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ADDITION FORMULAS FOR ^-LEGENDRE-TYPE FUNCTIONS 

Mizan Rahman and Qazi M. Tariq 

Dedicated to Richard Askey on the occasion of his 65th birthday 

ABSTRACT. TWO families of addition formula for g-Legendre-type polynomials are 
obtained by application of known product formulas of Askey-Wilson and g-Racah 
polynomials. It is shown that the formula involving the g-Racah polynomials 
also leads to a ^-analogue of the classical addition formula for the nonterminating 
Legendre functions. Unlike the quantum group-theoretic methods used by Koelink 
to obtain essentially the same formulas, our method is purely analytic based on 
qr-series techniques. 

1. Introduction 

The purpose of this paper is to show how to obtain, by purely analytical methods, 
families of addition formulas which, in appropriate limits, approach Laplace's [14] 
addition formula for Legendre polynomials 

Pn (cos 0 cos ip 4- sin 6 sin tp cos -0) 

= Pn{cose)Pn{cx>s<p) + 2 V )w^m;P^(cos9)P^(cosy)cosm^       (1.1) 
^-^ (n + raj! m=l v / 

where Pn(x) is the Legendre polynomial of degree n in #, |a;| < 1, and 

P?{x) = {-l)m(\-J)*±^Pn(x) (1.2) 

is the associated Legendre polynomials; see [21]. Gegenbauer [9] found an extension 
of (1.1) for the ultraspherical (also called Gegenbauer) polynomials C^(x): 

CnicOsOcOScp + SmOsilKpCOSllj) = j—-r-Cn (COS 0)0* (cOSip) 
(2A)n 

, v^2fc + 2A-l(n-fc)!(A)?22fc    ,+k.      „_A+fc/        x^A-i,       .w, .* 
+ E     oxi on C^(cosg)C^(cosy)Cfc   

2(cos^)  (1.3) 
k=l 

2A - 1 (2A)n+fc 

(see [21]), which reduces to (1.1) as A —> | since 

D/N     nh \        J     r     fc + A^YA/       ,\      (2coski/j,    fe = l,2,..., 
Pn(x) = Cn2 (z)    and     lim -y-C^cos^) = < = (1.4) 
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There have been many published proofs of (1.3) since its first appearance in 1875, 
some analytic and some algebraic. Algebraic proofs often rely on group-theoretic 
techniques since addition formulas of special functions usually have group-theoretic 
interpretations. For example, Vilenkin's proof [19] is based on the irreducible unitary 
representations of the group SU(2). Generally, an addition formula is a statement of 
the homomorphism property 

tj,k(gig2) = XX'te1)*^2) (L5) 
l 

where gi, g2 € G, and tj^{g) = (T(g)ej,ek} are the matrix elements of the repre- 
sentation T of the group G on a Hilbert space V with respect to a suitably chosen 
basis {en}; see Vilenkin [19], Vilenkin and Klimyk [20], and Koelink [10]. For further 
references on (1.3), see Askey [1]. Among many applications of (1.3) is Gegenbauer's 
product formula [9] 

mmj=LK{x'y'z)mjdz (L6) 

where 

x      r(A+|)(l-x2-2/
2-z2 + 2x2/z)A-1 

K(x,yiz)=    "       2;V  ^— —^         or    0, (1.7) 
r(^)r(A)        [(l-x2)(l-y2)]A   2 

depending on whether 1■ — x2 — y2 — z2 + 2xyz is positive or negative, respectively. 
This and an extension of it to the Jacobi polynomials due to Koornwinder as well as 
Gasper (see Askey [1]) were the basis of Gasper's elaborate study [6, 7] of Banach 
algebras for Jacobi series. Product formulas of the type (1.6) lead to integral rep- 
resentations of orthogonal polynomials which, in turn, can be used to compute, for 
example, generating functions of these polynomials. 

With the advent of quantum groups and quantum algebras in the second half of 
the 1980s, the quest for addition formulas for g-special functions, in general, and for 
the g-orthogonal polynomials, in particular, has naturally taken a different turn. For 
a brief review of the different approaches to the same question, see Koelink [10] and 
the references therein. Before the start of the quantum era, addition formulas for 
g-Krawtchouk and g-Hahn polynomials were found by Dunkl [4] and Stanton [17], 
through an interpretation of them on Lie-type finite groups. Rahman and Verma 
[15] also found ^-versions of (1.3) and (1.6) by purely analytic methods. However, 
Koornwinder's addition formula [13] for the little g-Legendre polynomials: 

pn(q* ; 1, l\q)Wv(q* ; qx\q) = Pn(qy ; 1, mPn(qx+v ', 1, l\q)Wy(qz ; qx\q) 

| y(q;q)x+y+k(q;q)n+kqk{y+k-n) 

fr[    (q;q)x+y(q;q)n-k(q;q)l 

X Pn-k(qy ; qk, qk\q)Pn-k(qx+y ; qk, qk\q)Wy+k(qz ; qx\q) 

, Y(q;q)y(q;q)n+kqk^+y+1-n) 

fri  (q;q)y-k(q;q)n-k(q;q)k 

x pn-k(qy-k ; qk, qk\q)Pn-k(qx+y-k ; qk, qk\q)Wy-k(qz ; qx\q) (1.8) 

where the little q-Jacobi polynomials are defined by 

pn(x ; a, b\q) = 2^i(q~n, abqn+1 ;aq;q, qx), (1.9) 
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n = 0,1,2,..., and the Wall polynomials by 

Wn(x;a\q)=pn(x',a,0\q) (1.10) 

(see [8]), provides convincing evidence that the group-theoretic method is the more 
natural method of discovering addition theorems because it would be almost impossible 
to suspect a formula of the form (1.8) by analytic considerations alone. However, once 
an addition formula is discovered by algebraic techniques, usually it is not too difficult 
to find an alternative analytic proof as, for example, Rahman's proof [16] of (1.8) would 
testify. The converse does not occur too often, but occasionally it can. Rahman and 
Verma's full addition formula [15] for the continuous g-ultraspherical polynomials so 
far has not been proved directly by the quantum group or quantum algebra method 
although the related g-Legendre-type cases have been proved by quite a number of 
authors; see Koelink [10] for references. The fact that (1.8) is a g-extension of (1.1) 
is not at all obvious. One has to be able to retrieve (1.1) from (1.8) by taking the 
limit q -* 1 after having made appropriate substitutions. This rather delicate limiting 
procedure was carried out by Van Assche and Koornwinder [18]. 

In [12], however, Koelink mentions how to derive the Rahman-Verma formula from 
the g-Legendre case by using ^-derivatives and analytic continuation. Koelink [11] 
also found an addition formula for the big g-Legendre polynomials: 

Pn(s;l,l,-c|<z) = 3¥>2    q n'qn    'V<Z,<Z (1.11) 

(see [8]). Koelink's review article [10] contains a sort of master addition formula from 
which these addition formulas for g-Legendre-type polynomials emerge as special cases. 

The main objective of this paper is to derive two such master formulas, one for the 
continuous and the other for the discrete case, by simple g-series methods, from which 
all the known addition formulas for g-Legendre-type polynomials can be obtained as 
special and/or limiting cases. A g-series or a basic hypergeometric series is a series of 
the type Yl ur where ur is a rational function of qr. 

Denoting the g-shifted factorials 

{(l-a){l-aq)-'.{l-aq% 71 = 1,2,..., . 
(a;^=\l n = 0, (L12) 

k 

(oi,..., ak ; q)n = Y[(aj \ 9)n, (1-13) 

a ^-series of r + 1 numerator and r denominator parameters is defined by 

r+i</?r(ai,a2,...,ar+i ;&i,&25- • • >&r ;<7>2) 

E(ai,a2,...,ar+i ;g)fc      k      /■• i^ 
(a:a)Jhi.ho b„:a)u     '     K  '     ) r+lPr 

ai,a2,... ,a,r+i 
h   h h      ; q'Z 

01,02,..., Or £=0 0? ;g)fc(6i>&2>---A \q)k 

If any of the numerator parameters is of the form q~n where n is a nonnegative 
integer and there is no zero factor in the denominator, then the above series becomes 
a polynomial of degree n in z. In the nonpolynomial case, we need to assume that 
\z\ < 1 and that \q\ < 1 for the sake of convergence. We shall assume throughout 
this paper that \q\ < 1. We shall use some special but standard types of g-series, 
like a balanced and a very-well-poised series.   The g-series in (1.14) is balanced if 



RAHMAN AND TARIQ 

z — q and 6162 • • • br = qaia2 • • • ar+i; it is a very-well-poised series if 0,2 = qch    t 
1/2 

^3 = —9ai   ? bk = qai/ak+i, k = 1,2,..., r. We also shall use a special notation for 
a very-well-poised series: 

r+iWr(ai ; 04, as,..., ar+i ; g, z) 

r+l^r 5 9,^ (1.15) 

See [8] for notations, definitions, and properties of these special g-series. 
In Section 3, we shall derive the following addition formula in the continuous case: 

pn(x ; d, q/d, b, q/b)pm(x ; a, 6, c, d) = ^4o(^i, n, a, 6, c, d)pm(x ; a, 6, c, d) 
n 

+ 2J ^ (m' n, a, 6, c, d)pm+fc (a?; a, 6, c, d) 
fc=i 

min(m,n) 

(1.16) 

where 

Ao(m, n, a, 6, c, d) J^^L;?)» .(,i-2m/a6cd)n 
(q2-2m/abcd ; g), 

'g~n,gn+1,adgm,cdgm 

q,dq/b,abcdq2m      ' g'g 

g-n, qn+1
1bdqrn, abcdq™-1 

q, 6d, abcdq2m 

X4^3 

X4^3 ; sstf (1.17) 

Afc(m,n,a,6,c,d) = r  — — (-d/a)Kq\ * ) 
(g, g, 6d, dg/6 ; g)fc(a6cdg2m-1 ; g)2A; 

x ^^^ 
(g2-2m/a6cd;g)n_fc 

• ^_n^ ^n+fe+l^ adqm+k^ cdqm+k 

qk+1,dqk+1/b, abcdq2m+2k X4^3 ; 9,9 

X4^3 
nk—n  nn+k+l   hrJn'm+k ,bdqm+k,abcdqm+k-1 

qk+1,bdqk,abcdq2m+2k 

-m nl-m/hr nl-m/hj -1-m /-j --n  „n+l 

5   9,9 (1.18) 

A',(m n a 6 c d) - (^ 9      /bc>g      /bd> ^^'^ q~^ ^ 'q)k (   dla^a^) Ak{m, n, a, b, c, d) - fe ^ ^ ^ . q)k{q_2m+1/abcd . g)2fc (-d/a) ^ 

(q2-2m+2k/abcd;q)n-k '        ' 

X4<P3 

qk-n,qn+k+1,adqm,cdqm 

qk+1,dqk+1/b,abcdq- 

rjk—n  nn+k+l  UrfnTn 

2m     5   9,9 

, 6dg,m, ofecdg ,m—1 

qk+1,bdqk,abcdq ,2m 5 «'« (1.19) 
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and 

pn(x ;a,6,c,d) = 4^3 
.n-i n^ie n£,-i0 q n,abcdqn    ,ae   , ae 

a6, ac, ad 
<i,q (1.20) 

are the Askey-Wilson polynomials introduced in [3] with a different normalization 
(also see [8]) and x = cos 9, 0 < 6 < TT. It is not difficult to see that (1.16) is actually 
a terminating version of Koelink's general addition formula in [10, Theorem 4.1]. 

The second addition formula that we shall prove in Section 5 is 

4^3 

= 5o(^ m, a, 6, c, q~N)Rm(qz ; a, 6, c, g"^) 

i?m(^ ia,b,c,q N) 

+ y^2lBk(v,m,a,b,c,q N)Rm+k{qz ',a,b,c,q N) 

771 

+ ]P ^(1/, m, a, 6, c, q-N)Rm-k(qz ; a, 6, c, g"-^) 
fc=i 

(1.21) 

where z = 0,1..., TV, and z/ is a complex parameter which is a nonnegative integer n 
only if the 4^3 series on the left-hand side is a polynomial of degree n in qN~z. Also 

.Rmte* ;a,6,c,g iV) = 4^3 
1,a&tfm+1,g-*,c2*-iV 

ag,g ^jteg 
9,9 (1.22) 

is the g-Racah polynomial introduced in [2]; see also [8], and 

Bo(v,m,a,b,c,q     ) = 4^3 
q~'',tf'+1,q~m/a,q~m/bc 

.2m/-r   ./. ■!   «»? 

X 4^3 

9,5 2m/ab,q/c 

q-v,qv+l,qm-N,abqm+l 

q,q-N,abq2m+2 ; 9,9 

Bk{v,m,a,b,c,q N) = 

{abqm+1,aqm+1,aqm+l, bcqm+\ qm-N, q'", q^1 ; g)fc 

(1.23) 

(q,q,q/c,q-N,abqN+™+2 ■,q)k{abq^+^ ;g)2fc 

• gfc-^; g*+v+i) g-m/0) q-™/bc 

(-l/c)^) 

X 4^3 

X4^3 

q,q g*+1,g*+1/c,.g-2m/a&       ' 

^^ g^+^+l, qm+k-N^ abqm+k+l 

qk+l^qk-N^ahq2m+2k+2 >  V'Q .     (1.24) 
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B'k(v,m,a,b,c,q-N) = 

(aqm-k+1, bqrn-k+1,aqrn-k-hl/c, gm-fc+1, q-u, qu+1 ; q)k 

{q>q,q/c,q-N ',q)k{abq^-2k+2 . g)2fc 
(-q-")^) 

X 4^3 

X4^3 

qk-v, gfc+I/+1, qk-m/a, q^™/be 

qk+\qk+1/c,q2k-27n/ab 
<Ltf 

^-I/, gfc+l/+1, gm-iV, a6gm+1 

9»9 (1.25) 

If 1/ is a nonnegative integer, then (1.21) is valid for arbitrary a, 6, c. Otherwise, 
we need to stipulate that the 4^3 series in (1.23)-(1.25) all terminate, for which it is 
sufficient to assume that qk~Trl/a or qk~Tn/bc is of the form g~n, n = 0,1,2,..., for 
k = 0,1,... ,ra. 

In Section 5, we shall deduce from (1.21) the following addition formula for the 
little g-Legendre functions: 

Mt"; 1. i^iW; «*|«) = P,{I" ; i, mpAf"*"; i, i|«) w.tf; 9"l«) 

+E 
fc=l 

fe9;9)fc ^   )q 

xpu_k(qy ;^,^\q)pv-k(^ ;qk,qk\q)Wy+k(q* ;q*\q) 

+ y^ (g; g)»(g W"1 ;g)fc(- !)* (g+B+i)fc-(S) 

ft=l 
(9;9)y-fc(9»9;9)fe 

xpv_k(qy-k ■,qk,qk\q)pl,-k(qx+y-k ;qk^\q)Wy-k(q' ',<f\q) 

where 

pu(qx ;a,%) = 2^1 
q-^abq^1 

(1.26) 

are the little g-Jacobi functions that become the little g-Legendre functions when 
o = 6=l. However, the addition formula that Floris and Koelink [5] recently obtained 
for the little #-Jacobi polynomials pu(x ^q", l\q) does not follow from (1.21). If 1/ is 
not a nonnegative integer then it is essential for convergence of the 2^1 series in (1.27) 
that x > 0. Koornwinder's addition formula (1.8) is clearly the polynomial case of 
(1.26). One can show that in the nonpolynomial case, (1.26) is a ^-analogue of the 
addition formula for the Legendre function: 

Pv (cos 8 cos tp H- sin 9 sin (p cos VO = Pu (cos 9)Pl, (cos cp) 

r(i/-m + l) 
+2£ ^IXiz + m + l) 

P™(cose)P™(cos<p) cosmip    (1.27) 

where 

pv(x) = F(-u,u + l',l;^-J^) 

P-(x) = (-ir(l -x2)* ^Pu(x) ; (1.28) 
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see [21, 15.71]. The limiting process from (1.26) to (1.28) is essentially the same as 
the one from (1.8) to (1.1) carried out in [18]. 

The proof of (1.16) depends on the evaluation of an integral over products of Askey- 
Wilson polynomials which we shall carry out in Section 2. In Section 4, we shall 
compute sums over products of g-Racah polynomials that will be needed to prove 
(1.21). In Section 6, we shall deduce a special product formula from (5.1) that will 
establish it as an extension of a product formula for the little g-Jacobi polynomials 
obtained by Koornwinder [13]. 

2. Evaluation of an integral 

The orthogonality relation for the Askey-Wilson polynomials defined in (1.20) is 

/ 

i 
w(x ; a, 6, c, d)pm(x ; a, 6, c, d)pn(x ; a, 6, c, d)dx = Sm,nh~1 (2.1) 

i 

where 

iu(a;;ai,a2,a3,a4) = —i— ——,        x = cosl9, (2.2) 

u   =   -ir    b     dAl-Q>bcdq2n ^(abcdq  1,ab,ac,ad ;q)n  _2n 

(1 — abcdq~1){q, cd, bd, be ; q)n 
(2.3) 

(q, ab, ac, ad, be, bd, cd ',q)oo 

where max(|a|, |6|, |c|, |d|) < 1; see [3] and [8]. 
Let k, ra, and r be three nonnegative integers and let 

Sr(m, m + fc):=  /    w(x ]a,b,c,d)(deie,de~'l6)r 

xpm{x\ a, 6, c, d)prn+k{x ; a, 6, c, d)dx. (2.5) 

It is clear from (2.1) that this integral will vanish unless r > k. We will show in this 
section that 

c f         _L M     1,-1 ^"r' bcqm>qm+l ; ^)fc(a^m' 6^m' cd(im 5 9)r or(m, m + A;) = /im  
(g, adgm ; q)k(abcdq2m ; g)fc+T. 

x ^I+!-!;
;^M9r)fc uW9tf-^/abed rt-**-k-*/abed, f-*, 

q-r, q^/ab, q^/ac, q^/bc, q-m ; g, g2/^2)    (2-6) 

for m = 0,1,2,..., and r = fc, fc + 1, k + 2,..., where fc = 0,1,2,   There is no 
particular reason for attaching the parameter d to the r-shifted factorials inside the 
integral in (2.5). It could be any one of the four parameters a,b,c,d. The choice of 
this parameter will naturally affect the symmetry property of the right-hand side of 
(2.6). Since, by Sears transformation formula [8, (III. 15)] 

(bc,bd;q)m+k /a\™+fc 
pm+k{x ;a,6,c,d) = 7 —r—   - Pm+k{x ;6,a,c,d), (2.7) 

{ac,ad;q)m+k ^0/ 
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we find, by using (2.1), that 

S^ra, m + k) = tt(a, 6, c, d) 
(6c, bd ; g)m+fc(ad, bd, cd ; q)r fa\m+k 

(ac, ad ; q)m+k(a>bcd ; g)r 

/a\m"|"/e 

(2.8) 

where 

^ = E 
m+fc (q-m-k^abcdqm+k-^bdqr .^ 

s=0 
(q,abcdqr

1bd ')q)s 

q~m, abcdq171"1, adqr, abq 

v 

abcdqr+s,ad,ab 
q,q 

= (adqr,abcdqm 1 ;g)m /^ 
(a6, ad; g)r 

m+fc („-m-k 

E 
X4^3 

{q-™-k,abcdq™+k-\bdqT ;q)s(abqs ;q)m s 

(q, abcdqr, bd ; q)s(abcdqr+s ; g)m 

" q-m, q^-rs/abcd, q1-™/^, q^^/ad 
n2-2m , q,q 
r-^/abcdrf-n-'/adrf-n-'/db    ' ^    ' (2'9) 

the second 4^3 on the right having been obtained from the first by simply reversing 
the sum. By Watson's transformation formula [8, (III. 17)], 

4^3 
q-m, q1-m-r-slabcd, ql-m/ab, q1-m/ad 

r,2-2m t q—11 abed, ^^"Vad, cf-™-* 

{q1-rn-r/cd,q1-m+s \q) 

q,q 

(q ,2-2m—r /abed, abq8 ; q)ri 

/ab 

W7tf-'*m-rlabcd; 

g1""1/^, ^-"Vfcc, q-m, q-r, q1-m-r-'/abcd ; g, 69
s+1/d). (2.10) 

So the series over 5 in the last line on the right-hand side of (2.9) becomes 

(q 
1—m—r /cd; q)r, 

{4 ,2-2m-r /abed, abcdqr ; q)r .   .    l-Q1 

l-2m-r+2j /abed 
-2m—r 

(q 
l—2m—r j 

3=0 

~l—m 

/abed 

/abed, q^^/ab, q1-™/be, g"™, q-r ; q) bq 
(q, q1~m~r/cd, g1-m-r/ad, q2-m-r/abcd, q2-2m/abcd ; q)j \ d 

m+k  f„-m-k 

E 
s=m—j 

(q-m-k,abedq™*"-1,bdqr; q)s{q1-m—s/abcd; qUq1-™^; g)m-j  sij+1) 

(q 
1—m—r /cd ; q)ri 

{* 2-2m-r /abed, abcdqr ; q)r 

(q,abcdqr+m,bd;q) 

2-/    1 _ qi-tm-r/abcd 

1 _ gl-2m-r+2j/a6cd 

i=o 

(?: 1—2m—r /a&cd, q1-m/ab, qx-m/bc, q' m,q-r 
>q)j bq 

(q, q1-m-r/cd, q1-m-r/ad, q2-m-r/abcd, q2-2m/abcd ; q)^ \ d 

v (q-m-k,abcdqm+k-\bdqr ;qU^q'-^-^/abcd ;g),- ,(f+1Uro_ti 

X3^2 

(a6cdgm+r,6d;g)m-.:/ 

q-j-k, abcdq2m+k-j-1,bdqm~jJrr 

abcdq2m-2J+r Mq™-* 
q,q (2.11) 
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Summing the balanced 3<£2 series above by the g-Saalschiitz formula [8, (11.12)] and 
simplifying, we find that the expression in (2.11) is 

(<rr,acg™ ;g)fc(9
1-TO-7cd,g^-^a6cd9

TO+fc-1,Mgr ;q)m 

(q2-2m-r/abcd,abcdqr \q)m(bd,abcdqm+r \q)m+k 

x loWb^-^-Vafccd ;q1-2m-r-k/abcd,qk-r 

q 

q-^q1-™ jab, 

^/acq^/bcq-^'^/d2). 

Substitution in (2.9), followed by another round of simplifications, completes the proof 
of (2.6). 

3. Proof of the addition formula (1.16) 

We now can multiply (2.6) by an arbitrary sequence {/irj-^lo and sum over r to get a 
general integration formula, but the most interesting of these is the one that produces 
the g-Legendre-type polynomials 

g, bd, dq/b 
q,q pn(x ;d,q/d,b,q/b) = 4^3 

as part of the integrand. Denoting 

-fnlm,m+fc :=  /    wfc 5 a, &> c, d)pn(x ; d, q/d, b, q/b) 

x Pm{x ;«, b, c, (i)pm+fe(x ; a, 6, c, d)ofo, 

we have, by (2.6), 

A(g-n,?n+1;«)r5r(m,m + fc) r 

(3.1) 

(3.2) 

/n. m,m,+fc 
r=0 

(g, ^, 6d, dq/b ; g)r 

,-l (rn
? q

n+\bcq™, bdq™, cdq™, q™*1 ; q)k k JH+I) 
m        (q, q, bd, dq/b ; q)k(abcdq^ ; q)2k       ^       ) q 

n
~~k (nk-n nk+n+l 

xE (tf ,adqm+k,bdqm"rk,cdqm+k,abcdqrn+k-1 \q)r r 

r=0 
(q, qk+1,bdqk, dqk+l/b, abcdq2m+2k, abcdq2™*1*-1 ; q)r 

x loWgiq l—2m—k—r /abed; q l-2m-r-2k /abed, q —k—r 

q-r, ql-mlab, q^/ac, q1'™/be, q-m ; q, q2/d2).     (3.3) 

The interesting thing about it is that we now may identify the parameters with those 
of the product formula [8, (8.2.6)]: 

4^3 
q-n,AqnMM 

B.b^qAb^/Bbz ; ?,9 4^3 
q n,Aqn,ci,C2 

Aq/B, Aq/bs, Bbzc^/Aq ; ?,? 

= E {q n,Aqn,c1,C2,qAbi/Bb3,qAb2/Bb3 ;q)r 

J (9, Ag/B, Ag/63, Aq/Bb3, qAb^/Bb^, Bbac^/Aq ; g)r 

X MWS(B63g-r-1M ; Bq-r/A,bsq-
r/A,q-r,hM, 

Aq2    \ 
Bhcx/Aq, Bbzc^/Aq ; q, hh cc) ■ (3.4) 
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This formula is valid even if n is not an integer as long as the parameters 61, 62? ci, C2 
are such that both of the 4(^3 series on the left-hand side and the series on the right- 
hand side terminate. We are reproducing this formula here instead of just referring the 
reader to [8] because of its crucial nature as far as this paper is concerned. Note the 
relationship between the product of q~n and Aqn, and the ratio of q times Bbs/Aq to 
the product of the three coefficients of q~r in the 10 W9 series. These two numbers are 
the same. When A;=0, this number for the 10Wg series in (3.3) is q. This is why this 
procedure produces an addition formula only for the g-Legendre-type polynomials. 
So, by (3.4), we now have 

, _ ,-1 (q-n, qn+1,bcqm, bdqm,cdqm,qm+1 ; q)k,        k m 
ln,m,m+k - hm       fe ^ ^ ^ . q)k{ahcdq2m . ^      (   ad) qy 

X 4^3 

X4<P3 

qk-n, gfc+"+1, q-m, q1-™/^ 

qk+1Mqk,q2-2m/abcd 

k-n,qk+n+1,adqm+k,cdqm- 

qk+1,dqk+1/b, abcdq2m+2k 

; q,q 

q,q (3.5) 

For k = 0, we have a product formula: 

/    w(x ; a, 6, c, d)pn(x ; d, g/d, 6, q/fyp^ix ; a, &, c, d)dz 

q~ri,qn+1,q~m,q1~m/ac 
= hm 4^3 

x 4^3 

; q,q q,bd,q2-2m/abcd 

q-n,qn+1,adqm,cdqm 

q,dq/b,abcdq2m       ' ^^ 
(3.6) 

This suggests an expression of the form (1.16). To find the coefficient AQ, we multiply 
(1.16) by Pm(x ; a, b, c, d)w(x ; a, b, c, d) and integrate over x from —1 to 1. This gives 
(1.17) after having used (3.6) and the transformation 

q-n^qn+lq-m^ql-m^ac 

4^3 q,bd,q2-2m/abcd 

(abcdq2m ;q)n    , A_2m 

(q2-2m/ahcd.q)n 

q,q 

(g
1-2m/ated)B4¥* 

q-n, qn+1, bdqm, abcdq"1'1 

q,bd,abcdq2m ' 9'? •  (3-7) 

To obtain Ak, we multiply (1.16) by pm+k(% '1aib,c,d)w(x ;a,6,c,d), integrate, and 
use (3.5). This gives (1.18). Finally, (1.19) for A^ is obtained by multiplying (1.16) 
by pm-k{% ;ci,b,c,d)w(x ;a,6,c,d), integrating, and then using (3.5) after having 
replaced m by m — k. It is assumed, of course, that a formula similar to (3.7) has 
been used in both cases to reach the final form of the coefficients as given in (1.18) 
and (1.19). 
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If we set c = 0 in (1.16)-(1.19), we obtain the following addition formula 

pn(x;d,q/d,b,q/b)3(p2 

(-l)n«-(WjlW2 

q-m,aeie,ae-ie 

ab, ad 

q-n,qn+1,adqrn 

; «,« 

q,dq/b ; ^9 3^2 
5"n,gn+1,6dgm 

q,bd ; «,« 

x 3^2 
ab^ad 

; 9,5 

A (atg^ adq" q^f" 19). ^^n^+D-m {d/a)k 
^-^ (n n hd.dn  h 'n\u \       /   * \   /    / 

X 3^2 

X3^2 

min(7T2,n) 

(q,q,bd,dq/b;q)k 

qk+iidqk+i/b 
; q,q 3^2 

qk-n^k+n+l^Mqm+k 

qkJtl,bdqk 5 9,9 

q-m-k,aeie,ae-ie 

ab,ad 
5 9,9 

E   (,-», ^-M 9-, 9-+1; 9). (■^-m (a^^)fc 

^ (q,q,bd,dq/b;q)k 

X 3^2 

X 3^2 

qk+l^dqk+l/f,       ; 

q"-m+k,aeiB
iae-ie 

ab, ad 

9,9 

9,9 

3^2 

qk-n^qk+n+l^bdqrn 

qk+1
ibdqk 

(3.8) 

which is essentially the same as Theorem 5.1 of [10]. 

4. Evaluation of a series 

In this section, we shall compute the sum 
N 

2=0 

9"l/,9I/+1,9z~iV,c-19"^ 

9,9 N,q/c 
5 9,9 

x Rm(qz ;cL,b,c,q N)Rm+k(qz \a,b,c,q N) 

where v is a complex parameter, and 

n   (*.nhA     ^-c2z~N)   {cq-N,aq,bcq,q-N ',q)z  ,^-z 

is the weight function associated with the orthogonality relation 
N 

^T PN(Z ; a, 6, c)Rrri(qz ; a, 6, c, q~N)Rn(qz ; a, 6, c, g-^) = 6m,n/kn, 
z=0 

where 

k (bq, ag/c ; g)^ (1 - abq2n+1)(abq, aq, beg, q N ; q)n ,   -m-n . 
(c-i^abq2 iq)N   (1 - abq)(q, bq,aq/c,abqN+2 ;q)n 

(4.1) 

(4.2) 

(4.3) 

(4.4) 
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see [8]. 
First, we will show that 

N 

Trim, m + k) := J^pN(z ; a, 6, c)^-^, c"1^"^ ; q)r 

z=0 

x i^^ ; a, 6, c, q-N)Rm+k{qz ; a, 6, c, gT*) (4.5) 

is zero if 0 < r < k and is given by 

Tr(m,m + k) 

= h-i(q-r,qm+1,aqm+1 ■,q)k(qm-N,aqm+1/cMm+1 \ qUabqm+k+1 ;q)m  (r_N)k 
(q, qm-N ; q)k(abqZrn+2 . q)k+r(abqm+r+l . q)m « 

x ioW<){q-
2m-r-1/ab;q-2m-k-T-1/ab, 

qk-r, q-r, q-m/a, q-m/bc, q-^^/ab, q-m ; q, cqN+% (4.6) 

for T = k,k + l,...,N. 
Using [8, (III. 15)] on the two R series in (4.5) followed by the use of [8, (11.21)], we 

find that 

T (m m + k) = (^gV"1 ]q)N{aq/c,abqN+2 ; q)m(bq, abqN+2 ;q)m+fc 
' (bq, aq/c ; q)N(bcq, q-N ; q)m(aq, q-N ; q)m+k 

(q-N,aq/c,bq;q)r (abq2N+2\~m,, jy+n-fc 

(^2;9)r      I    c    ;    ^     ^ 
y(g-

m-fc,aftgm+*+1,ftgr+1;g)« . 
^ (q,abqr+2,bq;q)s 

9 

q-m, abqm+1, aqr+1/c, abqN+s+2 

x 

X4V3 „r+S+2  „^/^ „J1/7Ar+2 '  9.9 o6gr+s+2, a^/c, a6g' 
(4.7) 

The sum over s in (4.7) can be transformed, as in Section 2, by first reversing the 
order of summation of the 4^3 series and then using [8, (III. 17)], to get 

(abqm+1,aqr+1/c,qr N ;g)m ,_u_N+um,   ^mJm+l) 
(abqV+^aq/cabqm+r+i.^Job*       M   i;   9 

^ (g-"»-*,Q6g'"+*+1,6g-+1 ;g)a (g^1— ;g)m 

^ (q, abqr+2, bq;q)s (ab<f+'+2 5 g)m 9 

x 8^7(g-
2'"-r-1M ; q-m, q-m/bc, q-"-™-1/**, q-r, 

5-m-'-s-1/a6;g,6c9
JV+s+2) 

- (abqm+1,aqr+1/c,qr-N ;q)m       jf+um,   ■l\mJmtl) 
- (abqW,aq/c,abq™+r+i ]q)m

[a0q      '   [   l)   q 

x
mi^'r) 1 - g2J-2m-r-l/ab (g-am-r-l/^ g-m> g-m/6c> g-N-ra-lj^ q-r . ^ 

•^      l-q-2m-r-1/ab   (q,q-m-r/ab,cq-m-r/a,qN+1-m-r,q-2m/ab;q)j 
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X3^2 

(bqiq)m-j(abqr+2 ;q)2m-j 

q-j-k, abq2™-^*1, bqm-J+r+l 

abq2m-2j+r+2jbqm-j+l 

'-(baf+y. 

; q,q 

which, on using [8, (II. 12)] and simplifying the coefficients, becomes 

(abqm+\ a^+Vc, qr-N", ^+1, a6gm+fc+1, fy7^1 ; g)f 

(a6^+2,ag/c,a6gm+r'+1 ;^)m(69 ;q)m+k(abqr+2 ;q)2m+k 
(a6giV+2)m(6gr-fl)fc 

x io W9(q -2m—r—l Jab; g" -2m—i—k—1 M<rm, 

for r = fc, fc + 1,..., N and is 0 if 0 < r < fc. Substitution of this into (4.7) completes 
the proof of (4.6). This leads to the following expression: 

,,-l (g"", <lu+\ aqm+1, bqm+1, aqm+1/c, qm+l ; q)k 

(q,q,q-N,q/c;qh(abq*™+2;q)2k 

N-m-k /  k-v nk+v+l  nm+k-N nnm+k+l 

(-l^q-Nk+Ct1) 

X      E (q aq" l/c,bq 1m-|-fc-}-l ,abq rn+fc+l . 
q)r 

r=0 (g, qk+1, abq2m+2k+2, abq2m+k+1, qk-N, qk+1/c ; q)r 

x 10^9(9 
—2m—fc—r—1 /ab ; g —2m—r—fc—1 /ab,q-m,q-m/bc,q-m/a,q-r,q r   -,—k—r 

-N-m-l/ab.qtCqN+2j 

,-l (g-y,g1*1,qg,"+1,bqm+\aq™^/c,q^1 ;g)fc fc    ^^^x) 

X4V3 

X4¥'3 

(g, g, g-^, g/c ; g)*;(a6g2ro+2 ; gjafc 

g*-i/) ^+1/+^ g-m/0> 9-™/6c 

g
fc+1,g

fe+1/c,g-2m/a6 ; g.g 

gfc-i/) gfc+«'+l) qm+k-N^ abqm+k+l 

qk+^qk-N^abq2m+2k+2 q,q (4.8) 

by (3.4), provided the first 4(^3 terminates as does the second one because of the 
numerator parameter qm+k-N. This requires us to assume that the parameters a, 6, c 
are such that either q~rn/a, or q~'rn/bc is of the form q~l where I is a nonnegative 
integer. This we shall assume to be true in the following sections. 

5. Proof of the addition formula (1.21) 

As in (3.6), we find from (4.8) that 

N 

1 
z=0 
^2pN(z;a,b,c)4(p3 

q~'',ql'+1,<f~N,c-lq-z 

q,q N,q/c 
q>q Rm(qz ',Q>,b,c,q N) = 

kmAVS 
q-u,qu+\q-m/a,q-m/bc 

q,q/c,q 2rn/ab ; q,q 4^3 
q''v^+1,qm'N,abqm+1 

q,q -
N,abq2m+2 ; q,q 

(5.1) 
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This, of course, suggests an expansion of the form (1.21). To find the coefficient So, 
we multiply both sides of (1.21) by Rm(qz ; a, 6, c, q-N) and use (4.3) and (5.1) to get 
(1.23). To compute Bk, we multiply (1.21) by Rm+k(qz 5 a, b, c, q-N),k = 0,1... and 
use (4.3) and (4.8) to get (1.24). Finally, the expression (1.25) for B'k is obtained by 
first multiplying (1.21) by Rm-k{qz ]a,b,c,q-N), then using (4.3) and (4.8) (with m 
replaced by m — k). 

With a view to compare a limiting case of (1.21) with Koornwinder's [13] addition 
formula for the little g-Jacobi polynomials, let us first rewrite (1.21) by replacing m 
and b by y and qx, respectively. We first replace Rm±k{qz ; a, &, c, q~N) by 

Rm±k(qz \a>,b,c,q     ) 

_ (bq, aq/c ; g)mTfc ^k 

(aq, bcq ; q)m^k 

(see [7, (111.15)]), so we get 

q-rn±k^abqmTk+l^ qz-N? g-^c 

(5.2) 

4^3 

ni/+l   nz-N^q-zjc 

= 4^3 

g, g/c, q~N 

-v qv+\q-y 

q,q/c,q~x~2y/a 

q,q 4^3 
,aq .x+y+l   nz-N   n-z q-z/c 

qx+1,aq/c,q N ; q,q 

q-^q^\q-y/a,q-x-y/c 
; q,q 4^3 

9",/,5,/+1,?y"JV,a«a:+y+1 

q,aqx+2y+\q-N q,Q 

X4^3 
^,aga;+y+1,gz-iV,g-Vc 

o^+l aq/c, q -N ; «,« 

+E 
(<rv, qv+\aqx+y+\ aqv+1, qx+v+1, aqv+1/c, qy-N ; g)fc (   ^fc^^1) 

fe=i 

X4¥'3 

X 4^3 

X 4^3 

(q,q,q/c,q-N ■,q)k(aqx+2y+1 iqhk 

qk-uqk+u+l^q-y/a^-x-ylc 

qk+ljqk+l/Cjq-x-2y/a        '  «'« 

gfc-1/) 9fc+</+i) 9fc+w-Arj aqx+y+k+l 

qk+ljaqx+2y+2k+2^qk-N 

q-y-k,aqx+y+k+1, qz-N, q-z/c 

q,q 

qx+1,aq/c,q N 

, v- (q-", qV+1,9^/^ rv, q-x-y/c, cq-y/a ; q)k N+x+1    k (*+i) 

X 4¥>3 

xm 

X4<P3 

qk-u} qk+v+it qk-y/a, qk-x-y/c 

qk+^qk+l/Cjq2k-x-2y/a 

qk-v, qk+v+l, qy-N, aqx+y+1 

; q,q 

qk+\aqx+2y+2,qk-N 

nnx+y-k+l nz-N 

qx+]-,aq/c,q-N 

q,q 

qk-y, aqx+y-k+1,qz'N, q-z/c 
q,q (5.3) 
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Taking the limits a —> 0, c —> oo, and JV —> oo and simplifying the coefficients, we 
obtain the addition formula (1.26) for the little g-Jacobi functions defined in (1.27). 
Note that the parameters x and z in (1.26) need not be integers, although we need to 
assume that gx+1 and qz+1 are both numerically less than 1 for the sake of convergence. 
The question is whether the requirement of integral y also can be removed by analytic 
continuation. It seems possible since 

p„-k(qy-k ;q\qk\q)p„-k(qx+y-k ',q\qk\q) 

2Vl /JM-l <3S4 
,!/-fc+l 

2^1 

nk-v  nv+k+\ 
H        5 y 

ryfc+1 <LA 
las+y-fc+l 

fc(fc-l)-(x+2y)fc 

2<Pl ^fc+1 ; 9,9' .y+.i 
2^1 ^fe+1 9^' -X+2/+1 

by [8, (III.3)], so that we can rewrite (1.26) in the form 

= Vv{q
v; i, il?)?^^; i, i|<?)tW; «*!«) 

(5.4) 

+ E ^^'fT'^-V^™*-*?; A*, A"!?) 
fc=l 

x^(9I+v;9fc,9-*l9)Wy-ik((f;9s|?), (5.5) 

which is free from any divergence problems. It has to be understood, of course, that 
the second series on the right-hand side will terminate at k = y whenever y is a 
positive integer. At the time of writing this paper, Erik Koelink has informed us that 
he has found a more general formula than (5.5) by formal quantum group-theoretic 
considerations. At the moment, we are not sure how to prove (5.5) directly when y is 
not a nonnegative integer. Thus, it may be a while longer before the question of an 
addition formula for the g-Legendre functions finally is settled. 

6. A special product formula 

Although the product formula (5.1) is pretty general in having a number of free param- 
eters, it becomes particularly interesting in the special case when i/ = n, a nonnegative 
integer, and the three 4^3 series on the two sides are the same g-Legendre polynomials 
in three different variables. This is achieved by setting m = y, a = qN-x-y > b — qx~y, 
and c = g-^"1. The parameter x has to be a nonnegative integer less than or equal 
to N since we have stipulated that q~m/a = qx~N is of the form g~n, n = 0,1,... . 
In order to avoid singularities, we assume, therefore, that 0 < y < x and x + y < N. 
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4^3 
q-n,qn+\qz-N,q-z/c 

<i,q~N,q/c 
q,q 4^3 

q-n^qn+l^qz-N^qN+l-z 

q,q-N,qN+2 q,q 

= Rn(q
N-*;l)l,q

N+\q-N), (6.1) 

which is a g-Legendre polynomial of degree n in qN~z as well as a g-Legendre poly- 
nomial of degree TV — z in qn

y we can rewrite (5.1) in the form 

N 

Y,PN{z;qN-x-y,qx-y,q-N-1) 
2=0 

x Rl{q* ■,qN-*-v,q*-v,q-N-\q-N)Rn{qN-*;l,l,q
N+\q-N) 

= k^Rn(qN-* ■^qV+^q-^RniqX-y ;l,l,qN+1,q-N).    (6.2) 

Using dual orthogonality, we find that 

N      _n n+l 

Eg   ^J,    Rn(q
N-*;i,i,q

N+1,q-N) 
n=0 

X Rn(qN-y ;l,l,qN+\q-N)Rn(qN-Z ^l,qN+\q-N) 

N-iAl-q^Xl-q-1-") = kypN(z-qN-x-y,q*-y,q )(l_g2iV-22+l)(1_g-l) 

x Rl(qz ;qN-x-y,qx-y,q-N-\q-N).    (6.3) 

Use of [8, (111.15)] gives 

Ry(qz ',q 
z .    N-x-y     x-y     -iV-1   n-N\ _ 

q" y,q " %q ") = 4<p3 

(nN+l-y-z  nN+l-x-z . n\ 

g"27^"2,^"1"1"27,^"2^"1 

qN-\-l-x-y  q-N  qx-y-N q,q 

(q-N,q-N+x-y;q)z 

X 4^3 
q~xi q~yi q~z, q3N-x-y-z+2 

nN+l-x-y  nN+l-y-z  nN+l-z-x ' q,q (6.4) 

Substituting (6.4) into (6.3) and simplifying the coefficient on the right-hand side by 
using (4.2) and (4.4), we find that 

N 

E: 
71=0 

-n  /7^+l 

l-q 
-Rn(qN-x ■,l,l,qN+1,q-N) 

x Rn(qN-y ; 1,1, qN+1,q-N)Rn(qN-z ! 1,1, qN+1,«"") 

(qx+\ qy+1,qz+1, q2N+2-*, <?N+*-v, q^+2-z . q)oQ 

(?) 9; gJV+l+a!-y-«} ^JV+1+J/-J;-2) qN+\+z-x-y) g3JV+2-x-y-2 . o)c 

(1 _ ^+1)3 

1-9 
-qxy+yz+zxKN(q*,qy,q*), (6.5) 
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where 

/(  N+l-x-y     N+l-y-z  aN+l-z-x . a>| 

iW,<^) = (-(* ,q ,q ^ (qN+l-XfqN+l-yyqN+l-z .g)c 

x^a 
q-x, q-y, q-z, q3N-x-y-z+2 

nN+l-x-y nN+l-y-z nN+l-z-x -x ; 9,Q (6.6) 

If we take the limit iV —► oo, then the right-hand side of (6.5) corresponds to 
Koornwinder's kernel [13, (9.10)] for the little g-Jacobi polynomials. 
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