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FUNDAMENTAL SETS OF FUNCTIONS ON SPHERES 

V. A. Menegatto 

ABSTRACT. Let 5m be the unit sphere in Rm+1 and let (•, •) denote the usual 
inner product in Rm+1. We characterize those functions K in Lp([— 1,1]), p > 1, 
for which the associated set of zonal functions { x 6 5m —* K((x, y)) : y € 5m } is 
fundamental in LP(Sm). We then study fundamentality of sets generated by either 
spherical convolution or spherical shifting, thus providing methods of construction 
of fundamental sets in Lp(5m). 

1. Introduction 

Let Sm be the unit sphere in the Euclidean space Rm+1 and let (•, •) denote the usual 
inner product in Mm+1. In this paper, we study approximations of a given function or 
a class of functions defined on Sm by linear combinations of functions of the form 

xeSm—>K((x,v)),    y<=Sm. (1.1) 

Following the literature, we call any function of the form (1.1) a y-zonal (spherical) 
function, or a zonal function on Sm for short. A zonal function is the spherical coun- 
terpart of what is called a radial function in Rm. As we shall see, the approximation 
can be done even when all the zonal functions are constructed from a fixed function K. 
Hence, some choices of K will not only serve for approximation purposes but also for 
solving scattered data interpolation problems on spheres (see [4] for details on this). 

Our starting point is reference [12] where the continuous functions K, defined on 
[—1,1] for which the set 

M(K):={xeSm—+K((x,y)) : yeSm} 
is fundamental in the space C(Sm) of all continuous functions on 5m, were completely 
identified. There, the space C(Sm) was assumed (and we do the same here) to be 
endowed with the topology of uniform convergence. Recall that a subset J7 of a 
normed linear space V is fundamental (total) in V if its linear span is dense in V. 
We observe that the set Ai(K) obviously depends on m, even though our notation 
neglects that fact. The proof of the result in [12] was achieved via another one, not 
easily found in the literature, concerning the uniform Cesaro (C, m) summability of 
the formal Fourier expansion of K in terms of Gegenbauer polynomials. A shorter 
proof of the result in [12] was given later in [9]. 

In the present paper, we first extend the result in [12] to the Lp context. More pre- 
cisely, we identify the functions K for which the set M(K) is fundamental in 1^(5™). 
In this context, the definition of M(K) may be relaxed so that y may vary in a subset 
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of Sm whose complement is negligible and K may not be continuous. Our method of 
proof is not related to that of the result in [12] but has some resemblance to the one 
in [9]. This is done in Section 2, after a brief review of 1^ spaces and spherical har- 
monics. In Section 3, after listing some properties of spherical convolution, we apply 
the results and ideas from Section 1 to examine fundamentality of sets generated by 
such convolution. Some of the results in this section hold for general sets of functions 
rather than sets of zonal functions. In Section 4, we repeat the steps of Section 3, now 
considering sets generated by spherical shifting. 

2. Fundamental sets in U)(Sm) 

Let dwm be the standard surface measure on Sm so that 

2^m/2 

■/. 

wm=        dwm = 
r(m/2)' 

A real-valued M;m-measurable function / defined on Sm is called p-integrable (p > 1) 
if 

\\P:=(— f   \K(x)\Pdwm(x) 
1/p 

< oo. 

We shall denote by jLp(5m) the vector space consisting of p-integrable functions defined 
on 5m where we consider that two functions / and g are equal in Lp(S'm) whenever 
11/ ~ #11? = 0- The most important of these spaces is L2(Sm). It is a Hilbert space 
with inner product given by 

(if, 9)} ■=— f   f(x)g(x) dwm(x),        f,ge L2(Sm). 

However, this nice structure will not be exploited in this paper. A remark concerning 
our notation is that both the norm and the inner product above depend on m, but we 
do not enforce that fact. 

It also is convenient to introduce the space Lcc(S'rn) but the reader is advised that 
almost all results in this paper do not hold for the case p = oo. It is composed of all 
functions defined on 5m which are tym-measurable and Wm-essentially bounded. The 
reader is invited to consult Chapter V in [6] for more details on this definition. 

Spherical harmonics are the main tool in the proofs of our results. We recall some 
basic facts about them but we assume that the reader is familiar with this topic 
and, therefore, the results are stated without proof. General information on spherical 
harmonics, including proofs of the results used here can be found in [8, 11, 13, 14]. 
A spherical harmonic of degree k in m -f- 1 variables is the restriction to Sm of a 
homogeneous harmonic polynomial on Rm+1 of degree k. The space of spherical 
harmonics of degree k in ra +1 variables is denoted by WJ™4"1, and its finite dimension 
is denoted by Ng1. lik^l, then H™ and H™ are orthogonal with respect to the inner 
product above. The restriction to Sm of a polynomial on Rm+1 of degree at most j 
is an element of 0^0 H™. This observation and the fact that polynomials on Rm+1 

are dense in the space C(Sm) gives rise to the following important result (see either 
p. 222 in [13] or p. 448 in [14]). 

Lemma 2.1.  The set [JH™ is fundamental in C{Srn). 
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Another interesting property about spherical harmonics is the so-called Funk-Hecke 
formula. Before stating it, we need some additional notation. Hereafter, if p > 1, we 
write Irp,m([—1,1]) to denote the space of all functions defined in [—1,1] which are 
p-integrable with respect to the measure drm := (1 — £2)(m~2)/2d£. Thus, a function 
K is in LP'm([-l, 1]) if and only if 

\\K\km := f^i f \K(mi - 1*)(<»-Mdt)   " < oo, 
\   Wm    J-l ) 

and we identify functions K and L for which \K — i||p,m = 0. Given a function K in 
some Zip'm([— 1,1]), the coefficients in its formal Fourier expansion 

oo 

tf(t)~£on/oi>fcm~1)/2(*)> 
fc=0 

in terms of Gegenbauer polynomials, are calculated by 

af(K) := ^i f1 K(t)p(™-1)/2(t)(l -t2)^-2^2dt,        k = 0,1,2,..., 
^m    J—1 

where ^m-1)/2 = p(TO-1)/2/Pim"1)/2(l). 
The Funk-Hecke formula now reads as follows [11]. 

Lemma 2.2 (Funk-Hecke). For any K in I1'm([-1,1]) and any Yg1 in Tif, 

Wm Jsr 
K((x, y))Y^(x) dwm(x) = aZ(K)Yr(v),       yeSm. 

is™ 

The spaces LP»m([—1,1]) and Lp(Sm) are connected to each other in a standard 
way. If K is in LP'm([-l, 1]), then K{{ •,»)) is in I7(Sm) for all y G 5m. Conversely, 
if K{{ •,?/)) is in i7(5m) for some y G 5m, then IT is in Z7'm([-1,1]). Since wm < oo, 
Theorem IV-lS.l? in [6] says that 1^(5™) C L1('S'm)) P > 1- Tllis fact> taken in con- 
junction with the above comments, immediately implies that each function K({ • ,y)), 
y G 5m, is in L1^™), whenever K is in LP'm([-l, 1]). 

Before we describe our main results, we digress to quote a consequence of the Hahn- 
Banach Theorem related to fundamentality of sets in normed linear spaces. This result 
is well known, and we include it as a separate lemma due to its frequent use. 

Lemma 2.3. Let J7 be a subset of a normed linear space V'. In order that T be 
fundamental in V, it is necessary and sufficient that T not be annihilated by a nonzero 
bounded linear functional on V. 

We now can state and prove the main result of this section. 

Theorem 2.4. Let K be in Lp>rn([-1,1]). In order that the setM{K) be fundamental 
in 17(5m), it is necessary and sufficient that a™(K) j^O, k = 0,1,2,  

Proof We first prove that the condition is sufficient. Let £ be a bounded linear 
functional on I/P(5m) which annihilates M(K). Using the Riesz representation the- 
orem [6], we write C in the form C(g) = ({g,h)), g G 17(S™), in which h G Lg(5m), 
1/p+l/q = 1 (as usual, q = oo whenever p = 1). The annihilating property of £ then 
reduces to 

— /   K((x, y))h(x) dwm(x) = 0,    y G Sm a.e. 
Wm Jsm 
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Next, we multiply both sides of the previous equality by Y^l{y), and we integrate with 
respect to the surface measure wm. Holder's inequality implies that K((x,y))h(x) 
yfc

m(y) is wm x t/;m-integrable over Sm x Sm, and hence, using Fubini's Theorem to 
interchange the order of integration, we obtain 

-J-/   h(x)(f   K({x,y))Y^(y)dwm(y))dLJm(x)^0, 
wm JS™ \Jsm / 

rfc
m G 7^, k = 0,1,2,.... Using the Funk-Hecke formula, we reach 

aP(K)((h,Y?)) = 0,    Yk
m£HT,    k = 0,1,2,.... 

Prom our hypotheses, it follows that 

«fc,lTl)> = 0,    Y^eHf,    fc = 0,l,2,.... 

That is, C annihilates U W?. Since C(Sm) is dense in i7(5m) (Theorem IV-13.21 in 
[6]), Lemma 2.1 implies that [jH^ is fundamental in i7(5m). Thus, by Lemma 2.3, 
C = 0. Therefore, ^(if) is fundamental in 17(Sm) by Lemma 2.3. 

Conversely, assume that there is an index I such that af'iK) = 0. Select Y^ E H™ 
and consider the nonzero Borel measure A on Sm defined on the family B of Borel 
subsets of 5m by the following integral: 

X(B):= f Yrdwm,    BeB. 
JB 

For any fixed y, we may use Lemma 2.2 once again to obtain 

/   K{{x,y))d\{x)= [   K((x,y))Yr(x)dwm(x) 

= wmar(K)Yr(y) = 0. 

Thus, the nontrivial bounded linear functional £i over ^(S171) given by £i(g) := 
JSm gdX annihilates M(K). By Lemma 2.3, M(K) is not fundamental in U>{Sm).   D 

We observe that the argument used in the second half of the proof of Theorem 2.4 
already has been used in several papers (see [12], for example). What is different in 
our procedure is the use of the Funk-Hecke formula to tie things up. 

Since orthogonal transformations of Em+1 can be regarded as coordinate transfor- 
mations of 5m which leave dwm unchanged, we have the result: 

Corollary 2.5. Let p, m, and K be as in the previous theorem. The following are 
equivalent: 

(i) M(K) is fundamental in Lp(5m); 
(ii) MiA.K) :={xeSm^ K((Ax,y)) :yeSm a.e. } is fundamental in LP(Sm) 

for some orthogonal transformation A o/Rm+1; 
(iii) M(A1K) is fundamental in i7?(5m) for all orthogonal transformations A of 

Rm+1. 

Proof This follows directly from the fact that M(A,K) = M(K) whenever A is an 
orthogonal transformation of Rm+1. □ 

It is a straightforward calculation to verify that every isometry of 5m is the restric- 
tion of an orthogonal transformation of i?m+1. Thus, the previous corollary holds true 
for isometries and motions of Sm. 
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We close this section by presenting another elementary consequence of the proof 
of Theorem 2.4. Its proof and the formulation of possible extensions are left to the 
reader. 

Corollary 2.6. Let Ki and K2 be functions in LP'm([—1,1]). In order that the 
set M(Ki) U M(K2) be fundamental in L9^™), it is necessary and sufficient that 
|ap(ifi)l + |ar(^2)l^0,* = 0,1,2.... 

If K is either a strictly positive definite kernel or a nonnegative strictly condition- 
ally negative definite kernel on the Hilbert sphere, then a™(K) ^ 0 for all k. Hence, 
according to results in [7], K can be used not only to generate approximants to any 
function in Lp(Sm), but it also can be used to construct interpolants for solving scat- 
tered data interpolation problems on spheres. Certain completely monotonic functions 
naturally belong to these classes of functions [7]. 

Finally, note that the above results hold for complex-valued functions although 
we do not go into the details of that. Instead, we present a concrete example of 
a complex function K that fits in our theorems. For a positive real number r, the 
function Kr(t) = exp(—irt) is such that (see Chapter 7 in [1]) 

nm(K x _ {-i)k2^)l*T{{m+l)l2) 
ak \Kr) -  r(m-l)/2 «/fc-l+(m+l)/2W 

where T is the Gamma function and Ja is the Bessel function. If r is such that 
Jfc_i+(m4.i)/2(r) 7^ 0 for all fc, then aj^-KV) ^ 0 for all k as needed. It is well known 
that if Xp is the smallest positive zero of J^, (v > 0), then Xj, > v (p. 981 in [5]). 
Since Jo(l) / 0, then aj^ifi) ^ 0 for all k and, therefore, K\ is such an example. 

3. Fundamental sets by convolution 

In this section, we turn to consequences of Corollary 2.5 concerning the fundamentality 
of sets generated by spherical convolution. The precise nature of the results we deal 
with here is as follows. For an appropriate function if in L1,m([—1,1]) and a subset 
T of Lp(Sm)y we give conditions in order that the set K * J7 := { K * / : / e T } be 
fundamental in Lp(5m). Recall that if if € L1'm([-1,1]) and if / € i7(5m), then the 
spherical convolution K * / of K and / over 5m is given by 

K * f(x) := — /   K((x, y))f(y) dwm(y\    x £ S™ a.e. (3.1) 

Notice that spherical convolution is not commutative. So, another completely different 
problem is to begin with a function / in L*)(S'm) and a subset /C of L1'm([—1,1]) and 
then find conditions in order that the set /C * / := { K * / : K € /C } be fundamental 
in /^(S771). In this section, we discuss these two questions. 

We collect some properties of spherical convolution in Lemma 3.1. 

Lemma 3.1. Fix 1 < p, q < 00 and let K be in If«»m([-1,1]). /// is in Lp(Sm), then 
K * / is in Lr(Sm) whenever r := pq/(p + q — pq) > 1. //, in addition, f is a (^-zonal 
function, then K * / is a C.-zonal function also. 

Proof The first claim of the lemma is essentially due to the well-known Young's 
inequality. For the second part, first observe that 

/ tf(<a;,y>)/(<C,t/>)<M^ x,CeS\ 
Js1 Jo 
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where rp is the angle between x and £• Thus, the second assertion of the lemma holds 
for m = 1. To handle the case m > 1, we use the well-known fact that a function / 
defined on Sm is ("-zonal if and only if / o A = / for all orthogonal transformations of 
Rm+1 fixing £. Let A be an orthogonal transformation of Rm+1 fixing £ and suppose 
that foA = f. Then, 

K * f(Ax) = [   K((Ax, y))f(y) dwm(y) 

= [   KUxtA-iyMMdwrniy) 

= [   K((x,y))f(Ay)dwm(y) 

= K* f(x)       xeSm a.e. 

The invariance of dwm with respect to orthogonal transformations of Rm+1 has been 
used in the third equality above. Thus, (K * /) o A = K * / as needed. □ 

Our first result in this section is now at hand. 

Theorem 3.2. Letp, q be as in Lemma 3.1 and write r = pq/ip + q—pq)- LetK be 
in Z^m([-1,1]) and let T be a subset ofLp(Srn). IfK*? is fundamental in Lr{S7n), 
then a^(iir) ^0, k = 0,1,2, Conversely, if the latter holds and T is fundamental 
in 17(S771), then K*T is fundamental in Lr{Sm). 

Proof. For the first part, we assume that ^(jftT) = 0 for some I and show that K * !F 
is not fundamental in Lr(Srri). Consider the measure A defined in the second half of 
the proof of Theorem 2.4. By integrating the elements ofKxJ7 with respect to that 
measure and using Lemma 2.2, we obtain 

((K * /, Ytf)) = -L f     f   K{(x, v))MYF(x) dwm(y) dwm(x) 
wm JSm JSm 

= — f   f{y)K^Yl^{y)dwm{y) 

= a?{K){{f,YZ)) 
= 0,        g E T. 

Thus, K * T is annihilated by a nonzero continuous linear functional over Lr(STn). 
Hence, K * J7 is not fundamental in Lr(Sm) by Lemma 2.3. 

For the second part, we assume that J7 is fundamental in i7(5m) and that a™(K) ^ 
0, k = 0,1,2,..., and we prove that the condition 

((K*f9h)) = o,     fer, 
for some h € Ls(Sm)1 1/s + 1/r = 1, implies that h = 0 a.e. Using the definition 
of convolution in the above expression, interchanging the order of integration, and 
arranging, we obtain 

— /   f(y)K*h(y)dwm(y) = 0: 
Wm Js™ 

fef. 

Thus, combining the fundamentality of J7 in 27(Sm) with Lemma 2.3, we see that 
K * h = 0 a.e. Repeating the procedure in the first half of the proof of Theorem 2.4, 
we achieve the required conclusion for h. □ 
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The proof of the previous theorem can be made much shorter if certain properties of 
convolution, closely related to those of convolution of periodic functions, are available. 
The validation of one such property is already implicit in the above proof. We formally 
quote it in the proof of the following result: 

Corollary 3.3. Let p, q, r, K, and T be as in the previous theorem. If K * J7 is 
fundamental in Lr(Sm), then the following condition must hold: if f is in T and 
{{K * /, Ym)) = 0 for some Y™ in (J^o Hk^ then ((/»ym» = 0- 

Proof. It suffices to observe that the proof of Theorem 3.2 gives the following property 
for K and J7: 

(K*f,Y^)=aT(K)((f,Y^}),    f€F,    Yf e W£\ (3-2) 

Now, if K * F is fundamental in Lr(Sm), then a^l(i^) =£ 0 for all k by the previous 
theorem. Therefore, if the left-hand side of the above equality vanishes for some /, 
the same is true of ((/,Yfc

m)). □ 

Similarly, we have the following result. 

Theorem 3.4. Letp, q, andr be as before. LetJC be a subset ofLq,rn([—1,1]) and f a 
function in Lp(5m). J//C * / is fundamental in Lr(Sm), then the following conditions 
hold: 

(0 ((/,^ro)) ± 0, for all Ym in Ur=o W™/ 
(ii) IfKeK, and ((K * f,Ym)) = 0 for some Ym in )J%L0 H^, then a^{K) = 0. 

If / is zonal, say /(•) = P(( • ,£)) for some P and some £, then it is easily seen that 
formula (3.2) reduces, via the Funk-Hecke formula, to 

aV{K*f) = aZ(K)aV{P),    k = 0,1,2,.... (3.3) 

Thus, in particular, spherical convolution becomes a commutative property when re- 
stricted to zonal functions. Formula (3.3) helps in the conclusion of our last result of 
this section. 

Theorem 3.5. Let p, q, r, and K be as before and let P G I^'m([—1,1]). The 
following are equivalent: 

(i) K * M(P) is fundamental in Lr(Srri); 
(ii) M(K) * P is fundamental in Lr(Sm); 
(m)a%{K)at{P)tQ,k = Q,l,2,.... 

Proof. It suffices to prove that (i) and (iii) are equivalent. If (i) holds, then, as in the 
proof of Theorem 3.2, we have that a™{K) =£ 0 and a™(P) ^ 0 for all k. Conversely, 
if (iii) holds, then M(P) is already fundamental in Lp(Sm) by Theorem 2.4. Hence, 
(i) follows directly from Theorem 3.2. □ 

4. Fundamental sets by shifting 

In this section, we study fundamentality of sets generated by what we call spherical 
shifting. The notion of shifting used here was apparently introduced by Rudin in 
[10], but for the case m = 2 only. Later, this concept was further explored in [2] in 
connection with the study of saturation problems on spheres. More recently it has 
reappeared as an important ingredient in the definition of several moduli of smoothness 



394 MENEGATTO 

of functions defined on spheres (see [3] and references therein). For t in (—1,1), the 
spherical shifting by t of / over 5m is given by the following averaging process: 

where dy is the measure element of the spherical section { y G Sm : (x, y) = £ }. Thus, 
Sfl(f)(x) can be interpreted as the mean value of / on the surface of an m-dimensional 
sphere of radius (1 — t2)1/2. Since each y in the spherical section can be represented 
in the form 

y = xt + z(l-t2)1/2,    (z,x) = 09 

a change of variables can be used to reduce the above integral to the form 

Sr(f)(x) = -^—   I f(*t + Z{1 - t^dWm-^z),      X e S™. 
Wm-l Js™-1 

Among several properties of the operator 5™, we mention that it maps each space 
considered in this paper into itself and, in each case, it has norm 1. Proofs of these 
properties along with more information on this operator can be found in [2]. Perhaps 
the most important of its properties is the following: 

S?l0D=pJr~1)/2(t)YSi,    te(-l,l),    Yk
meHZ,    fc = 0,1,2,....       (4.1) 

One way of proving this is to combine the so-called addition formula for Gegenbauer 
polynomials (p. 472 in [14]) with the fact that for every k and every Y™ in W£\ there 
are £i, £2?..., CNJ? in Sm and real numbers ci, C2,..., c/v™ such that 

nmw = Ec^m"1)/2(^o») xzs™- 

As a consequence of (4.1), we have [2]: 

Lemma 4.1. Let f be a function in Lp(5m). Then, for any t in (-1,1), 

«sr(/),ir))=pim"1)/2(*)«/.ir», nmewr, k = 0,1,2,.... 
Our first result in this section is a simple consequence of this lemma. 

Theorem 4.2. Let T be a subset of U,{Sm). If S^iJ7) is fundamental in Lp(5m) 
for some t in (—1,1), then the following conditions hold: 

(i)P^1)/2(t)^0;/orfc = 0,l,2,...; 
(ii) Iff is in T and ((St

m(/), Y™)) = 0, for some Ym in U^LQ Kk* then ((/> ym» = 
0. 

Proof If -Ffc - (t) = 0 for some fc, then Lemma 4.1 implies that the nonzero 
functional C over Z7(5m) given by C(g) = ((g^Y^1)) annihilates S^iF). Hence, the 
latter would not be fundamental in ^(S171) by Lemma 2.3. That condition (ii) is 
necessary now follows immediately from this. □ 

We do not know whether both the fundamentality of J7 in L^(Sm) and condition (i) 
in Theorem 4.2 ensure the fundamentality of S™^). As a matter of fact, in Theorem 
4.6 ahead, we will answer this question in the affirmative when T is of the form M(K) 
for some K. 

Sets composed of shiftings of a single function may be fundamental. Using the same 
arguments of the above proof, we can easily obtain the following result. 
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Theorem 4.3. Let f be in 17(5™). // {S?(f) : t G (-1,1)} is fundamental in 
Lp(Sm)j then the following conditions hold: 

(i) <(/, Y™)) ¥> 0, for all Y™ in [JZo ^ki 
(ii) Ift is in (-1,1) and ((Sf (/)> Y?)) = 0 for some Y^1 in Hf, then PJ^ 1)/2(t) ^ 

0. 

We now return to zonal functions. 

Lemma 4.4. If f is a (-zonal function, then so is S™(f). 

Proof Take an orthogonal transformation A of Mm+1 for which AC = C- Then, first 
using the fact that / is C-zonal and then the invariance of dwm-i under A-1, we have 
that 

Sr(f){Ax) = —!— /       fiAxt + zil-lP^dwm-xiz) 
Wm-l Jsm-i 

= — f      /(art + ^-^(1 -12)1/2)*^-^) 

= S?(f)(x),   xeS™. 

Thus, 5t
m(/) o A = 5t

m and, therefore, S^{f) is C-zonal. D 

Prom now on, if /(•) = #((• ,C)) for some function K, we will write S^^K) to 
denote the function if7 satisfying 5t

m(/)(-) = i;r/(( • ,C». The following lemma com- 
plements the previous one. 

Lemma 4.5. Let f and K be as in the previous paragraph. Then, 

aJTOST (*)) = P{r1)/2^k(K),    k = 0,1,2,.... 

Proof. This follows from Lemma 4.1 as the following steps show. 

aZ(S?(K))Yf(x) = ^± I' K'(t)p^-1)/2(t)(l - t^-^dt 
wm    J-l 

= ^-f   K'(({,y))pt-1)/2((<;,y))dwm(y) 

= —[    S?U){y)irl)'\&,y))dwm{y) 
^m JS™ 

= pim-1)/2(*)— f  mp(r1)/2(^y))dwm(y) 
Wm Jsm 

= plr1)/2(t)aT{K). 

In the above, we have used the fact that Pfcm~1)/2(( • ,0) is an element of W£\        D 

Lemma 4.5 leads to the following nice result. 

Theorem 4.6. Let K be a function in i7'm([-l, 1]). 
(i) Ift in (-1,1) is such that P^m"1)/2(*) ^ 0 for all k and M(K) is fundamental 

in Lp{Sm), then the same is true of M(S?{K)). 
(ii) If M(SF(K)) is fundamental in Lp(5m) for some t, then the same is true of 

M(K); 
(iii) M(Sr(K)) is fundamental in Lp{Sm) if and only if P^m~1)/2(t)af(K) ^ 0 

for all k. 
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Proof. If the assumptions in (i) hold, then Theorem 2.4 implies that p^1"" (^aJI^liQ 
^ 0 for all k. Hence, by Lemma 4.5, a^(5t

m(^)) 7^ 0 for all fc. Thus, (i) follows from 
Theorem 2.4. Part (ii) follows from Theorem 4.2 and Theorem 2.4. Part (hi) is a 
combination of both (i) and (ii). □ 

Since Ipj^ (t)\^l for t in (—1,1), the following criterion is apparent. 

Theorem 4.7. Let K be a function in Lp,m([—1,1]). Tftese assertions are equivalent: 
(i) .M(JK") ZS fundamental in Lp(5m); 
(ii) For some t in (-1,1), M{K + STCftT)) & fundamental in i7(5m); 
(hi) For some t in (-1,1), X(i(: - S^{K)) is fundamental in LP(Sm). 

We close this paper by proving a theorem related to the problem mentioned at the 
end of the first paragraph of Section 3. To do that, we rewrite formula (3.1) in the 
following way: 

/1 

K(t)S?(f)(x)(l - t2)(m-2V2dt,    x G 5m. 
-1 

Using Fubini's Theorem, it is not difficult to see that if K is in L1,m([—1,1]), / is in 
LP(Sm), and h is in L9(5m), 1/p + 1/q = 1, then the following formula holds: 

((K * /, h)) = ^i f1 «Sr(/), ^ #(*)(! " t2)(™-2V2dt. (4.2) 
^m    J —1 

Implicit in this formula is the fact that the function 

is in I^'m([—1,1]). One way of seeing this is as follows. Using the fact that the 
spherical shifting is an operator of norm 1, we have, by Holder's inequality, that 

I«WU»I<\\sr(mP\\h\\q<\\f\\P\\h\\g, te(-1,1), 
and so 

\\(mf),h))\\p,m < \\f\\p\\h\\q f  (l-t^-Wdt 
JSm 

-   Wm \\f\\p\\h\\q. 
Wm-l 

Our final theorem is as follows. 

Theorem 4.8. Let K be a subset o/L1'm([-l, 1]) and f a function in i7(5m). // 
K, * / is fundamental in Lp(S'm), then {S™{f) : t G (—1,1)} is fundamental in 
Z7(5m). Conversely, if { Sftf) : t E (-1,1) \ / } is fundamental in Lp(5m) for every 
rm-null subset I of [—1,1], and, in addition, K is fundamental in L1'm([— 1,1]), then 
K, * / is fundamental in Lp(Sm). 

Proof For the first part, we have to show that, under the given hypotheses, the 
condition 

«Sr(/).fc»=0,    t€(-l,l), (4.3) 

for some h in Lq(Sm), l/p + l/q = 1, implies that h = 0 a.e. To see that, observe that 
a combination of (4.2) and (4.3) yields 

((K*fih)) = 0,    KeJC. 
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Our assumption and Lemma 2.3 then imply that h = 0 a.e.   For the second part, 
assume the hypotheses and suppose that 

((K*f,h)) = 0,    KeK, 

for some h as above. Formula (4.2) implies that 

/ 
((St™(A &» K{t)(l - t2^m-2^2dt = 0,    K G /C. 

i 

The fundamentality of /C in L1'm([—1,1]) and Lemma 2.3 now imply that 

({sr(f),h))=o, tec-urn, 
for some rm-null subset / of (—1,1). Finally, the fundamentality of 

{Sr(/):*e(-i,l)\l} 

in Lv(Sm) together with Lemma 2.3 forces h to be zero a.e. □ 

Remark. Most of the results in Sections 3 and 4 may be restated for continuous func- 
tions. We believe this to be straightforward which is the reason why we have not done 
it here. 
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