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A UNIFIED APPROACH TO THE SUMMATION AND INTEGRATION 

FORMULAS FOR g-HYPERGEOMETRIC FUNCTIONS III 

Mizan Rahman and Sergei K. Suslov 

ABSTRACT. AS a continuation of two previous reports, the summation formula for 
the bilateral very-well-poised QIJJQ series is obtained from a Pearson-type difference 
equation on a symmetric g-quadratic lattice without the benefit of any transfor- 
mation formula or other summation formulas. This formula then is used to obtain 
a formula for the very-well-poised, balanced 8^8 series which has the nontermi- 
nating g-Jackson formula and Gosper's bilateral Jackson formula as special cases. 
The corresponding Ramanujan- and Barnes-type integrals also are considered. 

1. Introduction 

This is the last in a series of papers (see [11] and [12]) in which the authors have 
addressed the question of how to derive the summation formulas for bilateral basic 
hypergeometric series as well as the corresponding formulas for the Ramanujan- and 
Barnes-type integrals (see also [13] and [14]) without the benefit of a single transfor- 
mation formula. The basic ingredient of this approach is a Pearson-type difference 
equation of order one (see, for example, (1.1) of [12]). The coefficient functions a(s) 
and r(s) are assumed to be polynomials of degrees at most 2 and 1, respectively, 
although in a latter section we will allow them to have a simple pole as well. 

In [11] and [12] we were concerned only with the ^-linear lattice arising out of the 
case C1C2 = 0 and exploited the parameters in a(s) and T(S) to derive homogeneous or 
nonhomogeneous 2-term recurrence relations from (1.1) of [12] which, in turn, enabled 
us to obtain the well-known g-binomial formula, the i^i summation formula, the two 
summation formulas for the 2^1 series, the 2^2 summation formula as well as a formula 
for the s^s series. We also obtained the corresponding Ramanujan-type integration 
formula in each case and stated the Barnes-type integrals since they were derived 
elsewhere by essentially the same technique. The purpose of this paper is to complete 
the program by considering the g-quadratic lattice. In a sense, this is easier to deal 
with than the g-linear lattice because of the higher degree of symmetry that ensues. 
For example, if we denote C2/C1 = qu, q ^ 1, then 

x(s) = *(-«-1/),    Vxl(s) = C1q-
s-1^(l-q)(l-q^2s), (1.1) 

and the use of (1.5) of [12] gives 

a(s) + T(S)VXI(S) = a(-s - v). (1.2) 
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The basic bilateral series r^v is an infinite series with r numerator and r denomi- 
nator parameters 

r^r 
ai,a2,...,ar (ai,a2,...,ar ; g)n. 

which converges absolutely in the annulus I6162 * * * br/aia<2 • • • ar\ < \z\ < 1. The series 
is called balanced if z = q and &1&2 • • • 6r = ^1^2 • • * arq2. It is called well-poised if 
ai&i = 0262 = • • • = ar6r = ga, say; it is called very-well-poised if, in addition, 
61 = a1/2, 62 = —a1//2. In the latter case the series (1.3) contains a term (1 — aq2n) 
which, according to (1.1), represents a differential of the lattice x(s). The argument z 
is usually related to the parameters in a special way, particularly for those very-well- 
poised series for which summation and transformation formulas exist. For further 
details, see [6]. We note that the bilateral series r^v can always be split into two 
unilateral ones: 

1       00 
,    ai,a2,...,ar . n „   __ x^ 

rV)r   bi.bo 6. >q>Z   " 2L, 
(ai,a2,...,ar ; q)n 
 -z 

~0 (bi,b2,->,br \q)n 

v^    (q/bi,q/b2,...,q/br)n    / bib2'-br \
n 

~{ (q/a>i,q/a>2,'--,q/a>r ',q)n \a1a2"'arzj 

(1.4) 

In Section 2, we consider a symmetric lattice x(s) and polynomial-type coefficient 
functions in order to derive the well-known QipQ summation formula of Bailey. The 
proof is very elementary and self-contained, in the sense that it doesn't use any trans- 
formation or other summation formulas of basic hypergeometric series. We believe 
that this is the simplest proof of the 6^6 formula. We also state the corresponding 
Ramanujan- and Barnes-type integrals that were proved elsewhere. In Section 3, we 
take the balanced rational function-type coefficient functions and derive a general 
formula for the very-well-poised and balanced gips series, from which we deduce the 
nonterminating g-Jackson formula for the 8^7 series. Gosper's bilateral Jackson for- 
mula also emerges as a special case. Finally, we state the corresponding Ramanujan- 
and Barnes- type integration formulas proved elsewhere by different authors. 

2. The g-quadratic lattice x(s) = l(q~s + gs): the 6^6 summation formula 

Starting with the simplest symmetric ^-quadratic lattice x(s) = (q~s + qs)/2, let us 
take 

a(s) = q-2s(l - aq8"1)^ - ^"^(l - c^-1)(l - dq-1) (2.1) 

where a, 6, c, d are arbitrary complex parameters. By (1.1) and (1.8), we have 

P(« + l) =   *(-')   =   AS+2(l-aq-s-1)---(l-dq-s-1) 
p(s) a(s-hl)      q (l-aqs)..-(l-dqs) Km) 

with the general solution 

p(s) = (aq8, aq-8, bq8, bq'8, cq8, cq'8, dq8, dq'8 ; q)ooq2s2v(s) (2.3) 

where UJ(S ± 1) = UJ(S). The choice of UJ(S) is rather crucial in the evaluation of sums 
and integrals over p(s).   The choice is made in order that they converge, and the 
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contributions from the boundaries are either zero or finite numbers. See [13] for the 
technique of choosing different u(s) for Ramanujan- and Barnes-type integrals. 

Prom (2.1) and (1.8), it follows that 

T(S)VXI(S) = cr(-s) - cr(s) 

= [-(1 - ab/q2)(l - ac/42)(l - ad/q2) 

+ (1 - abcd/qA)(l - aqs-l)(l - aq-3'1)] ^- 
qs) (2.4) 

and hence, replacing p(s) and u(s) by p(s ; a) and u(s ; a), respectively (our intention 
being to set up a recurrence in the parameter a), we obtain from (1.1): 

A\p(s ; aMs)} = -^(1 - a6/g2)(l - ac/q2)(l - ad/q2)p(s ; a)(q-s - qs) 

+ 2(1 - abcd/q*)    f8''")    p(s ; aq-1)^- - qs)- 
a u){s ; aq 1J 

Let so € C, such that Imso 7^ 0, and take 

v(so ; a) = 
QSQ—2SQ 

{aq3o,aq-s°,...,dqso,dq-s° ; 9)00(1 - q2**)' 

(2.5) 

(2.6) 

Denote qSo = a, and 

T (    h     A\ -   V"   (qg/a, ag/b, aq/c, aq/d ; q)k  1 - a2q2k   / abcd\ 
iaia, o, c, a) - JL, (oa> a6j aCj ad . g)fc i . a2    ^3 ; 

fc=—oo 

= 6^6 
ga, -qa, aq/a, aq/b, aq/c aq/d 3 

a, —a, aa, ao, ac, ad 

Note that this very-well-poised bilateral series converges provided 

abed 
<1, 

(2.7) 

(2.8) 

which we naturally shall assume to hold. Let us now sum (2.5) from s = SQ — £ to 
s = s0 + k, £ = 1,2,..., k = 0,1,2,..., and then take the limits £ —► 00 and fc —► 00. 
This gives 

(1 - a&cdg"4)(l - aa/q)(l — a/ag)/Q!(ag~1, &, c, d) 

— (1 — abq~2{l — acg~2)(l — adq~2)Ia(Q>, b, c, d) 

a^ 
u)(so) 

By (2.1), (2.3), and (2.6), we have 

lim p(so + k)(j(sQ + fc) — lim p(so — £)cr(so — £) 
k—+00 •£—)-cx) 

(2.9) 

lim p(so + fc)o'(so + fc) 
k—>oo 

= a;(so)92^~2so (a/a, afl/o,..., d/a, ag/d ; 9)00 lim ( ^- )       (2.10) 
k—>a \   q     J 
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and 

lim p(so — £)a(so — £) 

/abcd\ 
= v(so)q2So  2s0(aa/q,q2/aa,...,da/q,q2/aa]q)oolim l—r-)   •    (2.11) 

£—>oo \ q    J 

Thus the right-hand side of (2.9) vanishes if \abcd/q^\ < 1. For the time being, we 
shall assume this to be true. By analytic continuation, we will be able to show that 
the final result is true under the less restrictive condition (2.8). Replacing a by ag, we 
then obtain, from (2.9), the homogeneous recurrence formula 

r (n hn A\      (! - afr/g)(l - ac/g)(l - ad/q) 

Iterating it n — 1 times, n = 2,3,..., we get 

T  (n h n A\        (QVg? 
QC/g> ^/g ; g)n j  ,nn h n j\ /0 , o^ 

4(a'6'C'd) = (aa,a/a,a6c^3;,)/-^ ^c^ ^ 

Since 

lim Ia(aqn,b,c,d) 

(1 - a2g2fe)(ag1  n/a, aq/b, aq/c, aq/d ; g)fc r„h^„n-3^k 
(1 — a2)(aagn, 6a, ca, da ; g)fc n^oo  ^—^ (1 — aJ)(aaan,oa,ca,aa ; a)i. 

«=—oo 

E(l - a2q2k)(aq/b, aq/c, aq/d ; g)fc /   abcd\     m 
^^ (l-a2)(6a,ca,da;g)fc 1^7 l       ' 

exists, we find that 

T („ h . J\      (ab/q^ac/q^ad/qiq)^ 
Ia{a,b,c,d) = ;  —r— hm /a(ag ,o,c,d). (2.15) 

(aa, a/a, abcd/q6 ; ^oo n^cx) 

However, the symmetry of /^(a, 6, c, of) in a, 6, c, d is obvious from its definition (2.7), 
so we deduce that 

(ab/q, ac/q, ad/q, bc/q, bd/q, cd/q ; q)^ T 
iQ(a, D, C, d) = 7 ^ —. ; —.         .   o v—Ja (Z.IDJ 

(aa, a/a, 6a, 6/a, ca, c/a, aa, a/a, abcd/q6 ; gjoo 

Ja:=   ^ I(aq'*,bq'»,cqn>,df*)=   ^      ^^   g2fc2(a4/g)fc- 

where 

-2-   l-aVfc 

z=i,2,3,4 fc=-oo 

We may compute Ja by using Jacobi's triple product identity [6, 11.28] or another 
formula [6, Ex. 5.5] similar to it but we prefer to take advantage of the fact that Ja 

is independent of a, 6, c, d. So by setting d = q/a and c = aq in (2.16) and observing 
that /a (a, 6, aq, q/a) = 1, we get 

(aa, a/a, 6a, 6/a, qa2, q, q, q/a2, ab/q ; q)^ 
Ja — 

(ab/q, aa, a/a, 6a, 6/a, q ; gOoo 

^(qa2,q/a2,q',q)00. (2.17) 



qa,-qa,aq/a,aq/b,aq/c aq/d      ^^,3' 
a, —a, aa, ao, ac, aa 
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Substituting this into (2.16), we find that 

= (g, ga2, g/o^2, a&/g, flc/g, ad/g, bc/q, bd/q, cd/q ; g)^ 1 

(aa, a6, ac, ad, a/a, 6/a, c/a, d/a, abcd/q* ; g)oo 

which is the well-known e^e summation formula [6,11.33]. Since both sides are analytic 
if Ima 7^ 0 and \abcd/q*\ < 1, the restrictive condition that we needed for the validity 
of (2.9)-(2.11) now can be removed by analytic continuation. 

Setting d = q/a in (2.18), we deduce the g-Dougall sum [6, 11.20] 

"a2, qa, -qa, aq/a, aq/b, aq/c m      & /    2] = (g**2* a6/g>ac/^ ^/^ » ^ 
a, — a, aa, ab, ac '   ' (aa,ab,ac,abc/aq2', q)OQ'' 

(2.19) 

05 6^5 

|a6c/ag2| < 1; see also Rogers [15]. Note that, by this method, deriving the eV'e sum 
is just as easy as the 6^5 sum. 

The Ramanujan- and Barnes-type integrals corresponding to (2.18) had been 
worked out elsewhere, so we will just state the results. It was Askey [2] who first 
gave the Ramanujan-type integral 

J — c 

(iaqs, —iaq s,ibqs, —ibq s,icqs, —icq s,idqs, —idq s ; q)^ , 

(_<7i+2s?_<zi-25.<7)oo 

= (q, ab/q, ac/q, ad/q, bc/q, bd/q, cd/q ; q)00/(abcd/q3 ; q)^,     (2.20) 

|a&cd/g3| < 1. By observing that, under suitable conditions, 

/OO /*!        "" 

f(s)ds= /     Yl  /(* + ")<**> (2-21) 
-00 Jo n=_00 

a slightly more general formula was proved by Ismail and Rahman [8].   Ismail and 
Masson [7] also found a similar result by an entirely different method. 

The Barnes-type integral that corresponds to the e^e sum is the well-known Askey- 
Wilson integral 

/ 

^los^ *) (q2is, q-2is ; q^ds  

I nhr>rl •  n I 
(2.22) 

-Tr/logC*-1) (aqis,aq-is,bqis,bq-is,cqis,cq-is,dqis,dq-is ; ^oc 

TT (a&cd ; g) 
^(g-1) (ab, ac, ad, 6c, 6d, cd, q ; q)^ 

that has been proved by a number of authors since the original proof was published 
by Askey and Wilson [3] in 1985; see [6] for references. The proof by Atakishiyev and 
Suslov [5] follows the same path as we have followed in this paper. So, instead of 
trying to give yet another proof of (2.22), we will go over the first few steps to indicate 
how one handles such integrals. 

The first thing to do is to replace a, b, c, d in (2.1) by q/a, q/b, q/c, q/d, respectively, 
and rewrite (2.2) in the form 

P(« + 1) =   -4,-2 (1 - «gS)(l - bqs)(l - cqs)(l - dqs) 
p(s) q (l-€^r-1)(l-bq-»-1)0.-cq-»-1)(l-drs-1) 



418 RAHMAN AND SUSLOV 

with general solution in the form 

pfa) = q-2s2u;(s)  
(aqs,aq-s, bqs, bq-s, cqs,cq-s, dqs, dq-s ; q)^ 

where, once again, u(s) is a unit-periodic function. The form of this function presented 
itself in a rather obvious way in (2.6), as well as the Ramanujan integral evaluated 
in [8]. But the situation is a bit more subtle here. In order to deduce a two-term 
recurrence relation from (1.1), we need to establish the existence of a contour C, 
parallel to the imaginary axis, such that Jc A[p(s)a(s)]ds = 0. This is satisfied if 
we require max(|a|, |6|, |c|, |d|) < 1. However, we also need a principal periodicity 
rectangle, symmetrically located about the real axis, in order to obtain a compact 
integral. This means that we cannot have q~2s in the expression (2.24) for p(s). So 
we have to go back to (2.23). Observe that 

q (1 - ^)(1 - g2^1)   q    ' 

and so 

P(s + l) =     (1 - g-2-^! - g-2s)(l - aqs) • • • (1 - rig*)      _! ,       . 
p(s) (l-q*>+i)(l-q*»)(l-aqr'-1)'--Q--dq—1)q    ' K      ' 

with solution that is appropriate for our purposes given by 

p{s) = q~\aqs,^q..,d^-s,q)oo- (2-26) 

By an argument based on Liouville's theorem, similar to the one used in Section 4 in 
[11], we can establish the uniqueness of this choice of periodic factor. The next step 
is to derive a formula similar to (2.5) and set up a 2-term recurrence relation in one 
of the parameters a, 6, c, d. For details of the proof, see [5]. 

3. The g-quadratic lattice x{s) = \{q s + <7S): the 8^8 formula 

We now take 

a{s) = q       (1-/9-1)  ^^ 

where a, 6, c, d, e, / are complex parameters satisfying the balance condition 

abode = fq4. (3.2) 

This leads to the following solution of (1.1): 

p(s) = (^^g^jq^^^    wis ±1)= wW! (3.3) 
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Hence, 

T(S)VXI(S) = <T(—S) — cr(s) 

(1 - ab/q2){l - ac/q2)(l - ad/q2)(l - ae/q2) 

+ 

{l-af/q2) 

(1 - //&)(! - //c)(l - //d)(l - //e) (1 - aqs^){l - aq'^) 

(l-af/q2) 
q{q s-qs) 

(i-fq-l)(i-f<r- ^J 
(3.4) 

which, on replacing p(s) by p(s ; a), gives 

^A[p(s ; a)a(s)] 

(1 - ab/q2){l - ac/q2){l - ad/q2)(l - ae/q2) 
l-af/q2 

(1-//&)(!-//c)(l-/AQ(l-//e) 

p(s;a)(q s - qs) 

+ - ^^ l-af/q2         —pisiaq-^q-'-q*).        (3.5) 

Note that, by (3.2), as a goes to a/q, f must go to f/q.   Similar to Section 2, let 
5o G C, such that Imso ¥" 0, and take 

UJ(SO) = 
qSo-2s0(fq-sojqso.q}c 

(1 - q2so) (aq-s°, aqs°,..., eq-so, egso ; q)c 
(3.6) 

Denote gSo = a, and 

7c,(a,6,c,d,e) =   yj 
(qq/q, ag/b, ag/c, ag/d, ag/e, a/ ; g)fc (1 - a2q2k)  k 

k=—oo 
(aa, a6, ac, ad, ae, ag// ; q)k 1-a2 

= 8^8 
ga, — ga, ag/a, a^/fe, ag/c, ag/d, ag/e, a/ t 

a, — a, aa, a6, ac, arf, ae, ag// ' 
(3.7) 

This very-well-poised bilateral series also is balanced because of (3.2) and so converges 
whenever \q\ < 1. Summing the relation (3.5) from s = SQ — £ to 5 = SQ + fc, 
fc = 0,1,2, ...,£= 1,2,..., and taking the limits k —► oo, •£ —» oo, we get 

(1 - //&)(! - //c)(l - //d)(l - //e)(l - aa/q)(l - o/qg) , 

(1-af/?)(!-fa/Ml-f/aq) la{flq    '^^ 

(1 - a6/«2)(l - ac/g
2)(l - ad/g

2)(l - ae/q2) 
Ia(a,b,c,d,e) 

(l-af/q2) 

= —T—r    lim p(so + k)a(so + k)- lim p(so - i)<j(so - £) ■ (3.8) 
qu>(So) L k—too £—>oo J 

Now, by (3.1)-(3.3) and (3.6), 

u 1(so) lim p(so + k)a(so + k) = 
k—♦oo 

(aq/a,...,aq/e,af]q)00 

a(l - a2)(aa,..., ae, aq/f ; q)^' 
(3.9) 

and 

CJ ^(-o) lim p(s0 -tMso -0 = /    y^...,g/^//y^)°o, (3.10) 
<-»oo 1-a2 (a/a,...,e/a,q/af-,0)00 
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Replacing a by qa (and so / by fq), we obtain a nonhomogeneous recurrence relation 

Ja(a,&,c,d,e) 

(1 - a/)(l - //Q)(1 - ab/q)(l - ac/q)(l - ad/q)(l - oe/g) 
(1 - aa)(l - a/a)(l - /ff/6)(l - /g/c)(l - /g/d)(l - /g/e)iala9'''C'rf'ej 

+ (aq/a,...,aq/e,af \q)c f(l-af)Pa(a,b,c,d,e) 

(aa,..., ac, a?// ; g)oo   (1 - /?/&)(! - /«/c).(l - /9/d)(l - /?/c)a(l - a2) 
(3.11) 

where 

pa (a, 6, c, d, e) = 1 — a 
4 (<*a» - ■ ■, Qe, g/ao,..., g/ae, //a, ag// ; g) oo (3.12) 
(a/a,..., e/a, ag/a,..., ag/e, a/, g/a/ ; g)c 

It is obvious that pa(a,6,c,d,e) is symmetric in a, 6, c, d, e. Also, it can be easily 
verified that it has a periodic property in all of these parameters, e.g., 

Pa(ag, &, c, d, e) = pa(a, &, c, d, e). 

Iterating (3.11) once, we get 

/a(a, 6, c, d, e) = —  r-/a(ag
z, 6, c, d, e) 

(aa, a/a, /g/&, /g/c, /g/d, /g/e ; g)2 

+ (ag/a,...,ag/e,a/;g)c 
(aa,..., ae, ag// ; g)^ 

 /(l-a/)Pa(a,b,c,d,e)  

(1 - /g/6)(l - /g/c)(l - /g/d)(l - /g/e)a(l - o?) 

V  (1 - afq2k)(ab/q, ac/g, ad/g, ae/g ; g)^ fc 

^o (1 - a/)(/g7&, /gVc, /g2/d, /g2/e ; q)k m/a) ' 

By induction, we can prove that 

T („ u , A »\      (a/, //a, ab/g, ac/g, ad/g, ae/g ; g)w n ia(a, o,c, d, e) = f ^   ^  /L ^  ^ £IJJ £l N  /^(ag71,6, c, d, e) 

(3.13) 

+ 
(aa, a/a, /g/6, /g/c, /g/d, /g/e ; g)n 

(ag/a^.^ag/e^/igjoo 
(aa,...,ae,ag//;g)00 

 /(l-a/)Pa(a,b,c,d,e)  
a(l - a2)(l - /g/6)(l - /g/c)(l - /g/d)(l - /g/e) 

w y  (l-a/g2fc)(ab/g,ac/g,ad/g,ae/g ;g)fe ,     , .fc 

^o (1 - a/)(/g2/6, /g2/c, /g2/d, /g2/e ; g)fe 
Ug/aj * 

Prom (3.7), we find that 

lim Ia(aqn,b,c,d,e) 
n—>oo 

(3.14) 

=  lim s^s 
71—>-00 

s^e 

ga, -ga, ag1 n/a, ag/&, ag/c, ag/d, ag/e, a/gn # 

a, —a, aagn, a&, ac, ad, ae, ag1-71// ' ^ ^ 

ga, —ga, aq/b, ag/c, ag/d, ag/e 
a, —a, a&, ac, ad, ae 

(g, ga2, g/a2, bc/g, &d/g, be/g, cd/g, ce/g, de/g ; g) 
(a&, ac, ad, ae, 6/a, c/a, d/a, e/a, /g/a ; g)^ 

; g, /g/a 

(3.15) 
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(3.16) \fq/a\ = \bcde/q*\<l 

Combining (3.15) with the n -» oo limit of (3.14), we obtain 

/a(a,6,c,d,e) 

_ (g, qa2, q/a2, a/, //a, ab/q, ac/q, ad/q, ae/q, bc/q, bd/q, be/q, cd/q, ce/q, de/q ; q) 
~      (aa, a6, ac, ad, ae, a/a, 6/a, c/a, d/a, e/a, /g/o, /g/b, fq/c, fq/d, fq/e ; 9)00 

(ag/a,...,ag/e,a/;g)oo /(I - a/)pa(a,6,c,d,e) 
+ 

X807 

07 897 

(aa,..., ae, ag// ; qU    a(l - a2)(l - fq/b)(l - fq/c){l - fq/d)(l - fq/e) 

'af, qy/af, -qVaf, ab/q, ac/q, ad/q, ae/q, q .      ,   , 1 /« 17N 
^-^Jq2/bjq2/cjq2/djq2/e,af ' *^«/aJ * ^irj 

Observe that setting a = /, we obtain a transformation formula 

"/2, ?/, -?/, /?/a, /?/», /?/c, /9M /«/c .      " 
f,-f,af,bf,cf,4f,ef >q'\ 

_ (fq/aJq2/bJq2/cJq2/dJq2/e,qf2
]q)0o 

(afq, bf, c/, df, ef, q ; g)oo 

^^7, -VS7, /S2/^ /^/c, /92/d, /^/c, af ' «' ^/aJ ' VM) 

which is a special case of Bailey's transformation formula [6, 111.24]. Substituting 
(3.18) into (3.17), we find that 

qa, -qa, aq/a, aq/b, aq/c, aq/d, aq/e, af # 

a, -a,aa,a6,ac, ad,ae, aq/f '   ' 

(g, qa2, q/a2, af, f/a, ab/q, ac/q, ad/q, ae/q, bc/q, bd/q, be/q, cd/q, ce/q, de/q ; q)^ 
(aa, ab, ac, ad, ae, a/a, b/a, c/a, d/a, e/a, fq/a, fq/b, fq/c, fq/d, fq/e ; q)^ 

fpa(a,b,c,d,e)       (q, aq/a, aq/b, aq/c, aq/d, aq/e, af, af, bf, cf, df, ef ; q)oo 
a(l - a2)       (aa, ab, ac, ad, ae, aq/f, fq/a, fq/b, fq/c, fq/d, fq/e, qf2 ; q)oo 

X807 

8^8 

+ 

xsh 
'f2,qf, -qf, f<l/*, fq/b, fq/c, fq/d, fq/e . 

q,q f,-f,af,bf,cf,df,ef 

provided max(|/g/a|, \fq/b\, \fq/c\, \fq/d\, \fq/e\) < 1. 
If ae = q, then pa(a, b, c,d,e) = l, and we obtain 

\q2/e2, q2/e, -q2/e, q2/ae, q2/be, q2/ce, q2/de, qf/e 
q/e,-q/e,aq/e,bq/e,cq/e,dq/e,q2/ef '   '  _ 

(e//g, af, bf, cf, df, q3/e2, q2/ae, q2/be, q2/ce, q2/de ; q)^ 
(q/ef, fq/a, fq/b, fq/c, fq/d, qf2,aq/e, bq/e, cq/e, dq/e ; q)c 

(3.19) 

807 

X807 
f2, qf, -qf, fq/^ fq/b, fq/c, fq/d, fq/c q,q 

Joo 

)oo" 
(3.20) 

/, -/, af, bf, cf, df, ef 

_ (q3/e2, ab/q, ac/q, ad/q, bc/q, bd/q, cd/q, ef/q ; q)c 

~ (aq/e, bq/e, cq/e, dq/e, fq/a, fq/b, fq/c, fq/d ; q)c 

which is the nonterminating q-Jackson formula due to Bailey [6, 11.25]. Finally, if a, 
a, b, c, d, e, f satisfy the relation 

Pa(MjC,d,e) = 0, (3.21) 
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then we have Gosper's summation formula [6, Ex. 5.12] for a special sV's series. 
The proof of (3.19) given here is the same as that in [13, §8], except that we have 

been able to express the formula in a symmetric form in all five parameters a, &, c, 
d, e, which enabled us to derive (3.20) without having to borrow any transformation 
formulas. Furthermore, the fact that Pa(o,6,c,d,e) emerges from the asymptotic 
values of p(s)a(s) from the two ends of the real line has been made more clear here 
than we were able to do in [13]. 

The Barnes-type integral that corresponds to the 8^8 sum also was worked out in 
[13], so we shall just state the results: 

/ 

>iir/log(q   1) 
(q2s,q-2sJqsJq-8 ; q)oods 

■r/iogfo-i) (aq8, aq-s, bqsi bq'3, cqs, cq-*, dqs, dq-8, eqs, eq-* ; q)* 

*i (f/aJ/bJ/cJ/d, f/e ; q)c 

logiq-1) (q, ab, ac, ad, ae, 6c, bd, be, cd, ce, de ; q)^    y '    ) 

where / = abcde and max(|a|, |6|, |c|, |d|, |e|) < 1. This is better known as the 
Nassrallah-Rahman formula [9]. An alternate proof also was given by Askey [1], which 
is pretty close to the proof in [13]. 

The Ramanujan-type integral that may be thought of as a direct integral analogue 
of (3.19) also was worked out in [13] by this Pearson-equation technique, and in [8] by 
the use of (2.21). In [8], however, some transformation formulas were used for which 
there is really no need. So, let us sketch another short proof based on (3.19) only. As 
an extension of the integral in (2.20), let us consider 

Ka(a, b, c, d, e) = r /T^7?;; 7T/T'!?; g)r *     (3-23) 
J-00 (cx2q2s+1, qi-^/a2, afq\ fq-s/a ; q)^ K      > 

where a, 6, c, d, e, / satisfy the balance condition (3.2); a. can be quite arbitrary, 
including 1 or any integer power of q (in which case the integrand will have simple poles 
on the real line and then the integral has to be interpreted in a principal value sense; 
see [13]). To avoid unnecessary complications, we shall just assume that Ima ^ 0. By 
(2.21), we then have 

~aqs+1, -aqa+1, aqs+1/a,..., aqs+1/e, afqs 

xsips aqs, -aqs, aaq9,..., aeqa, aqs+1/f q,q 

(3.24) 

By (3.19), this 8^8 series equals 

(q, a2q1+23,ql-2s/a2, qfq*, fq-'/q ■ q)^ (qb/q, qc/q,..., ce/q, de/q ; q)^ 
(aaq°,aq-'/a,...,aeq*,eq-'/a ; q)^ (fq/q,..., fq/e ; q)^ 

+ f(q,af,bf,cf,df,ef;q)x \f2,qf,-qf,fq/a,...,fq/e 
(fq/a, fq/b, fq/c, fq/d, fq/e, qf2 ; q)^ 8<?7 [        /, -/, a/,..., ef 

„ (aqs+1/a,...,aq^/e,afq* ; q)^paqS(q,6,c,d,e) 
{aaq°,..., aeqs,aqs+l/f ; q)^    aqs{l - a2q2s) ' 

q,q 
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Substituting this into (3.24) yields the formula 

J-oc (aZqW^q1-28/^, afqs, fq-/a ; q)oo  * 
_ (q, ab/q, ac/q, ad/q, ae/q, bc/q, bd/q, cd/q, ce/q, de/q ; q)^ 

(fq/a, fq/b, fq/c, fq/d, fq/e ; q)^ 
fjaf.bf.cf.df^ef.q'.q)^ + 

i 

«(/?/<*> fq/b> f<i/c> f<i/d> f<i/e> if2; 9)0° 

v  A  \f
2,Qf,-Qf, fq/a, fQ/b,•■■, fq/e .      ' 

X8^[ f,-f,af,bf,...,ef 'q'q. 
-s{msJrll^aq~s/a,■■-,aqs+1/e,eq-s/a ; q)c 

q        (a2q2°, q1-2*/^, aq'+1/f, fq-/a ; 9)00 

[      " 9    (aq-s/a,aqs+i/a,...,eq-s/a,aqs+1/e,afqs,q^/af ; q)z 
ds.     .    _ . _ _ .. .. _   . ;oo 

(3.25) 

In this case, there doesn't seem to be a Gosper-type formula. 
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