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Dedicated to Richard Askey on the occasion of his 65th birthday 

ABSTRACT. For each given p > 1, we minimize the integral /_111 — /(a:)|pda: over 
all entire functions / belonging to the Laguerre-Polya class having x = — 1 and 
x = 1 as consecutive zeros. The extremal function turns out to be of the form 
c(l — x2) where c depends on p. The case p = 1 of the problem was considered 
earlier by J. G. Clunie. 

1. Introduction 

During the course of a lecture on convergence properties of polynomials with only real 
zeros, given at the Universite de Montreal a few years ago, J. G. Clunie mentioned the 
following proposition as a lemma crucial for the proof of the main result which gave a 
necessary and sufficient condition for an entire function to belong to the well-known 
Laguerre-Polya class. 

Proposition 1. LetVR denote the class of all polynomials with only real zeros, having 
x = — 1 and x = 1 as consecutive zeros. Iff G VR, then 

'   |1 - f(x)\dx > -L . (i.i) 

For reasons explained in [2, p. 110], the manuscript on which the lecture was based 
has never been submitted for publication. This is why this inequality did not get 
the attention it might have otherwise drawn. For Clunie, it was enough to know 
that for / belonging to VR, the integral J_111 — f(x)\dx was bounded below by a 
positive constant not depending on /; but once such an inequality is discovered, it 
becomes natural to look for its sharp version. While considering another problem for 
polynomials in VR, we needed to know (see the proof of Theorem 2 of the present 
paper) the infimum of J_1 |1 — f(x)\2dx over all polynomials belonging to VR. We 

then found it natural to consider the problem of minimizing /_1 |1 — f(x)\pdx where 
pe(0,oo) and/E^R. 

If / is negative on (-1,1), then /^ |1 - (-f(x))\*dx < /^ |1 - f(x)\Pdx for all 
p > 0, so if VR+ consists of those functions in VR which are positive on (—1,1), then 

/_' 

inf   f |1 - f(x)\*dx =   inf    /' |1 - f(x)\>dx. 
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At this stage, it seems desirable to mention that an entire function is said to belong 
to the Laguerre-Polya class, £-^3 for short, if it is the local uniform limit in C of 
a sequence of polynomials with only real zeros (see [1] and some of the literature 
cited therein for additional facts about £-$*). Let us denote by (£-^)i the set of all 
functions in £-^3 which have x = — 1 and x — 1 as consecutive zeros and are positive 
on (-1,1). A function / in (£-?J)i can be written as f(z) = (1 - z2)ip(z) where 

oo 

^(z) = ce-az2+bz JJ(1 - tkz)etk*,    c>0, a>0, 6GE, 
jfe=i 

and -1 < tk < 1 for k = 1,2,3,... such that J2kli ** < o0- Note that / G (£-^)i if 
and only if it is the local uniform limit in C of a sequence of polynomials in PR+. 

2. Statement of results 

We prove: 

Theorem 1. For eachp E [l,oo), there exists a unique constant Cp > 0 such that for 
every f G (£-$)})i, different from Cp(l — x2), we have 

f   \l-f(x)\pdx> f   \l-cp(l-x2)\pdx. (2.1) 

Remark 1. For each p, the quantity on the right-hand side is a positive number which 
is independent of /. It is easily seen that ci = 1/(1 — 4 sin2 IT/IS) and 

rl 

|1 - ci(l - x2)\dx = (2/3)(48? - 35i + 1)/(1 - s?) £ '-1 

with si = 2sin7r/18, i.e., (1.1) can be replaced by the equality 

min     I' |1 - f(x)\dx = |4si     3gi + 1 = 0.61407- • • . 

We include the following result because the case p = 2 of Theorem 1 plays a crucial 
role in its proof. So it may be seen as an application. 

For any continuous function / : [—1,1] "—► C and any p G (0, oo), let ||/||p := 

(2-1 /^ \f(x)\*dx)1/p; besides, let WfW^ := max-i^i |/(x)|. 

Theorem 2. // / belongs to £-?P and has x = — 1 and x = 1 as consecutive zeros, 
then 

ii/iii<y|ii/ii2 (2.2) 

where equality holds if and only if f{z) := c(l — z2), c G M \ {0}. 

Remark 2. Theorem 2 is an analogue of a result of Erdos and Griinwald [4].  They 
had proved that under the conditions of Proposition 1 

ll/lll < \ ll/lloo 

where equality holds if and only if f{z) := c(l — z2), c G R \ {0}. 
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Let PQ) Pi, - • • j Pn> • • • be the orthonormal set of Legendre polynomials, i.e., 

[§] 

-2v    (11 = 0,1,2,...) w-J±P+p-v®(?;*y 2      2n 
L>=0 

Consider an arbitrary function / belonging to £-^3 having x = — 1 and x = 1 as 
consecutive zeros and denote by 6o, 6i,..., 6n,... its Legendre-Fourier coefficients, 
i.e., 

bn := /    f(x)Pn(x)dx,    n = 0,1,2,... 

Then [3, Theorem 8.9.1] 

|l = ^M,      ||/||2 = 
1  ^ 

SO 

\bo\2<5j2\bn\2, (2.3) 
n=l 

which says in particular that |6o| can be estimated from above, in terms of the coeffi- 
cients &i, 62,..., &n> Thus, we have: 

Corollary 1. If 60,61,..., bn,... are the Legendre-Fourier coefficients of a function 
f belonging to £-^3 having x = — 1 and a: = 1 as consecutive zeros, then (2.3) holds. 
The inequality is sharp. 

3. Preparatory lemmas 

3.1. The class PR+>n and the set •SDtn.p- Let 7^+^ consist of polynomials in 7>
R+ 

whose degree does not exceed n + 2 and consider the auxiliary problem of determining 

^p:=miy ^\l-f(x)\pdx : / € PR+A    p>0. 

Each / in Vji+}n can be written in the form 
n 

f{x) :=c{l-x2) JJ(l-tfcx),    c>0,-l<tjb < 1 for l<fc< n 

(3.1) 

(3.2) 
fc=l 

It is clear that if /(0) = c < 2~n, then \\f\\oo = M < 1. Consequently, 

0 < 1 - (1 + e)/(a:) < 1 - /(a:),    -1< x < 1 , 

for 0 < e < M~l - 1, so 

/in5P = inf jjT |1 - /(a;)|pda: : / € ^+|n, /(0) > 2'A . 

For any p > 0 and / as in (3.2), let 
/l n p 

l-c(l-x2) JJ(l-tfca:) 
^ fe=i 

dx 
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The function Up(f) := fip(c; t) where t := (ti,..., tn) is continuous on [0, oo) x [—1, l]n. 
We note that 

f       cP J^ ((1 - x2)(l - \x\)n)p dx-2 if 0 < p < 1, 

^(qt)"\(c(^ ifl<p<oo, 

so, given any L < oo, we can find 7L)n,p > 1 such that fip(c;t) > L for all c > 7L,n,p 
and all t in [-1, l]n. Hence, there exists Cp?n e (0, oo) such that 

/xn,p = inf{fip(c; t) : c e [2-\cp,»],t E [-1,1]71}. 

The set En := [2~n,Cp)n] x [-l,l]n being compact, the infimum of Qp(c;t) on En 

is attained for some c = c*n G [2~n,Cp)n] and some t = t* G [-l,l]n. Hence, the 
infimum in (3.1) is attained for at least one polynomial in 7^+^. Let us denote by 
9Jtn)p the set of all such polynomials and define 

mp: := u^=1mn,p 

Further, for any p > 0, let 

&>'•= ■MI: |l-/(x)|p: 

Then it is clear that 

/ip:= -{/: |1-/WIP: 

feVR+ 

femp 

}• 

3.2. An essential property of polynomials in 9Jlp. Prom Rolle's theorem, it 
follows that an arbitrary / in ,

PR+ has one and only one critical point in (—1,1), 
so the graph of y = f(x) on (—1,1) cannot have more than two points of intersec- 
tion with the line y = 1. It is not self-evident but if / E 9Jtp, then there must 
be two such points (£i, 1), (£2,1) where -1 < £1 < £2 < 1. To see this, note that if 
f(x) := c*(l — x2)g(x) belongs to 9Jlp, then because 0 < c* < 00, the partial derivative 

of jti |1 — c(l - x2)g(x)\pdx with respect to c must vanish at c*. But 

/   \l-c(l-x2)g(x)\Pdx = -p I    sgn(l-c(l-x2)g(x)) 

x |1 - c(1 - a;2)0(aO|p-1(l - x2)g(x)dx, 

so it cannot vanish for c = c* unless 1 - c*(l - x2)g(x) changes sign in (-1,1), and 

then it must do so twice. So in looking for the infimum of /_111 - f(x)\pdx over 
^R+,n? we may restrict ourselves to polynomials whose graph on (-1,1) intersects the 
line y = 1 in two distinct points. 

3.3. A reformulation of the problem. Given two points £1, £2 in (-M)> let 

^R+.n^i,^2 consist 0f all those polynomials in ^+,71 whose graph on (-1,1) intersects 
the line y = 1 in the points (fi,l) and (^2,1). The set pR+.n^i,^ may be empty 
for small values of n. For example, VR+^I^^ = 0 if £1 = 0, (y/E - l)/2 < ^2 < 1. 
However, we claim that for each pair £1, £2 where — 1 < £1 < £2 < 1? there exists a 
smallest positive integer n* = n*(£i,£2) such that PR+^^^2 7^ 0 for each n>n*. It 
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suffices to show that for some c > 0 and some t G (—1,1), depending on £i, £2, and n, 
the polynomial f(x) := c(l — x2)(l — tx)n satisfies 

/&) = /(&) = ! (3-6) 

for all large n. Let n > 1. For (3.6) to hold, we must have 

where a = ((1 — ^^/(l ~ ^i))1//n- ^ is clear that a —» 1 as n —» 00, so 

|(a-l)/(a6-&)|<l 

for all large n. For each such n, (3.6) holds for f(x) := c(l - x2)(l - ta;)n if and only 
if 

(i-e2
2)1/n6-(i-e?)1/n6 

(6(i-e2
2)1/n-ei(i-^)1/n)n 

c=C(n^a2) :=:    (i-axi-gxa-ft)"    • (3-8) 

For each n > n*(£i, £2)5 let 

Sn.fc.fcO*) := c(n,£1,6)(l - x2) (1 - t(n,£i,6)a)n (3-9) 

with ^(n, £1,^2)) c(n,£i,£2) as in (3.7), (3.8), respectively. In particular, if £2 = — £1? 
then t(n,Ci,&) = 0 and c(n,£i,£2) = 1/(1 - £1) for all n > 0. 

Recalling the definition of /Xp, we see that if 

Mn,a,6,P■'•= inf { /     I1 "* f(X)\Pdx  :  / e PR+,n,£i,£2 I ^      P > 0* 

then 

3.4. Two crucial lemmas. Given £1, £2 such that — 1 < £1 < £2 < 1, the infimum 
/in,£i,£2,p 0f /_i |1 ~ fix^dx over all polynomials / G ^R+.n^i^ for any fixed n > 
^'*(£i?£2) is attained. To see this, observe that if / E VR+ ,n,£i,£2> t':ien for eac':l 

a; E (—1,1), we have 

/to)    1 -l^il2 (1 - mn - (1 - |{.l)"+1(i +161) ' 
In particular, 

2n 

/(0)<(i-i6i)n+1(i+i6i)' 
It follows that if /(z) := ^"=0 a«-2'/. then 

M < t,(n,^&) := Q (1_|gi|)n
2;i(1 + ki|),        0 < , < „ . 
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For each j e N, there exists a polynomial hj (z) := J2v=o a^3zV belonging to PR+ )n^1 ^2 
such that 

/ 

1 i 
|1 - hj(x)\*dx < Vhituto* + - 

1 J 

Since \a^j\ < u(n, v, fx) for all j 6 N and 0 < u < n, we can use a standard argument 
to select a subsequence {hj1 ,...,hjk,...}oihj converging uniformly on any compact 
subset of C to a polynomial F of degree at most n. Since ^(^i) = 1 for each j, we 
note that F cannot be identically zero. 

Note that PR+,I,£1I£2 is either empty or consists of only one element, namely $1,^,^. 

Lemma 1. Let n > 2. If f e TV^Lfc and f ^ Qn&fo* then for al1 P > 0, we 
have 

J   |1 - f(x)\pdx >f\l- ®n^2(x)\Pdx . (3.11) 

Proof. Let F(z) := (1 - z2)(p(z) be a polynomial in pR+^.&.fc for which Hn^^v is 

attained. First we observe that <p cannot have zeros in (—oo, —1] and [l,oo) at the 
same time. Suppose it does. Let Ai be the smallest zero of F and A/ the largest. For 
all sufficiently small e > 0, the polynomial 

*■..(*)'-'W-.(._Jgg_,,)(«-&)(«-6) 
belongs to pR+.n^fc and F(x) < FeAx) < 1 if x e (-l,^i) U (6,1), whereas 
1 < F€fi(aO < F(x) iixe (6,6). Hence, 

/   \1-Fejl(x)\pdx<  f   \1-F(x)\pdx 

Assume that cp has no zeros in (—oo, — 1]. • We claim that ip cannot have two or 
more distinct zeros in [l,oo). Suppose it does. Let Aj be the largest zero and Xk the 
largest but one. It is geometrically evident that for all small e > 0, the polynomial 

F„,W:=f(*) + .(x_^g_Ai)(s- ftX,- {J 
belongs to 'pR+,n,£1,£2 and F(x) < ^,2(2;) < 1 if x G (-1,6) U (6,1), whereas 
1 < Fej2(x) < F(x) iixe (6,6). Hence, 

f   \1 - Fe,2(x)\p dx < f   \1-F(x)\pdx. 

We have proved that F(x) must be of the form c(l—a;2)(H-aa;)m where n*(6,6) ^ 
m < n. If 6 = "6, then clearly a. = 0 and F(x) =.^n^u-^(x) = (1 - x2)/(l - g). 
We claim that if 6 ¥" ~6, i-6-, a ¥" 0, then m cannot be less than n. Suppose it is. 
For sufficiently small e > 0, the polynomial 

F6,3(x) := F(x) + e^L (x - &)(* - &) 

belongs to Pa+.n,^,^ and 

/"   \1-F£,3(x)\pdx< f   |l-.F(aOlpda?, 



APPROXIMATION BY ENTIRE FUNCTIONS 27 

which is a contradiction. Hence, F must be the polynomial $n,£i,£2- ^ follows that 
/4n,£i,£2,p is attained by one and only one polynomial, namely $n,£i,£2* ^ 

Prom Lemma 1, it follows that 

Mp=       inf inf        f   |1 - $n,eif£9(a?)|Pd» . (3.12) 

Lemma 2. ie* -1 < ^i < ^2 < 1 and p > 0. Tften 

/or aZ/ n > n*(^i,^2)- iw (3.13), equality holds only if £2 = —£i- 

Proof. The case £2 = —£1 is trivial; so let £2 7^ -£i- Refer to (3.9) and assume that 
l/t(n,fi,f2) > 1. If l/t(n,fi,£2) > 1, then for all e > 0, the polynomial 

^(x) = *„lClA(x) + 6(1 - x2) (1 - tfofUa) x)""1 (x - ftJCx - &) 

has a zero of multiplicity n - 1 at l/t(n, £1,6)5 simple zeros at —1, 1, one simple zero 
slightly larger than l/£(ra,£i,£2)j and another simple zero which is positive and large. 
In the case where £(n,fi,f2) is equal to 1, the zeros of ge at l/£(n,£i,f2) anci 1 have 
to be replaced by a zero of multiplicity n at 1. Hence, 

J   \l-g€{x)\pdx< J   |l-*„,Cl>&(aOr<*r. 

Since ^ belongs to ^R+,n+i^i,$2 anc^ h818 ^wo distinct positive zeros, we conclude that 

/    |l-*n+Ul,e2(a:)|pda;<  /    ll-^WT^ 

<J^\l-$n^2(x)\pdx. 

The case l/£(n,£i,£2) < — 1 can be handled similarly. D 

3.5. A "reduction" of the problem. Prom the expression for 0(71,^1,^2) given in 
(3.8), it is easily checked that 

r      <   c ^      re ^     (i-g|)^r(i-^)-^r 
Jim c(n,^2) = c(6,6) := (1 - ff) (1 - g|)  " 

Further, referring to (3.7) for the definition of t(n,£i,£2), we note that n£(n,£i,£2) 
tends to a finite limit as n —> oo. Indeed, 

Jim nt(n,&,&) = p(£i>&) := In ( -—^2 

It follows that for any fixed a; in [—1,1], 

*n^,fo(*) -» c(ei,6)(l - x2)e-P^'^x       asn->co. 

Besides, from the proof of Lemma 2, it is clear that for all n > n*(£i, £2) 

*       M^S1 if  «€[-i,6)u(&,i], 
•"**W-\*B.(€li&)ieiA(x)    if   sEfo,*,]. 

Hence, the functions |1 - ^n^i,^^)^ are uniformly bounded on [—1,1]. We may use 
Lebesgue's bounded convergence theorem to conclude that 
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n>r:   ^_#,_, „ _i 

|1 - C(fi,f2)(l - X^C-^^^^IPdx . 

(3.14) 

Hence, from (3.12), 

/; 

— l<qi<«<l 7-1 I 

P 
dx . 

It is easily checked that c(£i, £2) can take any positive value as £1, £2 are allowed to vary 
such that — 1 < £1 < £2 < 1; besides, p(£i,£2) can take any real value. Consequently, 

/xp>    inf     /   \l-c(l-x2)e-px\pdx 

=    inf     /   \l-c(l-x2)epx\Pdx . (3.15) 

The functions c(l — a;2)eprc do not belong to 7^+ except when p = 0. So determining 
the infimum on the right-hand side of (3.15) can solve our problem at least in the 
polynomial case if it occurs for p = 0 and for no other p. We shall show that this is 
indeed the case if p > 1. 

4. Proof of Theorem 1 

We shall first assume that / is a polynomial and start with (3.15). In our argument, 
the case p = 1 has to be distinguished from the case p > 1. 

4.1. The case p=l. For sake of clarity, we divide the proof into several steps. 
Step 1. First let p be any given nonnegative number and let us minimize i^c, p) := 

/_i |1 ~ c(l ~ x2)epx\dx as c is allowed to vary in [0,00). Clearly, F(c, p) tends to +00 
as c tends to +00. Furthermore, F(c, p) < F(0, p) for all small positive values of p. 
Hence, the infimum of F(c, p) over [0,00) is attained at some finite point of the open 
interval (0,00). At such a point, we must have 

-j- =  /    sgn (1 - c(l - a;2Kx) (1 - x2)epxdx = 0 . (4.1) 

This can be satisfied for some c only if the function 1 — c(l — x2)epx changes sign in 
(—1,1), at least once. Indeed, it must do so exactly twice since it has only one critical 
point in the interval. Let 1 — c(l — x2)epx change sign in (—1,1); denote by £i?c,£2,c 
the points where it does and let £i)C < £2,0- We claim that (4.1) is satisfied for only 
one value of c. To see this, divide the region bounded by the curve y — (1 — x2)epx 

and the interval [—1,1] into three parts by the lines x = £i)C, x = £2,0- Denote by 
2li(c) the area of the part lying to the left of a; = £i)C, by 212(c) the area of the one 
lying to the right of x = £2,0 and by 213(c) the area of the part in the middle. Then 
(4.1) can be written as 

21(c) := 2ti(c) + 212(c) + 213(c) = 0 . 

If 1/c is small, then 2li(c) + 212(c) is small and 213(c) is relatively large; but as 1/c 
increases, 2li(c) + 212(c) increases while 213(c) decreases. So there is one and only one 
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value of c for which 21(c) = 0. Thus, for each p > 0, the equation (4.1) has a unique 
root which we denote by c(p). Let £i(p) := £i,c(p)> 6(p) := £2,c(p)- 

Step 2. For each given p > 0, 

mm 
c>0 

since 

Hence, 

/   \l-c(l-x2)ef)X\dx= f   |l-c(p)(l-a:V1^ 

= J1 sgn ((x - UP)) (X - 6(P))) (1 - c(p)(l - x2)e^) dx 

= j    sgn ((x - ^i(p)) (x - 6(p))) da? 

^ sgn ((x - €i(p))(x - 6(P))) (1 " ^2)epx^ = 0 . (4.2) 

min f1 |1 - c(l - x2)e^| dx = 2 - 2 (&(p) - ^(p)) . (4.3) 

We show that ^(p) - ^i(p) is a decreasing function of p for all p > 0. For this we 
make use of (4.2) and the two relationships 

c(p)(l-£?(/>)) e^'^l, (4.4) 

cO»)(l-e|(p))e^a(',) = l. (4.5) 

We note that ^(p) > 0 for all p > 0 since otherwise we would have 

0 = |   Sgn((x-Up))^-^(p)))^-^)epxdx 

= J0 sgn ((x - ?1(p))(x - 6(p)))(l - x2)e<>*dx + jf (1 - a^ds 

> - /  (1 - a^Je^da; +/"(!- a^Jc^da; 

>0. 

Since for p > 0, we have 

1 ~ ^i(^) _ fiPtta(p)-Ci(p)) > i 

1-^(P)" 

it follows that £2(p) > |£i (p) I > and so 

6(p) + £i(p)>0,        P>0. (4.6) 

Of course, 6(0) + fi(0) = 0. 
We extend the definition of F(c, p) by setting F(c, p) := /^ |1 - c(l - x2)e^|dx for 

all peR. Then, clearly F(c, -p) = F(c,p). The definitions of c(p), ^i(p), and ^(p) 
also extend in an obvious way to negative values of p. Furthermore, c(—p) = c(p), 
£i(-p) = -6(p) and 6(-p) = -^I(P)- In particular, 6(p) -^I(P) 

is an even function 
of p. 
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Step 3. We now prove that £i(p), 6(p)) and c(p) are continuously differentiate 
functions of p. For this we write (4.1) in the equivalent form 

Fi(Zi,b,c,p):=J   sga((x-^)(x-^))(l-x2)ePxdx = 0, 

F2(Z1,b,c,p) := In(C(l -g)e^) = 0, 

F&i, &, c, p) := In (c(l - &)eX») = 0, 

and apply the imphcit function theorem [5, Theorem 9.18]. It suffices to show that 

dF\    dFi dFx 

96     %      dc 

d{FuF2,Fz) =    dF2    dF2 dF2 

ditu&c)          d^     dfr      dc 
dFz    dF3 dF3 

d£i     d&      dc 

¥=0. 

The calculations are fairly simple, and we get 

dFi dFi dFi 
dh     'V    ^)e    '    56 -   ^    ^>e    '     dc 0, 

dF2 

96 " 

96       ' 

26 

96 

+p, 
9F2 

96 
26 

= 0, 

1-3 
2 +Pi 

dF2 1 
dc c 
dF3 

dc 
_ 1 

c 

So 

d(FuF2>F3) 1 f _& ^\ 
*\i-8   i-6V' 

(4.7) 

(4.8) 

9(6,6,0) 

which is positive since £/(l — £2) is an increasing function of £ in (—1,1). 
Step 4. Now we prove that 

&(P) - £(P) = -\<P) J   sgn ((x - 6(p))(x - 6(p)))x3e^dx . 

Write (4.2) in the form 

/       (1 - x2) epxdx - (1 - a;2) epxdx + /        (l - a:2) c^dx = 0 
Jbip) hi{p) J-i 

and differentiate with respect to p to obtain 

- 2£(p) (1 - 62(P)) e^^ + 2£(p) (1 - 62(P)) e^>W 

+ \ - + \x (1 - x2) epxdx = 0, 
U-i ^I(P) ^2(P)J 

which gives 

^(P) - ^I(P) = ^ c(p) jf   sgn ((a: - ix{p)){x - 6(p)))(x - x^e^cfa . (4.9) 
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However, if p > 0, then from (4.8) it follows that 

y1 sgn ((» - fc(p))0n - &(p)))xe^dt = (l - e2
2(^))e''«2(rt - (l - lUp))***™ 

where the expression on the right is zero by (4.4) and (4.5). This proves that the 
integral on the left is zero for p > 0; but by continuity, it must be zero for p = 0 also, 
i.e., 

J   sgn((x-^(p))(x-^(p)))xef)xdx = 0,        p > 0; (4.10) 

so (4.7) holds. 
Step 5. Next we show that for p > 0, 

(-p + 60>) + &(/>)) I' sgn {(x - Ci(p))(x - S2(p)))zV*d* 

= £ sgn ((x - ei(p))(x - &(p)))(x - fcOOX* - &(p))(l - x2)e»xdx 

+ ^)fe2(p)-^(p)). (4.11) 

Note that 

(x - ^(p))(x - 6(p))(l - x2) = 1 - x4 + (&(p) + ^(p))*3 

- (1 - ei(p)&(p))(l " ^2) - (&(/>)) + 6(P)))^ • 

Hence, using (4.2) and (4.10), we obtain 

y sgn ((a: - 6(p))(x - fo^)))^ - ^(p))(x - &(/>))(! - x2) e^dx 

= y sgn ((x - ^(p))(x - 6(P)))(1 - x4) eTdx + (6(p) + 6(p)) 

xy   s&i{{x-^{p)){x-e.2{p)))xzePxdx. (4.12) 

It is easily seen that the first integral on the right-hand side is equal to 

_ 2 

P 
{(1 - £(,>)) e*'*" - (1 - tf (p)) e^^} 

+ - /  sgn ((x - ^(p))^ - 6(p)))x3 e^dc . 

Using (4.4) and (4.5), we see that 

(1 - gtoJe^M - (1 - tf (pfle*W = -1^$(,) _ faW) 

and so (4.12) is equivalent to (4.11). 
Step 6. Now refer to (4.11). The integral on the right-hand side is positive since 

the integrand is nothing but \{x - £i(p))(x - 6(p))|(l - x2)epx. Because of (4.6), the 
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other quantity on the right-hand side of (4.11) is also positive. For the same reason, 
4//? + 6(p) + fi(p) > 0 and so 

/. /-i 

Now from (4.7), it follows that 

dfoOO-&(/>)) 
dp 

i 
sgn ((a? - 6(p))(s " 6(p)))zV*<fc > 0. 

< 0    for   p > 0, 

i.e., ^(p) — £i(p) steadily decreases as p increases in the open interval (0, oo). This, 
in conjunction with (4.3), shows that 

mm mm 
p>0   c>0 

nin  /   \1 - c(l - x2)epx\ dx = min f   |l - c(l - x2)\ dx . 

We use it in (3.15) to obtain the inequality 

inf    /    |l-/(x)| Gfc>min /    \l - c(l - x2)\ dx . 

The inequality can be replaced by equality since the function c(l — x2) belongs to 
VR+. The argument used in Section 3.2 can be used to see that the minimum of 
J_111 — c(l — x2)\dx, when c is allowed to vary in [0, oo), is attained for one and only 
one value of c. With this we have proved Theorem 1 for / G 7^+ and p = 1. 

4.2. The case p > 1. The proof is similar to the one for p = 1 but differs in details. 
Take any p > 1 and keep it fixed. 

Step 1. Let p be any given nonnegative number and minimize 

G(c,p) :=  /   |1 - c(l - x2)epx\pdx 

as c is allowed to vary in [0, oo).  The minimum is attained at some finite point in 
(0, oo). At such a point, we must have 

1    dG : f   Jl_(i-X2)cpa:p 1
Sgn(l-c(l-x2)e^)(l-x2)e^dx = 0. 

pcP-1 dc 
(4.13) 

So 1 - c(l - x2)epx must change sign at exactly two points in (—1,1). Let fijC, £2,0 
be as in Step 1 of the case p = 1. Here again, we claim that (4.13) is satisfied for 
only one value of c. For sake of simplicity, let us use ^(c, x) to denote the integrand 
in (4.13). Let 6p := l/(max_i<a;<i(l — x2)epx). Then, for c > 6p, we may write 

^(c,x) := - (1 - x2)epx - - P"1sgn(l - c(l - x2)e^)(l - x2)epx . 
c 

Let 0p < c < c 4- S and sketch the graphs of (1 - a;2)epx, |(1 - x2)epx - l/c|, and 
|(1 — x2)epx — l/(c + 5)| on (—1,1). Looking at the points in 

(-1, £1,0+*] 5   (£l,c+<5, £l,c] j   (?l,c, £2,c) ,   (&,c7 £2,c+(5) ,   [£2,c+<55 1) , 
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we see that ip(c, x) < ^(c + 5, x) for all x £ (—1,1). The same conclusion is obviously 
true for0<c<c + 5< 0(p) as well. Since ^(c, x) is a continuous function of c, it 
follows that 

V>(c, #) < ^(c -\-S,x)    if   0 < c < c -f S   and    — 1 < x < 1 . 

Hence, J_lil){c^x)dx < /_1
/0(c + 6^x)dx if 0 < c < c + 8- Note, in addition, that 

J_1
fij){c,x)dx < 0 for 0 < c < 0p. Finally, we observe that £i5C —> -1, £2,0 —> 1 as 

c —> 00 and /52^ ^(c, x)(ia;, which is positive, becomes larger than — Jj^'0 ^(c, a;)(ia: — 

T    ijj(c,x)dx,  i.e.,  j_l
,ip{c)x)dx is positive for all large c.     These facts about 

/_i ^fe a:;)c'a: allow us to conclude that (4.13) is satisfied for only one value of c which 
we denote by c(p,/o). Let £i(p) := £i,c(p,p), 6(p) := ^2,0^)- 

Remark 3. For later use, we remark that here again £i(0) + £2(0) = 0 and £i(p) + 
£2(p)>0forp>0. 

Our ultimate aim is to show that G(c(p,p),p) is an increasing function of p for 
p>0. 

We extend the definition of G(c, p) by setting 

G(c,p):=j_  |l-c(l-xVT dx 

for all p G R. The definitions of c(p, p), £i(p)> ^(p) also extend in an obvious way to 
negative values of p. Clearly enough, c(—p) = c(p), £i(—p) = — ^(p)? and ^(—p) = 

-«i(p)- 
Step 2. If p > 1 is given, then c(p, p), £i(p), £2(p) are continuously dijfferentiable 

functions of p. To see this, write (4.13) in the equivalent form 

Gi(£i,6,c,p):= /    --(1 - xV* P_V ((z-£i)(z-&))(!-*Vx<fe = 0, 

G2(6,6,c,p) := c(l - ^)e^ -1 = 0, 

G3(6,6,c, p) := c(l - ^)e^ - 1 = 0. 

After making some elementary calculations, we obtain 

x    /*   |1 _ c(l _ ^)e^|P-2 (1 _ Jffpxfa ^ 

which is different from zero, since — 2a;/(l—a;2)+p vanishes in (—1,1) only at the point 
where (1 — x2)epx assumes its maximum and not at £i or £2. Hence, by the implicit 
function theorem c(p, p), £i(p), and ^(p) are continuously differentiable functions of p. 

In order to show that G(c(p,p),p) is an increasing function of p for p > 0, we 
calculate its derivative with respect to p. It is equal to ^cf(p) + |p; but ^ is zero 
since c(p,p) is the root of (4.13). Hence, 

|G(c(p,p),p) = pc(M ^ |1 - c(p,p)(l - x2)^^1"1 

x sgii((x - ei(p))(x - k(p)))(z3 - a;)e'
,xdx. 
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Step 3. Now we show that 

jT   |1 - c(p,p)(l - x2)^!*-1 sgn((x - ^(p))(x - b(p))) xePxdx = 0.       (4.14) 

For c = c(p,p), & = ^i(p), $2 = 6(P)> we have 

0=/"   |l-c(l-x2)epiB|p"1sgn((a:-6)(ar-&))(l-»2)e',aBd!r 

= - f   ll - c(l - a;
2)epx|p"1 sgn((:r - (i)(x - &)) rce^dir 

- ^ (/^ + £) (1 - c(l - a!
a)e^)'-1d(l - c(l - x2)e^) 

+ — f 2 (c(l - x Vx - l),,"1rf(c(l - a;2)e''x - l) , (4.15) 
CP ■/?i 

from which (4.14) follows because 

c(p, P) (1 - tfje* = 1,        c(p, p) (1 - £2
2)e<*> = 1. 

So 

;G(c(p,p))/3) = pc(p,p)£|l-c(p,p)(l-a;V
a:r1 d_ 

dp 

x sgn ((a: - &(p))(;r - 6(p))) a^e^da;, 

and it would suffice to show that if p > 0, then 

I   |1 - c(p,p){l - x2^-1 sgn((a; - ^p)){x - &(p))) xV^x > 0.       (4.16) 

Step 4. For c = c(p,p), £i = ^i(p), 6 = 6(p)> we clearly have 

0 < J   |1 - c(l - xVf"1 sgn((x - 6)(x - 6)) ((* - 6)(a: - 6)) (1 - x2) e<>xdx 

= J   |1 - c(l - xVY-1 sgn((a; - ^i)^ - $,)) (1 - x4) e^dr 

+ «i + 6) J   |1 - c(l - z2) e^f-1 sgn((x - 6)(x - &)) x3 e^dr       (4.17) 

by (4.14) and (4.15). Writing 1 — x4 in the form 

1 - x2 + -(-2a: + p(l - x2) + 2x)x2 

P 

and using (4.15), we see that (4.17) is equivalent to 
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0<- f   |l-c(l-xVM5|p"1 sgii((x-^)(x-^))(-2x + p(l-x2))x2ef,xdx 
P J-i 

+ (*i + 6 + -) J   |1 - c(l - x2) c^|p"1 sgn((x - Mix - 6)) x3 c^dr 

= — [   \l-c(l-x2)epx\pxdx 
cpp J-i ' 

+ (6 + 6 + -) ^ |1 - c(l - ^2) e^f"1 sgn ((» - &)(* - &)) x3 c^dc . 

(4.18) 

But 

f \l-c(l-x2)ef>x\pxdx=[   |l-c(l-x2)e^|p 1 sgn ((* -^(x - &)) 

x(l-c(l-x2)epx)xda:. 

So in view of (4.14), inequality (4.18) becomes 

0 < — /   ll - c(l - xVT"1 sgn ((a; - fi)(a - 6))^x 

+ Ui + 6 + " + -) T |1 " c(l - x2)c^|p"1 sgn ((x - €i)(» " 6)) *3 e^cfe . 

But, as pointed out in Remark 3, £i(p) + 6(p) > 0 for p > 0, and so (4.16) would 
follow if we had 

f   |l-c(l-a:2)e^|p"1sgn((x-a)(^-6))^^<0       for p > 0 .       (4.19) 

We are going to show that this is indeed true. 
Step 5. First let £i£2 < 0. Consider the function 

htifofa) := 
1 

fi-fe 

1 £i fic^1 

1 6 6e^2 

1    x     xepx 
= x epx - /3x - a 

where 

a := -£if2-7 ?— > 0,        fi := : ; > 0 
6-?i fo-^i 

Clearly, ^i, £2 are zeros of h^ &. We note that they are simple. Indeed, if h'^ ^ (u) — 0 
for some real u, then (pu + l)epu = /5 > 0; so pu +1 > 0 and e^" = P/(pu + l). Hence, 

h^foiu) := uepu — /3u — a = ■a ^0. 

In addition, we note that /^.^ has no other zeros in [—1,1].   For this, it would 
suffice to show that h'^^ has only one zero in (—1,1). The second derivative h'^^ 
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has only one zero, namely — 2/p, and so h'^^ can have only two real zeros; only 
one of them can lie in (-1,1) if -2/p < -1. So let -1 < -2/p, i.e., p > 2. We 
observe that h^^ decreases on (—oo, -2/p), and at the point -1, it takes on the 
value (-p+l)e~p-/3< -e~p-/?< 0; so it has no zero in [-1,-2/p]. On (-2/p,oo), 
the derivative ^^(x) increases as x increases and therefore cannot have more than 
one zero in (—2/p, 1]. 

It is now clear that h^^ (x) is positive on (-1, £i) U (&, 1) and negative on (£i, £2). 
Therefore, by (4.14) 

0 < J_   |1 - c(l - x2^-1 sgn((x - ^){x - ^))h^2{x)dx 

= Ci 6 (e^2 - e^) jT   |1 - c(l - x^e^f"1 sgn ((* - ^){x - &)) dx 

- (6 e^2 - & e^1) /   |1 " c(l - zVT"1 sgn ((a: - £1)^ - 6)) xdx . 

Since sgn((a;-£i)(a;-6))(l-c(l-a;2)e^) = |l-c(l-a;2)e^|, it follows from (4.15) 
that 

f   \l-c(l-x2)epx\p-1sgn((x-t;1)(x-&))dx= f   |l - c(l - x2)e^|pdx . 

We thus obtain 

(6 e^ - & e^) J   |1 - c(l - z VT"1 sgn ((a: - ^){x - &)) a: ^ 

<£i&{ep^-ep^)  I   \l-c{l-x2)epx\pdx<0, 

which proves (4.19) in the case £i£2 < 0. 
Now let us verify (4.19) when £i£2 > 0, i.e., when 0 < £1 < £2-  Since p > 0, we 

have |1 - c(l - x2^*^-1 < |1 - c(l - x^e"^^"1 for 0 < x < 1, and so 

j   {l-dl-x^e^sgn^x-^x-^xdx 

=f r+r - r+/^ 11 - ^ - ^j^r"1 ^^ 
\J-1 JO J^! J^2/ 

< - [ 2 |l - c(l - a;2)e^|P"1 ardx - / ' |l - c(l - a:2)e-^|P~1 xrfa; < 0 . 

With this we have proved that if / G VJI+, then, for p > 1, 

/   \l-f(x)\pdx>mm[   ll - c(l - a;2)|PGte . 

It is trivial to show that this minimum is attained for a unique c.   The proof of 
Theorem 1 for functions belonging to 'PR* is now complete. 
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4.3. Transcendental functions in (£-^})i. It remains to prove that (2.1) holds 
for an arbitrary / G (£-^3)i which is different from cp(l — x2). Let 

f(x) := c(l - x2)g(x) with g(0) = 1 

be an arbitrary function in (£-^})i which is not a polynomial. The argument used 
in Section 3.2 can be used to show that such a function / (with prescribed g) cannot 
minimize /_111 - f(x)\pdx unless the graph of y = f(x) on (—1,1) cuts the line y = 1 
at least twice. In fact, it must do so exactly twice since each function in (£-^J)i is 
the local uniform limit of a sequence of polynomials in VR+ . Denote these points by 
£i, & and let £1 < £2- 

Case (i). Let £2 7^ — £i- Find a sequence /1, /2,..., /n,. • • of polynomials where 
fn € ^R+,n such that fn tends to / locally uniformly. For all large n, the graph of 
y = /n(a;) cuts the line 2/ = 1 in two points which we denote by £n5i and £n>2 with 
£n,i < ?n,2. Then, clearly £n?i -> £1, £n?2 -> 6 as n -> 00. Now using (3.11) and 
(3.14), we obtain 

p 
dx] j1 \l-fn(x)\pdx>j    \l-0(^,^2) (l-x2)e-^'^x 

SO 

/   \l-f(x)\pdx= lim   /   |l-/n(x)|*dx 
J-i n-^^J-i 

> lim   /   |l-c(fn,i^n,2)(l-a:2)c-^^^a^|pda; 

= J1 \l-c(Z1,b){l-x2)e-<'&M*\pdx 

> f   {l-Cpil-x^fdx 

since £2 ¥" ~€i (see the end of Section 3.5). 
Case (ii). If & = -& = £> then /(x)/(l - x2) < 1/(1 - £2) for all x in (-1, -£) U 

(£, 1) and f(x)/(l - x2) > 1(1 - £2) for -£ < x < £. Hence 
p j^ ii-/(x)ip^>y,1ji- ^a -x2) dx 

5. Proof of Theorem 2 

From the case p = 2 of Theorem 1, it follows that for all real A, we have 

2-2xf   f(x)dx + \2 f   f2(x)dx= f   (1-Xf(x))2dx>^ 

where the inequality is strict unless Xf(x) = |(1 — x2). So 

2A /   f(x)dx - X2 f   f2{x)dx < | 

for all real A. Choosing A = (/_1 f(x)dx)/(f_1 f
2(x)dx), we obtain (2.2). The case 

of equality is easily discussed. 
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