4- /3n ^n 1 ^n 

n + ^n + I3n - 1 ,      / (n+l)(n+an) 
Wn ^ V (n+an+i9»-l)(n+i9n) 

-(fl£_ 1)1/2 (1 + ^(1)).     «n^oo. (3.14) 

iJere the branches of the fractional powers are positive when wn is real and greater 
than sn (see (3.4)). Moreover the o-term holds uniformly on compact subsets ofC[r^. 

We emphasize that without further growth conditions on an, /?n in (1.9), we may 
not replace wn by v in (3.14). 

Proof. We consider the case a = oo, 6<ooin (1.9) which corresponds to the limiting 
cases (3.5) and (3.7) for the boundary points of the zero interval. Further, suppose that 
z = x > 2. Then on account of Lemma 3.1(i), we have tn < x at least for sufficiently 
large n. Following arguments in [2, 7, 29], first we establish the asymptotic formula 
(3.14) for real x specified above, and then we transfer its validity to the cut plane 
C[rja] via Vitali's theorem. 
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We introduce the quantities un := —in~s, 0 < S < 1/2, 

Rn := I*-*"-**'!, (3.15) 

and ipn G (0,7r) according to TT - ^n = arccos(l/JRn) (0 < arccos£ < TT for -1 < 
f < 1). Similar to the Laguerre case in [2, Proof of Theorem 2.3], we start from the 
representation formula (2.4) and use tn as the saddle point given by (3.10). As the 
contour in (2.4), we choose 

Cn •= Cn U Tn U Cn1 

consisting of the straight line 

Tn:={*n+Tu;n|-1<T<1} 

and the circular arcs 

C%:={t = x+\x-tn-cjn\ei*\0<i;<ipn}, 

^ — {t^x+lx-tn-Unle^ |27r-^n<^<27r}. 

The contribution of Tn to the integral in (2.4) is computed by Lemma 2.1. Conditions 
(2.6)-(2.9) are easily verified with the aid of Lemma 3.2. In particular, we have to 
make the choice arg p^(tn) = TT. Thus we get 

X.*^w*-TSi'*fc,(1+'<1))- "^    (3' 16) 

Now the crucial point is to prove that the contributions along C^, C^ in (2.4) are 
negligible. We restrict our reasoning to C%. That for C^ is very similar. Let t e C^; 
then we estimate Re (pn(t) —Pn(tn)) from below. On account of (2.5) and Lemma 3.1 
obvious calculations lead to 

t — x 
Re (pn(t) - Pn(tn)) = (n + l)Re log 

Zfi       X 

y/D^t -l + Bn-An 

\/Ai*n - 1 + Bn — An 

y/DZt + 1 + Bn - An 

- (n + an)Re log 

Further, since 

I- Bn + An      2n + an+ I3n   I n + an 

1-Bn + An      2n + an+/3n   / n + /3n 

\fD^ 2 y n(n + an)(n + an + /3n)' 
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we get 

Re (p(t) - pn{tn)) = (n + 1) logRn 

l + Rn^       n + 1 
- (n + an) Re log< 1 - 

wn       2n + Oin + I3n 

V 
H^     V (n+lKn + an) 

- (n + Pn) Re log< 1 —■  
[ wn       2n + an + 

r-y—£ 

A. 

+ /3n-l)(n + an) 
(n+l)(n + /3n) 

for 0 < if) < ipn- In view of the well-known inequality, 

Re(C-log(i + C))>-^ICI2,      CeC\{-i}, 

this gives 

Re (pn(t) - pn(t)) > (n + 1)(logRn + 1 + Rn cosV>) 

1      (n+1)2      |l + i?ne^|2 

2 2n + an 4- Pn w% 

> (n+ 1){logik + l + fincosvfl - 4-) f1 - o    ?+\a ) (^ V      ^n/V      2n-|-an + /3ny 

2     ^    ^ + 2n + an + /3/W"     'V J 

for 0 < ij) < VVi- Using the expansion (see (3.15)) 

1    n~25 

fin = 1+2(a;-tn)2+0(n"4')?        n^oo, 

and observing that Rn cosi/jn = — 1, finally we end with 

Re (pn(£) -JPnCtn)) 

^cn1"25 

for some positive constant c and sufficiently large n. Lemma 3.2 shows that |p^(£n)| 
grows like a positive multiple of n and so 

n —» oo. 

This estimate also can be verified for the contribution along Cl
n. Thus combining 

(2.4), (2.5), Lemma 3.1, and (3.16), we have proved (3.14) provided that x > 2 and 
a = oo, b < oo.   The remaining case, a < oo, b = oo, can be treated by a slight 
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modification of the preceding arguments, i.e., now Cn consists of the same straight 
line Tn and circular arcs being located to the left of Tn. 

Next, we transfer the validity of (3.14) to the cut plane C[r?s]. To this end, let 
z G C[rnjSn] and-|wn| > 1, related as above. Further, we put £ = re19 = l/ii;n, and, 
using (1.1) similar to [2, 7, 29], we get 

2an+/3n+l r(n + ^ + 1)r(n + ^ + 1) 

2n + an + /?n + 1     n! r(n + an + /3n + 1) 

\PJiantM(x)\2 (l-x)an (l + xj^dx 

r(l+An-Bn)/VD^ 
i 

1 

-1 

Dn "        \P^^\y/D~nt + Bn-An)f 
J{-l+An-Bn)/'/D^ 

x{l-Bn + An- ^/D~n t)
a» (1 + Bn - An + <fDn t)^dt. 

On account of (1.5), (1.10), (3.3), and (3.4), the inclusion 

[fn, an] C [(-1 + An- Bn)/^D^, (1 + An- Bn)/y/D^\,        n € N, 

is readily verified. Thus, it follows that 

2«n+ft> + l r(n + ara + l)r(n + /?7t + l) 

2n + an+/3n + l       n\T(n + an + j3n + 1) 

y/D^, sn - r 

dt 

" fJp^M (^(!:!Ly£!L + £lL^ cose) + £n - ^) 2 2 

X  (l-Bn-{-An 

x(l^Bn-An + VDn(!:^^^^IlLcose))    \sm9\de 

-C'rj. I 1 COS V 

nr — T— lim - r\p(an>M(x/ir(- ~T" ^n ^^ ^n       ^n   s ""•" S 

+ -On ~~ An \C\Z \Dn(0\2dO 

>v/A:£vl!i^(i-ici2) p(«»A.) f yn ^*n   i   ^n _,   ^n      ^n   S   '   S» 

+ X5n       An \cr \Dn(o\2 

where 

Cn(C) = exp|^^^og[(l-Bn + ^-v^(^^ + ^T
i:iicos^)a" 

l + {e-ie 

x[l + Bn-An + JDn[r-^IL + S-IL^coSe \sm9\ 
1-Ce -i6 

do\. 
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By Lemma 2.2 (for applications of part (i) use of the assumption an, /3n > 1), direct 
computations lead to 

Dn(0 = 
^wl -If ^2(n + an)(n + an + f3n - 1) 

V2' \wn 2n + an + /3n 

/   _    / (n + /?n)(n+l) 1\Q" 
\       y (n + an)(n + an + /3n- l)^n/ 

^(n + lnXtt + an + ffn-m^ 
2n + an + /3n J 

x    1 + 
(n + an)(n + l) 

(n + f3n)(n + an + f3n - I) wn 

Hence, for z € (C[rn}Sn], we get 

P^^>(V^ * + *. - An) Wn+l)(n + a  ^.-DX 

>+l)(n + an+/?n-l)\n/2 

1/2 

(n + an)(n + /3n) 

2n + an + /3n 

^n - Y 
(n+l)(n+/3n) 

(n+an+(3n-l)(n-\-an) 

Wn 

n + an + /?n - 1   ^w + V (n+^+/3n-l)(n+/3n) ^n   A/^ - 1 

< 

2n + an + /3n 

X^ |t£;n| v^kl 

wn w^t1 

Kn 
x/knl2 -1   n    v^MP^' 

(3.17) 

by (3.13) and Stirling's formula. Consequently, the left-hand side of (3.17) is uniformly 
bounded on compact subsets of C[r>s], and thus Vitali's theorem on compact conver- 
gence for sequences of analytic functions implies the full statement of the theorem.    □ 

As a consequence of the strong asymptotics in Theorem 3.3, we obtain the weak 
asymptotics for the rescaled Jacobi polynomials Pn n \\/D^z+Bn— An) by forming 
the limit 

1   d lim - — log P^n,^) (y^ + Bn _ ^ ) 
n dz '+r-¥ + V(z-r)(z-s) 

,     (3.18) 

z G C[r)(S], which is possible in view of the uniform convergence on compact subsets 
of C[r,s] in (3.16). Stieljes inversion for the right-hand side of (3.18) leads to the 
generalized semicircle density 

2  ^/(s-x)(x~r) 
TT     l + 2(r + s)x   ' 

r < x < s, (3.19) 
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being the density of the limit distribution of the zeros of the rescaled Jacobi polyno- 
mials under consideration. A different derivation of (3.19) based on the differential 
equation for Jacobi polynomials is contained in [5, Theorem 2]. If a = b = oo, then 
we have r = —1, 5 = 1 (see (3.7)) and (3.19) reduces to the density of the classical 
semicircle law, which also is well known to be the weak limit of the zeros of the rescaled 
Hermite polynomials Hn(y/2riTT z) [e.g., 4-6, 19, 23, 30]. This coincidence of the 

weak asymptotics gives rise to the question: How are P^tn^n\y/D^ z + Bn -An) and 
Hn(\/2n + 1 z) related asymptotically when z 6 C^i]? In view of the known strong 
asymptotics (w is defined in (1.4)) 

as n —► oo, holding uniformly on compact subsets of Cf.i^j [e.g., 7, 25, 29], on the 
basis of Theorem 3.3, it is not difficult to give various answers to the above raised 
question. We restrict our explanations to two cases of ultraspherical polynomials 
which are formulated by the following relative asymptotics. 

Theorem 3.4. Suppose that the function w is defined in (1.4). // the real sequence 
(an) satisfies 

lim — = 0, 
n—oo an 

then 

whereas 

n!_2^ pfr*"*") (y/l-AAlz) _       (   -3-w4   ^ 

n^c an/2 iJn(V2^TT Z) " ^^(^ - 1) J ' (3-21) 

n! 2- ^n2,n2) (4nN fl-hw2- 2wt -2w6\ ,      x 

SSo"^-       fln(A> + lz)       =eXPV 8^(^-1) ) ^^ 

and both formulae (3.21), (3.22) hold uniformly on compact subsets ofC[-i^]. 

Both limit relations of this theorem follow by tedious but straightforward compu- 
tations based on Theorem 3.3 and (3.20) as explained above. Therefore, we omit the 
detailed calculations. Finally, in this section, we give the complementary part of the 
generalized Darboux formula (3.14) that is the oscillatory asymptotics on the interval 
of zeros. 

Theorem 3.5. Suppose that the real sequences (an),(/3n) satisfy (1.9) with at least 
one of the limits a, b being infinite. Further assume that 6 E (0, TT) is fixed and the 
functions pn and an are defined through 
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Pn(0) = nO + - + ^ 

,      JO .       V(n + an)(n + an + & - 1) + y^n + l)(n + I3n) 0\ 

I2 vXn + an)(» + «„ + A, - 1) - ^(n + l)(n + M 2J 

^A /?_„   *„„   ^/(n + /?n)(n + an + /?n - 1) - ^(n + l)(n + On) {--arctan   y" + ^^ + a" + ^ " ^ - V(" +!)(" + a")  tail *1 
12     ^ ^  A/(» + A»)(n + an + Pn - 1) + V(n + l)(n + an)    ^2/' 

(3.23) 

o»(«) = 

y/(n + pn)(n + an + /3n-l) + ^{n + l)(n + an) 

2n + an + /9„ \1/2 

7r(n+l)(n + an + /?„ - l)sin0/ 
n/2 /   o« J. «.   J. fl     \ Q:»+^" /      (n + an)(n + /3n)      N"^/ 2n + an + /?n  V 

V(n+l)(n + an + l3n-l)J      \n + an + /?„-!/ 

Vfi     o^-   / (n + l)(n + /?n) (ri + l)(n + /3„) \-Q"/2 

X   (  1 — 2 COS V  \ / 7 TT -r + 7 — -r   ' 
y (n + an){n + an + pn - 1)      (n + a^Xn + an + pn - 1) 

x (i^cos* r in+1)(w+a,j ;+ k±^n-+^   v^72 
(n4-^n)(n + an + /3n-l)      (n + /3ri)(n +an+ /?n - 1) 

(3.24) 

// 

K-/3n)(n + l) /(n + l)(n + an + /?n-l) 
+ W 7 ; —r-r    COSC/, 

2^71(71 + an)(n + Pn)(n + an + /3n)      y n(n + an + f3n) 

then the rescaled Jacobi polynomial in (2.4) satisfies 

P^'M (y/D^ x + Bn-An)= an(9){smpn(e) + o(l)} (3.25) 

as n —> oo. 

In (3.23), "arctan" denotes the principal branch, that is — f < arctan £ < ^ for 
real £. Moreover, from general estimates for the remainder of the saddle point ap- 
proximation [20, 31], it can be shown that the error term in (3.25) holds uniformly in 
0 G [e, TT — e]. To a large extent, the proof of Theorem 3.5 is similar to that of Theorem 
3.3 and the determination of the quantities in (3.23), (3.24) follows the calculations 
in the proof of Theorem 1 in [8]. Therefore, we omit the details. We only mention 
that the function pn in (3.23) satisfies Pn(0) = §(26 — sin20)(l + o(l)), n —> oo, which 
indicates the similarity to the corresponding Plancherel-Rotach formula in [25, p. 201 
(8.22.12)] for Hermite polynomials. 

4. The case an/n —» a and /3n/n —* b 

As already mentioned in the introduction, the special case of linear parameter se- 
quences an = an + a, /3n = bn + /?, a, b > 0, has been dealt with extensively in 
[3, 8]. Now, more generally, we impose condition (1.9) with a, b G [0,oo) both being 
finite. In contrast to the preceding section, here, as in the case of the classical Dar- 
boux formulae (1.2), (1.3), we consider the nonrescaled Jacobi polynomial Pn (z) 
represented by (2.2). Again we apply the saddle point approximation via Lemma 2.1. 
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Since the calculations are very similar to those in Section 3, we only state the resulting 
two theorems below. To this end, we modify the quantities rn, sn, wn (see (3.3), (3.4), 
(3.9)) and introduce the notations 

. _ A»(Ai - 2) - anK - 2) - V(n + l)(n + ara)(n + /?ra)(n + ara + /3n - 1) 
(2n + an + /?n)2 

(4.1) 

* _ Pnjfin - 2) - an(an - 2) + 4^/(71 + l)(n + an)(n + Mjn + an + /?n - 1) 
5n (2n + an + /3n)2 

(4.2) 

"Jl-^l^ (*-!^+ >/(*-1l)(*--!l)). 

the square root being chosen such that the cut z-plane C[r*)S*] is mapped conformally 
onto the exterior of the unit circle |w* | > 1. Obviously, we have r* -> r, 5* —> 5 where 
r, s are given by (1.7). Now we have 

Theorem 4.1. Suppose that the real sequences {an), (f3n) satisfy (1.9) with both limits 
a, b being finite. If the function w* is defined in (4.3), then for z G C[rjS] the Jacobi 
polynomial Pn'(z) satisfies 

pMn){z)=^_ 2n + an-\~/3n \    V       (n +an)(n4-/3n)       \ 
27r(n + l)(n + an + /3n - 1) J      \(n + l)(n +an+pn - 1) 

f   2n + an + /?n < |ari 

\ Tl + an + ^n " 1   w* _    / (n+l)(n+^) f 

I n + Qn + Pn - 1   ,«* + 4 / (n+l)(n+an) | 

X 
n       (l + o(l))',     as n —► 00. «2_ 1)1/2 

Concerning the fractional powers and the uniform validity on C[r)S], analogous prop- 
erties hold as in Theorem 3.3. 

Theorem 4.2. Suppose that the real sequences (an); (/?n) satisfy (1.9) with both limits 
a, b being finite. Further assume that 6 G (0, TT) is fixed and the functions pn, an are 
defined in (3.23), (3.24), respectively. If 

MPn - 2) - anjan - 2) + ly/jn + l)(n + an)(n + /?n)(n + an + i9n - 1) cos(9 
:r~ (2n + an+ian)2 

tten £fte right-hand side of (3.25) ateo serves as an asymptotic form for the Jacobi 
polynomial Pk*nM(x). 
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Arguing as in Section 3 from Theorem 4.1, we can derive the known limit distribu- 
tion of the zeros of P}°tn>>3n> under the assumptions on an, /3n of this section [2, 7, 8, 
29]. 
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