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ON THE RESURGENCE PROPERTIES OF THE UNIFORM ASYMPTOTIC 
EXPANSION OF THE INCOMPLETE GAMMA FUNCTION 

A. B. Olde Daalhuis 

ABSTRACT. We examine the resurgence properties of the coefficients 07.(77) ap- 
pearing in the uniform asymptotic expansion of the incomplete gamma function. 
For the coefficients cr(T7), we give an asymptotic approximation as r -» 00 that is 
a sum of two incomplete beta functions plus a simple asymptotic series in which 
the coefficients are again Cm(rj). 

The method of this paper is based on the Borel-Laplace transform, which 
means that next to the asymptotic approximation of CrC??), we also obtain an 
exponentially-improved asymptotic expansion for the incomplete gamma function. 

1. Introduction and summary 

Recently it has been shown in many papers that the incomplete gamma function is 
the basis function for exponential asymptotics. The asymptotic expansion of r(a, z) 
as z —> 00 and a fixed is rather simple. However, in exponential asymptotics, we need 
the asymptotic properties of r(a, z) as a —> 00 and z = Aa, A 7^ 0, a complex constant. 
In [9] and [11], the uniform asymptotic expansions of the (normalized) incomplete 
gamma function as a —> 00 are given as 

r(« + ll^-rf-a,2e-") ~ ^erfc(-itijia) + >-,=; ^MlX-or'     (Lib) 

1 

where 77 is defined as 

77=(2(A-l-lnA))t (1.2) 

and 

(1.3) x=z-. 
a 

The complementary error function in (1.1b) will give the Stokes smoothing in expo- 
nentially improved asymptotics for integrals and solutions of differential equations. 
See, for example, §4 of [8]. 

Our interest will go to the asymptotics of the coefficients cr(rj) as r —► 00. As in 
most uniform asymptotic expansions, the coefficients are rather complicated functions 
of their arguments. 
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phA=§7r      phA=|7r phA = TT      phA = |7r phA = hir 

phA= W 

phA = 0 

FIGURE 1. 77-plane. The images of rays in the A-plane. 

First, we want to help the reader with the definition of 77. Since A — 1 - In A 
has a double root at A = 1, we prescribe that 77(A) is analytic in a neighborhood of 
A = 1. We take 77^A — lasA—»1. In Figure 1, we give the images of the rays 
ph A = ^TT, k = 0,1,..., 8. Note that A = 0 is mapped to 77 = —00, the half line 
0 < A < 00 is mapped onto the complete real 77-axis, and that the Riemann sheet 
0 < ph A < 27r is mapped onto the upper half plane Q77 > 0 with a cut at the 'half'- 
hyperbola {rj = a + /3i | a/3 = — 27r, a < -V^TT}, which is the image of the ray 
phA = 27r, and which is the dashed line in Figure 1. 

Hence, (1.2) is well defined as a mapping from the Riemann sheets | ph A| < 27r to 

Jf = {77 e C}\ {77 = a + Pi I a/3 = ±27r,    a < -\/27r}. (1.4) 

According to [9]-[ll], expansions (1.1) hold uniformly in \z\ € [0,00), in the domains 
|pha| < TT — £1 and |phA| < 27r - 62 where ei and 62 are small positive numbers. 
This would mean that the mapping (1.2) is defined on the natural A-domain. But, as 
is noted in [4], the region of validity of (1.1) is smaller. For more details on the region 
of validity, the reader is referred to the introduction of [4]. 

The coefficients cr(77) are defined by 

co (v) = A-l 
1 , x      1 d . N        7r r = l,2>. 

where the coefficients 7,. axe those appearing in Stirling's formula 

z—-   —z    'x' 

v27r   T^o 
as z —* 00. 

In [4], a new integral representation is given: 

(1.5) 

(1.6) 

cr{ri) = 
i(-)T(r+i) 

(27r)f / 

dz 
(1.7) 

,X}{z-X)(z-l-\nzy+z 

where the contour of integration is a loop around 1 and A.   The authors use this 
integral representation to obtain an asymptotic expansion of cT(rj) as r —* 00. This 
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result can be written as 

Cr(r}) ~ - -rj2 + 27ri erfc   i\ r + 
r({-r)V2 

r(m + i)a+(A) 

In 
27ri + i7?

2^T5S 

27ri 

r + ^ 
In 

27rt-^2' 

27rt 

r(|-r) (27r»)- £ s (r+ir1-* 771=0 

+(-2^r-if:r^+f)^ (1.8) 

where 

■sw-H5^}) .(m) 

Am) 

3-m-± 

m i(jn) 

3=0 rO' + i) 
Wcifa)   (i.9) 

in which the coefficients bj     have the generating function 

U(i+*>J 3=0 

»5mV (1.10) 

Note that definition (1.9) for the coefficients a^ contains the (lower-order) Cj(r}). 
Hence, there seems to be a resurgence in the asymptotics of cr(rj) as r —> oo. 

To obtain the resurgence, we will study the Borel transform of the divergent series 
in (1.1). In §2, we will define the Borel transform, give a representation that is valid 
in the whole of AT, and obtain the local behavior at the dominant singularities. These 
singularities are poles and branch points. The location of the singularities will depend 
on 77, and there will be coalescences of singularities when 77 = 0, that is, when A = 1. 

In §3, we will use the dominant singularities of the Borel transform to obtain an 
asymptotic expansion of Cr(rj) as r —► 00. Our main result will be: 

Theorem. For 77 € J\f, we have 

Cr(rj) nh-r) (W + ^Y i+fe »>+i,i) 

r(i-r) (W-tnir-h^ir+M) 

+ g cn(77)r(r - n) {(-27ri)—-1 + (2m)n^-1} (1.11) 
71=0 

as r 00. 
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In (1.11), we use the normalized incomplete beta function, which is defined by 

where B(p,q) = T{p)T(q)/T{p + q) is the beta function. For more details on the 
incomplete beta function, see §11.3 in [10]. 

Hence, we have a simple resurgence relation for the coeflficients cr(r7). Note that 
due to cancellations in the divergent series in (1.11), the asymptotic expansion of 
cr(rj), with r odd, involves only cn(r}), with n even, and the asymptotic expansion 
of cr(7]), with r even, involves only cn(ri), with n odd. Since the incomplete beta 
function can be computed via a simple continued fraction1, asymptotic result (1.11) 
is an efficient way to compute the higher-order coefficients cr(r}). Thus, to use many 
terms in the asymptotic expansions (1.1), the reader can first compute the lower-order 
coefficients cr(rj) and use these results in (1.11) for the computation of the higher-order 
coefficients, which then can be used in the right-hand sides of (1.1). 

In the second half of §3, we will discuss the asymptotic behavior of the incomplete 
beta functions that occur in (1.11). Prom these results, we obtain that in the main 
part of A/", the coefficients cr{rj) are of the order r(r)(27r)~r~1 as r —► oo. However, 
there are two lobes in J\f in which one of the terms with an incomplete beta function 
dominates all the other terms in (1.11), and in these lobes the coefficients cr(ri) are 
of the order (^ry2 ± 2m)~r~z /T{\ — r). This asymptotic behavior also was observed 
in [4]. At the end of §3, we give an illustration of this asymptotic behavior. 

Finally, in §4, we give an exponentially improved asymptotic expansion for the 
incomplete gamma function. The re-expansion is in terms of functions that are more 
complicated than the incomplete gamma function itself. This is the reason we omit 
the proof of the results in §4. 

If we compare (1.8) with (1.11), then it is obvious that there are similarities and 
big differences. The main similarity is that in both equations, there are two loose 
terms. The loose terms in (1.8) are the error function terms, and they are simpler 
than the incomplete beta function terms in (1.11). In fact, one could argue that 
since the incomplete beta function depends on three parameters, it is too complicated 
to be used as an approximant of cr(r}). But the incomplete beta functions in (1.11) 
depend only on two parameters, and one of these parameters is limited to half-integers. 
Furthermore, the computation of the incomplete beta functions is not very difficult. 
Again, see [3]. 

The main difference between (1.8) and (1.11) are the asymptotic series. Note that 
the asymptotic scales are very different. Furthermore, the coefficients in the asymp- 
totic series are much simpler in (1.11). 

Due to the different asymptotic scales, it is not possible to obtain (1.8) directly from 
(1.11). However, by replacing the incomplete beta functions in (1.11) by asymptotic 
expansions as r —► oo that are uniformly valid in 77, we would obtain the error function 
terms of (1.8). See (3.15). 

1For a comprehensive discussion of the computation of the incomplete beta function, see [3]. 
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2. The Borel transform 

Let V be the complex plane with a cut from 0 to — oo. We take as the Borel transform 
of the asymptotic series in (1.1) 

00 i 
»(t>A) = 5^cP(i?)r(i-r)tr-I. (2.1) 

This series is only convergent for t in a neighborhood of 0. To obtain a representation 
in a larger t-domain, we use (1.7) in (2.1) and obtain 

y{t, A) = t  2 ——= (h L— —J. — dz. 

In the derivation of this integral representation, we need the restriction |£/(;z — 1 — 
ln;z)| < 1 for all z on the contour of integration. This is not a problem for £ in a 
neighborhood of 0. This integral representation is, of course, valid in a much larger £ 
domain. Hence, we can replace the restriction |£/(2 — 1 — ln;z)| < 1 by £ ^ z — 1 — In z 
for all z on the contour of integration. 

We deform this contour of integration to a path that begins at z = — oo, encircles 
z = 0 once in a negative sense, and returns to its starting point. In this way, we obtain 
the integral representation 

*•A)=(■ vsL (.-W-i-h.-D*■      (2'2) 

which is valid for ph A € (—TT, TT) and t € V, Qtf € (—TT, TT). In the following lemma, we 
give a representation that is valid in a larger A-domain. 

Lemma 1. ForphA e (—27r, 2n) andt € V, we have 

1  fir ^ f (A-l + 27ri-lnA)5 (A-l-2ff»-lnA)*  \ 
y(t,X)- 2y2i   2^_(A_1_lnA + 27ri) 

+t-(A-l-lnA-27ri)y 

_I   Fn     I     inx^f («-2ffi)-* (t + 2ni)-i 
2\ 2K ^   \t-(X-l-lnX + 2m)     t-(X-l-\nX-2m) 

+ h+(t, A) - h-(t, A) + «+(*, A) - «_(«, A) (2.3) 

/»±(t,A) 
l±27ri-lnA\2 

2V^7r(«-(A-l-lnA±27ri))l \ t 

-^J-^A)^ _ /A-1-InAN * _ 

1+ VA-l±27ri-lnA/    / ^i "T" V     t     J 

xJ'-(^ya!fa);\./-A-l-hA\»Ji-(q") 

and 

5±(£,A) = -—= /      /       -. )-——L- ^ ~ rdzdu      (2.5) 
AnV^Jo    Jc(x)(^-(tT27n)){z-X)(z-l-\nz-u) v     ; 

where the z-contour C(A) is defined in Figure 2b,c. 



430 OLDE DAALHUIS 
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(a) (b) 

& 

(c) 

FIGURE 2. (a) Contour C; (b) Contour C(A) when phA e (0,27r); (c) 
Contour C(A) when phA G (-27r,0). 

Proof. We start with the restrictions 

m>$,   '^te (-27r,27r),    phAG(0,7r),    and    ph(A - 1 - In A) G (0, |7r).   (2.6) 

The branch point at z = 0 in the integral in (2.2) is integrable. We split the contour 
of integration in (2.2) into a contour from ooe7™ to the origin plus a contour from the 
origin to ooe-7™. We rotate the first contour to the contour from ooe27™ to the origin 
and the second contour to the contour from the origin to ooe~27r\ During the second 
rotation, we encounter a pole at z = Ae~27r\ We note that when phA G (—7r,7r), then 
(Ae*2™ - 1 - IntAe*27^))1/2 = -(A - 1 T 2™ - In A)1/2 where on the right-hand side 
we use the usual square root. In this way, we obtain the integral representation 

y(t ^S( A- l + 27ri-lnA 
t 

+ *   2 7= / 
2iV27r Jo 

2n/27r Jo 

)'-- (A-l 

1 + 27ri - 

-lnA + 27r2) 

In z) 2 

(2? - A)(z -l + 2m- Inz - t) 

(z — 1 — 27rz — In z) 2 

dz 

(i^, 
(« - A)(« - 1 - 2™ - ln^ - t) ~~9 C2'7^ 

which is valid for phA G (0,27r).  To obtain a double integral representation for the 
first integral on the right-hand side of (2.7), we use the substitution u = z — 1 — Inz 

dz 
dul 

■ In z) 2 

and write 3^/(2 — A) as a contour integral. For more details, see [2]. We obtain 

ri_J_ r 
2i\/2n Jo 

(z-l + 27ri- 
■dz 

(z - X)(z -l + 2m- Inz - t) 

471-72^ Jo    Jc (u - (* " 27rz))(^ - A)(^ - 1 - Inz - u) 



RESURGENCE PROPERTIES OF rfa,*) 431 

where C is defined in Figure 2a. We deform contour C to contour C(A) and obtain 

(z — 1 + 27ri — In z) 2 

2iy/2ir Jo {z - X)(z - 1 + 27r2 - In^ - t) 
dz = s+(t, A) 

(w4-27rz)2^~2 
+ (A-l~lnA)2—— / —- 

V ;   2iV2^Jo    (u-(t- 

(A-l-lnA)2—— / —;       —^- 

.27ri))(fi-(A-l-InA))du-    (2-9) 

The integral on the right-hand side of (2.9) can be expressed in terms of elementary 
functions. We use the transformation u = 2mv and rotate the path of integration 
from the negative imaginary axis onto the positive real axis: 

(u + 2m)iu~i 

(A-l-lnA)) 

(A-l-lliA)**-* 

du 

_     v/|( 7rVA-l+27r2-lnA\2 v 
t - (A - 1 - In A + 27ri) ATTV^TT 

) 

r (v+ 
Jo (v-±m A-l-lnA dv. (2.10)  i) (v  

The first term on the right-hand side originates from the pole at v = (A—1—In A)/(27ri) 
which is due to restrictions (2.6) in the fourth quadrant. The substitution v = z2/l—z2 

leads to 

(A-l-lnA)**-*   f00 (v + ljiv-i poo 

ATTV^ JO    (^-^§f)(o- 

(A-l-lnA)iri» 

A-l-lnA 
2ni 

dv 

V27r{t - (A - 1 - In A + 2m)) [Jo 

i f/A 

' f1 dz f1       dz 
JO        * \_1    1  O-r,-      IT.   \ JO        & + A-l+27ri-lnA 

1 + 2?™-In A 

In 

' 2v/2^(t - (A - 1 - In A -I- 2m)) 

,       (     A-l-lnA     V/2 
1
       \\-l^2^i-\n\) 

1   ,   /     A-l-lnA     \ 
■L^ ^A-H-27rt-ln A^ 

1/2 
— m 

__ /A-l-lnA\ 
V    t - 2m    ) 

t-2'Ki\1/2 

In — TTZ 

(2.11) 

where we used (2.6) to obtain the correct contributions from the end-point z — 0. 
Combining (2.9)-(2.11) leads to 

{z — 1 + 27ri — In z) 2 

2iv27r7o (z - A)(z - 1 + 2m - In* - t) 
d* 

If/A-l+27ri-lnA\ 2 v 1 /TT/'A-l-lnA V 
2 V 2 ^    t-27ri    J 

t- (A -T+27ri-lnA) ~ t - (A- 1 + 27ri - In A) 

+ /i+(t,A) + «+(t>A). 

In a similar manner, we can show that 

(z — 1 — 27ri — In 2) 2 

(2.12) 

2iy/2:JT Jo (z - \){z -l-2m-\rLZ-t) 
dz 
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=        2V2l t ) 2V 2  \    t+27ri    ) 

t - (A - 1 - 2m - In A)     t - (A - 1 - 27ri - In A) 

+ h-(t,\) + 8-(t,\). (2.13) 

Hence, (2.3) follows from (2.7), (2.12), and (2.13). Analytic continuation shows us 
that (2.3) is valid for ph A e (-27r, 27r) and t G V. □ 

The main property that we need from the Borel transform y(t, A) is the local be- 
havior at the singularities that are nearest to the branch point t = 0. The first two 
terms on the right-hand side of (2.3) are rather simple singularities. Notice that in the 
second term, the branch point and the pole coalesce when A = 1. Although the defini- 
tion (2.4) of h±(t,X) is rather complicated, these functions have only one singularity 
in V and that singularity is a branch point at t = 0. 

The remaining problem in this section is to find the singularities of s±(t,X). We 
define for a > 0 the functions 

s±(t,\,a) = —=        / ) ;   \- —J- -dzdu.    2.14 
47rV27r Jo   Jc(\) {u-(t^ 2'iri))(z - A)(z - 1 - In z - u) 

We note that the functions s±(t, A) - s±(£, A, a) are analytic for \t =F 2m\ < a. Hence, 
by taking a large enough, the singular behavior at the singularities that are the nearest 
to t = 0 will be the same for s±(t,\) and 5±(t, A, a). These singularities originate 
from the end-point u = 0. We expand the factor l/(z — 1 — In z — u) in a Taylor series 
at u = 0 and obtain 

u.     ,        t-i    ^  ra(u±27ri)iun-i        f dz 
8±(t,\,a) = ;= >    / ,   '      .x    du /       r 

47^^/2^ ^ Jo      u - (t T 27rt)        yc(A) (* - A)(s - 1 - In^)n+i 

= -Eo^)r(2-)2^yo   \-(tT2iii)    ^ (2-15) 

where we used (1.7) to compute the ^-integral. 
In the next lemma, reg{t — 2m) denotes a function that is regular (or analytic) in 

a neighborhood of t = 27ri. 

Lemma 2. 

(u±27ri)2un~2 

■7 u - {t q= 2m) 

Proof. 

du = 7r(-)n(±27rz - *)n" + reg(t T 2m). (2.16) 

1 

— du 
.1    ^(Udbari)*!*"-*^ ,a(^fgn)+l)%n- 

io      «- (* =F 27ri)     "     io u - (t q= 27ri) 

r       Un-2du 1     fa   f1 ft lx      n    ..IW        A-i    _    1 _, 
= 1   u-(tT2«i) + 2-tJ0   I  ({«-(^2)n)}T + l)     u—ctodu 

^     un-idu 
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We use (15.3.1) and (15.3.7) of [1] and obtain 

^n~2 du an+2      f1   vn~~2 dv r     un-$du     _    an+2      Z*1   vn- 
JQ   u - (t =F 27ri)      ±2m - t JQ   1-v 

an+i „ A      .1      .3       a 
(±27rz-t)(n+f) 

= »(-r(d=2.i-tr-J+^2FI(l,i-n;|-»;^i) 

= 7r(-)n(±27ri - t)n-^ + reg(t T 27ri) . (2.18) 

a 

Hence, 

s±{t, A) = ^ cn(7?)r(I - n)(-n±27ri -1)^ + reg{t T 2m). (2.19) 
n=0 

3. Late coefficients asymptotics 

To obtain an asymptotic expansion for cr(ri) as r —► oo, we use Darboux's method. 
Hence, we use (2.1) and obtain 

The main contribution in the asymptotics of cv {rj) as i—> oo comes from the singularity 
of ^(t, A) that is nearest to t = 0. In the previous section, we showed that the nearest 
singularities are at t\± = A — 1 ± 27ri — In A and ti± = ±2ni. Hence, the dominant 
asymptotic behavior in the bounded regions |A — 1 ± 2m — lnA| < 27r when t\± is 
nearest will be very different from the dominant asymptotic behaviour in the region 
|A — 1 ± 27ri — In A| > 2ir when ti± is nearest. To obtain an asymptotic expansion that 
is uniformly valid in ph A € (-27r, 2ir), we use (2.3) in (3.1) and obtain 

Crin) = - j/], ((A - 1 + 2m -lnX)-r-i + {\-l-2ni-InX)'1-^ 

2mr(±-r)        V-oo   i-(A-H-27ri-lnA) 

rd-r)' 
|^/f(A-l-lnA)s / /•(0+)      (t- 2m)-h- 

J-oo   t-(X-l-2m-lnX)    J 

+ ^mrz7)L (Mt.A)-M*,A))t—* 27rir(i-r)J_00 

1 /•(o+) , i /-(OH-) 

(3.2) 
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The first two integrals are contour integral representations for the incomplete beta 
function. Prom (11.42) in [10], we obtain 

(A-l-lnA)*/ ^0+)      (t-2iri)-ht-r-i 
2™ W-oo   *-(A-l + 27r»-lnA) 

fM     (t + 2ni)-h-<-h       ,A _ 
i-oo   t-(A-l-27ri-lnA)    J~ 

= -(A - 1 + 2wi - In A)"-* JA-I-IHA (|, r + §) 
-27ri 

-(A-l-2fft-lnA)-r-^ JA-i-inA(ir + i). (3.3) 
27ri 

Since the only singularity of h±(t, A) in the bounded t-plane is a branch point at t = 0, 
the third integral in (3.3) can be estimated by 

1 /,(0+) i 1 
^infT)L   (h+(t,X)-h.(t,X))t-^dt=f^—)0(A-r)    ssr^oo 

(3.5) 

where A is an arbitrary fixed positive constant. 
For the fourth integral in (3.2), we use (2.19) and obtain 

i        /•(0+) ! i        K^n 

- i^ B-)n^)#377 /      (27ri" *)n-^-r-§ *• (3-6) 
n=0 ^2       '/ Jioo 

Note that 
/•(27rt-) .(0+) 

/ (27rz - t)71-^-7"-^ d^ = (27r)n-rei^n+r+^ /       (r + l)n-ir-r-* dr 
Jioo JOQ 

= 2(-)ni(-27rz)n-rS(i - r, r - n). (3.7) 
Hence, 

Similarly, 
1 /»(0+) oo /   v 

ssxF^JL 8-(,'A),"r"!'i,~-g(2^fer<'-»> «3—~- «w» 
Since we can absorb the left-hand side of (3.5) into the right-hand side of (3.8) and 

(3.9), we have shown that 
I   nr   / 1 

CrW - -   A _   .((A - 1 + 27rz - In A)-r-2 + (A - 1 - 2m - In A)-r-2 ) 

+ ^T^A{X-l + 2m-\n\)-r-^Ih=1=k^{lr+\) 

+ (A-l-27ri-lnA)-'-s JA-1-lllAq,r+£)} 
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oo 

+ J2 cn(77)r(r - n){(-27ri)'l-r-1 + (27ri)"-'-1} (3.10) 
n=0 

as r —> oo. This expansion is valid for phA G (—27r, 27r). 
When we apply the identity Ii-X(q,p) = l — Ix(p,q),we can present the final result 

as 
i  /w 
LY_2_(i, ^^ ~ -^fe(|^2 + 2^)-r-2 /   J2i(r+ J,i) 

ivL^-jhri)--*/    ^(r + i.i) 
OO 

+ ^ CnfoMr - n){(-27ri)n-'-1 + (27r»)»-'-1} (3.11) 
n=0 

as r -^ oo. 
To obtain a better understanding of which terms of the right-hand side of (3.11) are 

dominant in which sectors of the complex 77-plane, we give the asymptotic behavior of 
the first term. 

In the case —TT < phrj < ^TT and rj bounded away from the origin, we have 

1   /IT 
tV 2     /!„ 

1^2       '/ 1+47ri 

_ 2 

,r + !)     io 

n2 
1V/f    (^ + 2^)--*   /-^fe^j 

r(i-r)     B(2,.-r2 
«r-5(l-t)-5d* 

r(I-r)     B(i,r + i)     70 V   47ri; 

~ IM(_27rf)-'-1 (3.12) 

as r —* 00. 
In the case ^TT < phr/ < TT and 77 bounded away from the origin, we use that 

Ix2(^i T + \) is an odd function of x and obtain 

"*" 47rz 47ri 

47ri 

= 2-1 ,2(r+1,1). (3.13) 
1    (tye-^)3 V ^212) 
1"+*      47r2 

Now we can use (3.12) and obtain 

1<>5       ^ 1+47ri 

1     r(r)( f^t^iW + 2m)-r-S + ^(-27ri)-'-1    (3.14) 

as r —> oo. 
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Finally, in the case of 77 in the neighborhood of the origin we write 

-Frr^2+27ri>~r~H+^+U) 

--i^^+^^K^^^^S^s)*)     (3-15) 

as r —> 00 where erfc(a;) is the complementary error function.2 

From (3.12), (3.14), (3.15), and the asymptotics of erfc(a;) as x —» 00, we obtain 
that the first term of the right-hand side of (3.11) is of the same order as the first 
term of the divergent series of (3.11), except in the region of the sector |7r < phry < TT 

where the first term of the right-hand side of (3.14) dominates the second term. This 
region is given by 

{77 = -a + pi I a, /? > 0   and    {a2 + j32)2 < 16a/?7r}. (3.16) 

Similarly, the second term of the right-hand side of (3.11) is of the same order as the 
first term of the divergent series, except in the region 

{77 = -a - Pi I a, /? > 0   and    (a2 + /32)2 < WafiA (3.17) 

where we have 

-f^(^-2"t')"r"*/i   izl(r + ^)~-w^L(^2-2™)-^   (3.18) 
iV2       r) 1""47r2 iV2       r) 

as r -^ 00. 
As an illustration of the change of dominant asymptotic behavior of cr(77) as a 

function of 77, we give Figure 3. In the example, we take r = 11 and 77 = 3exp(0i). 
We note that in the sector 0 < 6 < ^TT, the modulus of cr(77) is almost constant, and 
in the sector ^TT < 9 < TT, it varies with 6 and has a maximum at 9 = jn. 

To give a "numerical proof" of (1.11), we use 6 terms in the sum of the right-hand 
side of (1.11) (as we noted before, only 3 of the 6 terms are non-zero), and we evaluate 
the incomplete beta functions via the continued fractions. The absolute and relative 
errors are shown in Figure 3. 

4. Exponentially improved asymptotics of r(a, z) 

In §2, we obtained the local behavior of the Borel transform y(t, A) at the dominant 
singularities. In the previous section, we used this information to obtain an asymptotic 

2To obtain a full uniform asymptotic expansion of the left-hand side of (3.15), the reader can use 
the first three lines of (3.15) and exercise 6 of chapter 7 of [12]. 



RESURGENCE PROPERTIES OF r(a,s) 437 

Cr{7])\ 

absolute error 

relative error 

FIGURE 3. An example with r = 11 and rj = 3exp(0i). 

expansion for the late coefficients in the divergent series in (1.1). As in [6], we also 
can use this information to obtain a re-expansion for the remainder term RN(a,rj) in 

V2^e^2 (^f) _ Ierfc (r,^j = £ Cr^a^ + RN(a,rj). (4.1) 

The method will be very similar to the method used in [6]. Thus, we would use the 
Laplace transform of y(t, A) as an integral representation of the left-hand side of (4.1), 
substitute a truncated version of (2.1) into this Laplace transform to obtain (4.1), 
and use Taylor's theorem to obtain a double integral representation for i?jv(&5 v)- The 
deformation of the contours in this double integral will give us 

(2m)2 J^      J{0tt}     T-t     \TJ 

(2Tri)2 [ V      2m, \-l-\n\)+*      ^a' -2m, A - 1 - In XJ 

n=0 L x / v 

N-ri 
-2m (4.2) 
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where 

= -(-a)If-n-1r(N - n)e±2,riar(n + 1-N, ±2ma),        (4.3) 

\    ±2m, A - 1 - In Ay     }^       JQ (a - t)(t - r) 

The computation of the hyperterminants JF(
Z+1

)(. • •) is discussed in [5] and [7]. How- 
ever, the occurrence of A — 1 — In A in the F^ hyperterminants in (4.2) makes the 
computation of these double integrals nontrivial. In fact, if we compare the F^ 
hyperterminants in (4.2) with the left-hand side of (4.1), then we see that the F^ 
hyperterminants depend on more (dominating) parameters and are more complicated. 
Hence, it is pointless to re-expand the remainder term RN{a, A) in terms of hyperter- 
minants. Other re-expansions in term of other functions might be possible, but it is 
very likely that one loses the simple resurgence. 

Since some of the functions in the right-hand side of (4.2) are more complicated 
than the left-hand side of (4.1), we omit the proof of (4.2). 
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