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DENSITY OF ZEROS OF SOME ORTHOGONAL POLYNOMIALS 

Yang Chen and Nigel Lawrence 

ABSTRACT. In this paper, we study the asymptotic eigenvalue density of large 
n x n random Hermitian matrices. The eigenvalue density can be interpreted 
in the context of orthogonal polynomials as the density of zeros. We adopt two 
approaches; the first, using a recent theorem, gives the density of zeros as an 
integral representation with the (appropriately scaled) recurrence coefficients as 
input. The second makes use of the Coulomb fluid approach pioneered by Dyson 
where the weight with respect to which the polynomials are orthogonal is the 
input. 

The zero density of the Stieltjes-Wigert, g-1-Hermite, q—Laguerre polynomials 
and a constructed set of orthogonal polynomials are obtained. In the last two 
cases, the density can be expressed in terms of complete and incomplete elliptic 
integrals of various kinds. 

We also compute, in some cases, the effective potentials from the densities. 

1. Introduction 

In the application of the theory of n x n random matrices, a quantity of central interest 
is the asymptotic eigenvalue density for large n. If the matrix is complex Hermitian, it 
can be shown that the eigenvalue density is the density of zeros of certain polynomials 
orthogonal with respect to a positive weight supported on R or a subset of R where 
n is the degree. 

A more conventional technique for computing the asymptotic density is based on 
potential theory, and in the physical context, the Coulomb fluid method pioneered by 
Dyson in the 1960s [7]. For an excellent and up-to-date book on potential theoretic 
methods, see [11]. For a physical approach to the density, see [4]. This latter technique 
relies on the weight function, w(x)^ and more precisely, the external potential associ- 
ated with it, v(x) := — hiw(x). However, if the external potential increases sufficiently 
slowly near infinity, such as those of the g~1-Hermite and the g-Laguerre polynomials 
where v(x) = 0([ln|x|]2), the associated classical moment problem is indeterminate 

We would like to emphasize that the long tail seen in the equilibrium densities in 
all but the last example studied in this paper is due to the fact that the zeros of these 
polynomials are widely separated, as a consequence of which the density behaves like 
0(l/x) as x —> oo. 

These are of particular interest in the theory of quantum transport in disordered 
systems [5] because, in such examples, physical considerations suggest that v(x) = 
0([lnx]2). It is important therefore to have an independent tool to compute the zero 
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density as this depends only on the moments of the weight function and not on the 
weight function itself. We note here that the zero density plays an important role in 
determining the strong asymptotics of orthogonal polynomials and these in turn are 
essential ingredients in determining fundamental physical quantities such as the gap 
formation probability [4, 6]. 

Recently, Kuijlaars and Van Assche [10] proved that under some mild conditions 
imposed on the (varying) recurrence coefficients, the zero density can be computed 
by quadrature. In this situation, the input consisting of the recurrence coefficients 
therefore is independent of the weight. 

The purpose of this paper is to show how the asymptotic zero density of a set of 
orthogonal polynomials may be obtained from the recurrence relation. This proves 
to be a complementary tool for obtaining the density and provides an independent 
check on the Coulomb fluid technique. We consider various examples of orthogonal 
polynomials with varying recurrence coefficients, and then, utilizing a theorem given in 
[10], stated below, the density is derived. In the case of Stieltjes-Wigert polynomials, 
we show that the density calculated by this method is identical to that found by the 
Coulomb fluid approach. Considering the g-Laguerre polynomials where the parameter 
7 is assumed to vary with polynomial degree, we illustrate how, in a particular case, 
the density is expressed in terms of elliptic functions. This is also the motivation 
behind the inclusion of the constructed example, where an algebraically simple model 
has a density given in terms of elliptic functions. These are surprising as there are 
few examples in which the equilibrium densities are expressed in terms of higher 
transcendental functions. 

This paper is organized as follows. In §2, the zero density of the Stieltjes-Wigert 
polynomials is obtained via two methods: the Theorem stated below and the poten- 
tial theoretic/Coulomb fluid method. §3 is concerned with the zero density of the 
g-1-Hermite polynomials. In §4, the zero density of the g-Laguerre polynomials is 
given for two cases: in the first, the index 7 is independent of n, the polynomial 
degree, and, in the second, 7 varies with n. To show that the appearance of the ellip- 
tic functions in §4 is quite natural, we include in §5 a constructed set of orthogonal 
polynomials. Figures which graph the zero density are included. 

Theorem 1.1. [10] For each natural number N, let two sequences {an5iv}^Lo an(^ 
{/?n,Ar}£Lo> withpn^N > 0, of recurrence coefficients be given, along with the orthogonal 
polynomials pniN(x) which are generated by the recurrence relation 

XPn,N(x) = Pn+l,iv(^) + Oln,NPn,N(x) + Pn,NPn-l,N(x) ,      n > 0, (1.1) 

and the initial conditions PO,N(%) = 1 and p-i^fa) = 0. Assume that n/N —> t > 0 
as n —► oo and N —» oo. Assume there exist two continuous functions a : (0, oo) —» R, 
/3 : (0, oo) —» [0, oo), such that 

lim   an,jv = a(t) ,      lim   /3nijv = P(t) , (1.2) 
n/N—>t n/N-+t 

whenever t > 0. Defining the functions 

a{t) := a{t) - ly/pif) ,    bit) := a(t) + 2^M ,    * > 0. (1.3) 

We then have, for every t > 0, the asymptotic zero density given by 
1       rmm(t,t+(x)) J 

a(x,t) = -l aS       = (1.4) 
nt Jt-(x) V(b(s) -x)(x- a(s)) 
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where t~ (x) and t+ (x) are the end points of the interval, defined for each x by the set 
{s>0:a(s) <x<b(s)}. 

Note that Pn,N(x) defined above is monic and (1.3) was derived as thermodynamic 
relations of Hermitian random matrix models [4]. Although (1.4) is proved by starting 
from the recurrence relations [10], we give below a heuristic justification of how it can 
be obtained using the Coulomb fluid approach. In the potential theoretic/Coulomb 
fluid approach, with varying weights, that is v(x) —► Nv(x) where 0 < N < oo, the 
zero density, denoted by cr(x,t), satisfies the following integral equation 

v(x) — 2t cr(y, t) In \x — y\dy = A(t) = constant,    x € [a(t), &(£)], 
Ja(t) a(t) 

where 

/      a(x,t)dx = 1. 
Ja(t) 

By taking a derivative with respect to x, the above integral equation becomes 

rb(t)My,t) 
d{x) = 2P / ■dy,    x€[a(t),6(*)]. 

aw  x - y 

If /(x,t) := dt[ta(x,t)], then 

/       f(x,t)dx = l. 
Ja(t) 

Noting that a(a(t),t) = a(b(t),t) = 0, /(#,£) is seen to satisfy 

rm r{t) fiv t) 
/      lWlILdy = 0i    xe[a(t),b(t)]9 

Ja(t) x-y 
p 

la(t)   x-y 

and the unique solution is 

dta(x,t) 

dt *y/(b(t)-x)(x-a(t)y 
(1.5) 

An integration gives (1.4). This derivation again is based on the thermodynamic 
approach of [4]. The above argument does not replace the original proof of the theorem 
[10]. Regarding the accuracy of the Coulomb fluid approach, we have the following 
quote: 

"These assumptions ... can be summarized in the single statement that for 
large iV the Coulomb gas obeys the laws of classical thermodynamics. The 
assumption ... means that the free energy at any point [is] a function of 
the local density and temperature alone. To a physicist these assumptions 
are so hallowed by custom that they hardly require justification. Every 
application of thermodynamics to systems of strongly interacting atoms or 
molecules rests on assumptions of this kind." [7, page 158]. 
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2. The Stieltjes-Wigert polynomials 

For the monic Stieltjes-Wigert polynomials, the recurrence coefficients are 

an = ?-2n[<r3/2(l + <7)-<r-1/2], (2.1) 
/3n = q-4n(l-qn) (2.2) 

where 0 < q < 1. Note that the moment problem is indeterminate. We now introduce 
a scaling in the parameter q described below; this corresponds to having varying 
recurrence coefficients. The scaling introduces an additional parameter independent of 
the polynomial degree n. This also is equivalent to a varying weight. The introduction 
of the additional scaling parameter does not alter the long tail in the equilibrium 
density. 

Suppose q = exp[— 1/iV], N > 0.  Thus, in the limits n —► oo and N —> oo with 
t = n/N, we find 

a^N -> a(t) = 2e2t - e*,    t > 0,       (3niN -* /?(«) = e4t(l - e"*),    t > 0,     (2.3) 

and 

a(t) = 2e2t (l - ^ " ^Zr^).    Kt) = 2e2* (l - ^ + vT^T1*).        (2.4) 

The zero density, a(x;i), according to (1.4), is 

a(x;t) = — f ds        (2.5) 
*■* Jt-{x) V(b(s) -x)(x- a(s)) 

where t~(x) satisfies 

a(t-) = x       or       b(t-) = x. (2.6) 

A simple integration gives 

a{x. t) = J_ tan-i y/m-*)^®)  a{t) < ^ < m      (2-7) 

Note that a(t) tends to 1/4 with exponentially fast speed and the smallest zero is 
~ 1/4. Intuitively, we may expect a(t) -> 0 as t —»• oo in the Coulomb fluid picture; 
however, as the potential only increases slowly as x increases, limt-^oo ci(t) ^ 0. 

According to the integral equation of the Coulomb fluid theory [4], the (effective) 
potential generated by the density is 

m=tpf<iMdy, S€M, (2.8) 2 Ja x-y 
where the t dependence of a and b are not displayed. Thus, using (2.7), 

^M.ip/Vi(yt>-iofr-«n  * (2.9) 
2       TT   ya V     2/ + VS6     Jy{x-y) 

x     nx    Ja V       y + Vab      Jx-y 

To evaluate the above integral, we make use of the Plemelj-Sokhotski lemma [8]. 
Consider 

J(*):=/\an-iMEi^|A, x>b. 
Ja \      y + Vab      Jx-y 
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Integration by parts produces a logarithm and using the identity 

BdX 
ln(A + B)=lnj4 + 

/ ./o A + XB' 
(2.10) 

we find after some computation: 

2 
J(^) = TT In 

y/a(x — b) + yjb{x — a) 
x>b 

^y/a + Vb y/x — b + y/x-a 

Therefore, the principal value integral is obtained through the analytic continuation 
of x to x G [a, b] and Plemelj-Sokhotski lemma. Thus, 

and 

f/(x) = 
Inrr 

and with q = exp[—l'/N]. Therefore, the eflFective potential is 

(Inx)2 

v(x) = 0 < x < oo. 

We now apply the Coulomb fluid technique. Prom the weight 

(In*)2' 
w(x) = exp 0 < x < oo, 

the potential reads v(x) = ^ n^ . The solution of the integral equation is 

vlEiSESp " 
Ja 

Iny dy 

 tan 1 

irxt 

2^ Ja y^{b-y){y-a)y-x 

[y/b - v/a) \J{b-x)(x- a) 

(2.11) 

(2.12) 

(2.13) 

o; G [a, 6], 
\/a(6 — x) H- \/fc(^ — a) 

found to be in agreement with the density obtained from the Theorem. Here a and 
b are determined by the normalization condition on the density and a supplementary 
condition [4] identical to (2.4). The zero density of the Stieltjes-Wigert polynomials 
is graphed in Figure 1 for various values of t. 

3. The q   -Hermite polynomials 

The q    -Hermite polynomials satisfy 

2xhn{x\q) = /in+i(^|g) + 

If we denote hn(x/2\q) by Pn(^)? then 

qn hn-i(x\q),    0<g<l. 

1 - qn 

XPn{x) =pn+i(<E) +  — Pn-l(x)- 
q 

Thus, Pn = (1 - qn)/qn. Ifq = e"1/^, N > 0, and n/N = t, then 

m = —4^ = 6*-!,    ^(t) = 4(et-l). 

(3.1) 

(3.2) 

(3-3) 
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FIGURE 1. Zero density of the Stieltjes-Wigert polynomials. Plotted 
here are the densities for the cases where t = 0.5,1,2. Note as t 
increases, a(t) —> 1/4. 

The density is 

where 

f    +\      1   f ds 

irtJt-ix)y/lP(8)-: 

Thus, 

f    +\      1        2       ,    -i(>/W-& (T\x\t) = ——?===. tan    ' 
Trt \/4 + x2 

We compute here the effective potential. Note that since cr(x, t) is even in x, 

^)_o^n   Z16^*) = 2^P 
Jo  * 2 _ -,.2 dy. 

Note also that 

°^=Ua (»-%%+* os^62<i)- 
After some elementary calculations, 

dv 1 

dx>      V4x2 + x4 In 
c2 + 2 - v^ + x4. 

Thus, 

«(») = j In 
2 + x2 - V4a;2 + x4 

+ constant. 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

The graph of the zero density of the q 1-Hermite polynomials is given in Figure 2 for 
various values of t. 
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FIGURE 2. Zero density of the q 1-Hermite polynomials. Contrasted 
here are the densities for t = 0.5,1,2,5 

4. The g-Laguerre polynomials 

In this and the next sections, the density is expressed in terms of elliptic functions. 
For future reference, we follow the definitions given in [9]. 

An elliptic function of the first kind is given by 

F(i>,k):=Jo       ___**__,        fc2<l. (4.1) 

An elliptic function of the third kind is given by 

r^ dx r n(V,n,fc):= / 
Jo 

fc2<l (4.2) 
(1 - nx2)V(l-a;2)(l-fc2a;2) ' 

Hip = 7r/2, the elliptic function is said to be complete. 
The monk g-Laguerre polynomials satisfy the following three term recurrence 

relation 

xLtfix;q) = L%(x;q) + anL^(x; q) + faL^x; q),        7 € [0,1), (4.3) 

where 

q(l - qn) + (1 - ^+1) 
OLn - 

Pn 

g2n+7+l(l_g) 

(l_gn+7)(l_gn) 

g4n+27-l(l^g)2   * 

As in the previous section, q = exp[— 1/N] which tends to 1 if N —> oo. To remove the 
problem of having (1 — q) in the denominator of the recurrence coefficients, multiply 
throughout the recurrence relation by (1 — q). Thus, with y := (1 — q)x and 

Pn{y):={l-q)nL^[^-q,^, 

Pn(y) satisfies the monic recurrence relation 

ypn(y) = Pn+l(y) + ®nPn(y) + PnPn-l(y) (4.4) 
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OLn = 

/?n = 

(l-gn)g+(l-gn+^+1) 
^271+7+1 

(i-<?n+7)(i-<zn) 
74n+27-l 

With g := exp[— l/AT], iV > 0, n/AT = £, and 7 fixed independent of n, we find 

Q:n,iV -► «(*) = 26*(e* - 1), 

and 

a(t) := a(t) - 2^/^) = 0       and       b(t) := a(t) + 2v//?(£) = 4et(et - 1). 

The zero density is 

cr(x,£) = — /   —=====       where   b(t~) = x. K     }     7rt Jt- ^x{b(s) - x) V    ; 

An elementary integration then gives 

(4.5) 

(4.6) 

(4.7) 

<T(XA) = tan 1 

irtx 
y/x[b(t) - x] 

x + 2et xe [0,6(t)]. (4.8) 

We now proceed by evaluating the effective potential, again using (2.8). We find 

v'(x) IT,    f 1 
*   Jo \p-v)y 

= - + —P /    tan"1 

x     TTX    J0   x-y 

Vy(b - y) 
y + 1 + y/T+b 

Vy(b - y) 

dy (4.9) 

y + 1 + vTTS 
dy 

where we have used the fact that 2et = 1 + \/l + b and the normalization condition of 
the density function. The principal value integral in (4.9) is evaluated by considering 
the integral 

   bCLll  

/o 
1{x) = / -L 

Jo  x- 
dy x > b 

y y + 1 + VI + b 

The integral I(x) can be simplified by an integration by parts and an application of 
(2.10), thus 

/(.)-= 
',   4(x + l)(VT+b-l)    .   (y/x - V^^b)(^(l + b)x + V^b) 
In ——,,       — h In   

b(VT+b+l) W* + V^^WQ- + b)x - V^b)! 
Now an analytic continuation to x —> x 6 [0,6] gives, 

T+/ x      i.    r/       -N     «",   4(a; + l)(vT+6-l)     . ,     Jxib- x) 
I+(x) := lim I{x + ie) = - In -^—,    K —'- - iirttm1     v   v—1=L= . 

Applying the Plemelj-Sokhotski lemma, we obtain the principal value integral 

v'(x)-2t     1
lll

4(a; + 1)(Vl+^-l) 
^      x     x 6(^/1+6+ 1) 

= -ln(x + l) 
a; 

(4.10) 
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where we again use the fact that 26* = 1 + y/T+b. 
There is an interesting case where 7 varies with n: 

7(n) = gn . 

Recalling the recurrence relation coefficients, let q = e""1//iV, N > 0, and n/N = t. 
Thus, 

*n,N - a(t) = e(2+^[(l - c-*) + (1 - e-'i+d')], (4.11) 

/3n,N -^ Pit) = c^+^^l - e-(1+^)(l - e"*). (4.12) 

Note that since /3(t) > 0, we must have g > — 1. Thus, a(t) and 6(t) are 

a(t) = e(2+^t(2 - e-'tl + e"^) - 2^/(1 - e-(1+^)(l - c"*)), (4.13) 

6(t) = e(2+^t(2 - e-*(l + e"*) + 2^/(1 - e-d+^Xl - e"*)). (4.14) 

For ^ > — 1, it is not clear whether the density can be obtained in closed form. 
However, there is a special case where g = 1, and the asymptotic zero density can be 
evaluated explicitly. Thus, 

I      /•min(t+(x),t) ^s 
ai<x^) = —+ / /,        / NX/L/ N      x   where 6(0 = a? and a(t+) = a;. 

^ yt-(») V (x ~ 0(5))(b(5) - ^) 
(4.15) 

After using the expressions for o(t) and b{t) and the substitution A = es, we have 

1      /■min(e1+,et) JX 

<T(x,t) = — — fflA (4.16) 
TrtJe'- AvZ-A4 + 2(2x + 1)A3 - (2x + 1)A2 - 2x\ - a;2 

Let us denote P4(A) := A4 - 2(2x + 1)A3 + (2a; + 1)A2 + 2a;A + x2, and note that 
P4(et") = P4(et+) = 0. 

Since the integrand is a product of a rational function of A and the square root 
of a fourth degree polynomial in A, the density may be expressed in terms of elliptic 
functions [3]. In order to determine the exact form, we must first study the nature of 
P4(A), following [2]. Making the substitution A = z + (2x + l)/2, 

PA(Z) = Z
4
+ p(x)z2 + q(x)z + r(x) 

where 

P(x) := -(1 + 2f1 + 6*>, 
q(x) :=-8£2(l + z), 

1 3 
r(x) := — + x + -x2 - 4x3 - 3x4. 

16 2 
Now, for any u, 

z/i+pz2+qz + r= (^2 + |)   ~ (z2(u-p)-qz+ (x~r)) * t4'17) 

We choose u so that the second term in (4.17), a quadratic form in z, is a perfect 
square. This is found by putting the discriminant of the quadratic form in z equal to 
zero, thereby obtaining a cubic equation in u, 

u3 — pu2 — 4ru 4- (4rp — q2) = 0. 



376 CHEN AND LAWRENCE 

Since p(x), q(x), and r(x) are all real valued functions, the polynomial in u must have 
at least one real solution, which is denoted by ^o(^)- Hence, 

z4 + pz2 + qz + r = z  + Z^UQ -p+    — - 
UQ 

2      2y/uQ -pj_ 

z2, - z^/uo - p +    — + 
UQ 

Thus, 

P4(A) = 

A2 + {y/u^p - (2x + 1))A + 

2       2y/uQ -p) 

(2x + l)2     ^o      (2a; + l)V^o-p 

A2 - (V^o-P + (2a: + 1))A + 

4        +  2 z 

(2g +1)2     ^o     (2a; + l)x/^rp 

2^0 -p. 

+ 
2^0 - P. ' 

(4.18) 

The cubic equation in u can be solved by a trigonometric method [2], obtaining the 
root that is both real and greater than p{x), which is 

us{x) = 
-(2x + l)(6x + 1) + 4fi(a0\/l + 16z + 40z2 

where 

f2(a;) = cosh 
1 i (l + 24x + 156a;2 4- 224a;3 + 216xA 

3 V (l + 16a; + 40a;2)3/2 

(4.19) 

(4.20) 

Considering the factorization of P4(A) above, we note that the discriminant of the first 
quadratic is 

A-(x) :=    /    .qy     = - uo(x) -p(x) < 0,        x > 0, 
^uo{x)-p{x) 

whilst that of the second is 

A+(a;) :=        "2fa)        - fio(x) - p(x) > 0,        a; > 0. 

We conclude that for x > 0, ^(A) has a complex conjugate pair of roots and two real 
roots which are identified as fXi(x) := e* ^ and ^2(2;) := e* (x). 

Hence, the integral (4.16) becomes 

dA (4.21) 

where /U = e* and 

Ml(x))(/i2(:r) - A)(A2 + j/^JA + £(*)) 

z/(x) := i/wo(a;) -pW - (2a; + 1) > 0,        x > 0, 

t.          (2a! +1)2  , uo(a;)     (2x + l)^/uo(x)-p(x) 
ttx) '■= A + —S 5  2^0(3;) -p(x) 

(4.22) 

> 0,   a; > 0. 

(4.23) 
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We proceed to reduce this integral to a standard form by using the substitution fol- 
lowing [3]: 

_ (j)(x) - A 

which yields 

a(x t) = 1 /A=min('i2''i)     Wa)-*(»))(!+ P)<fr ,4 24) 

"'     KtJx=lll (<Kx) + iKx)y)y/M(y)N{y) 

where 

M(y) = (M(x) + ti2(x))(l + y)(<l>(x) + ^(x)y) 

- ix1(x)fi2(x){l + y)2 - (^(a;) + ^(x)y)2, 

N(y) = Mx) + V(z)2/))2 + ^(x)(0(a;) + ^(x)y)(l + y) + f (x)(l 4- y)2. 

We now choose (j)(x) and ^(x) so that the coefficient of y in both M(y) and N(y) 
vanishes. This implies 

(A*i + Afc2)(0 + ^) - 2/xi^2 - 2^ = 0 

and 

The solution of these equations gives 

2(^-0 

^:=_^i+M2) + ^iM2<a (426) 

^1+^2 + ^ 
It is easily seen that (/> and -0 are real. With </> and ^ satisfying these equations we 
have 

M(y) := mi + msy2 := (0 - /xiXw - 0) + (^ ~ /ii)(M2 - ^)y2, (4.27) 

^(») := m + nay2 := ((/)2 + i/^ + 0 + (^2 + i/^ + 0y2. (4.28) 

Observe that ni, n2 > 0 for a; > 0 since y2 + vy + ^ = 0 has no real roots. Further, 
since the product of </> and ip is negative and both (j) and ^ satisfy the same quadratic 
equation, we are at liberty to choose which root is positive and which is negative. 
We suppose that ip < 0. This means that 7712 < 0, consequently mi > 0 (so that 
(j) G (^1(2;), ^2(2))) or else the argument of the square root in the denominator of the 
integrand is negative. Let us define 

mi / mi 
n := A   —,        m := 

Note that 

so 

TV       '  V \m^\' 

M('^W(*^]=0, 

<P - 1*1,2 \ 2         »   = m . 
Mi,2 - ^ 
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Since </> £ (^1^2) and ^ < 0, x > 0, we see that 

= m,        and         7 = — m. 
HI-I/J ^2-^ 

Thus, 

„(l,t) = !ii^ 
Jmax(— 

(1 + 2/)% 

** \/n^M ymax(-m,mo) (| + y)\/(n2 + y2){m2 - 3/2) 
(4.29) 

where mo = £rf • The integrand is now decomposed into the sum of an odd function 
and an even function by noticing that 

i+y _,:1   $£-$)   y(§-V 
i + y $-y2      $-y2' 

For x e [0, a(£)], the interval of integration is (-m, m), thus, 

dy 
a(x t) = 2{$ ~ ^ rdi i{i~^)  

y2){m2 -y2) 
(4.30) 

Prom [9], this is 

1    rt       2^ - !) ^(X, t)  =   ^  
"2 + | 

(5- 
m 

(4.31) 
Triv^lmal L(n2 + ll)-^"!2 + n2    \2' i/m2 + ri 

n2(l-|) TT/<!r  m2(^+n2) m       V 

|(«2 + $)Vm2 + n2    V2,^(m2 + n2)Vm2 + rz2/ 

For x S [a(t),6(t)], there are two distinct cases. Firstly, when — m < TOQ < 0 corre- 
sponding to <l>(x) < n < fi2(x), then 

<T(x,t) = —*  
7r*i/ n2\m2\ 

I"/ + rmo+ r       ^       ^i, f^-f)^] 
I. Wo Jo    V^ + y2)(m2-y2)\        &-y2)_ 

(4.32) 

where 

h 
r 

(x,t)= / 
Jm 

y(f-i) 
mo   |^ - y2    v/(n2+2/2)(m2_y2)- 

dy 
(4.33) 
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Note that Ii can be expressed in terms of elementary functions, to be shown later. 
Again, using [9], we find 

4-1 
a(s,t) = —*  

Trty^n^jm^l 

+ 

+ 

+ 

n2(l - j) TT rn2(^+n2) ^ 

|($+n2)Vm2 + n2    V2' ||(m2 + n2)' v^?+^ 

(^+n2)Vm2 + n2    V V  "»   ymg + n2 J'Vm2 + n2J 

n2(l-^) 

^(^+n2)v/^T^ 

TT/    •   -1 / "~m0    /m' x II  sin 1     W — 
2 + n2\   m2(^ + n2) m 

n< m   ^ml + n2)'^(m2+n2y V^T 

The second case is when 0 < mo < m corresponds to Mi (a) < M < ^(z)) then, 

^-i    r       rm/     i(i-i)\ dy 
cr(x,t)=       /—— 

7rtvn2lm2 

where h is as above. By [9], we may write 

1    loV1+ ^-y2^ 2+2/2)^2 _y2)J (4.35) 

cr(a;,t) = 
^-i 

/i + F[ cos -i mo m 

irty/n2\m2\ L        Vm2 + n2    \ m ' Vm2 + n2 (4.36) 

+ i^-4L=nfcoS-
1^). m" m       V 

i2 + n2A' 

In order to compute /i, it is necessary to first indicate the range of the various 
parameters appearing in (4.33). Recalling the substitution 

we deduce that in the domain of our problem, t > 0 and x > 0, 

v> > m > |mo| 

This provides sufficient information to specify Ji precisely, which by means of elemen- 
tary integration is found to be 

Lix) = ^-i 
2v/[«2 + (^)2][(^)2-m2] 

TT     taii_1     2m2n2 + (m2 - n2) [j^)2 + mg] - 2((/./^)2mg    ' 
2       ^     2 V[(^)2 " m2][((j>/rp)2 +n2](n2 + mg)(m2 - m§).  ' 

(4.37) 

The zero density for both cases, 7 = constant and 7 = n, are given in Figures 3 and 
4, respectively. 
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0.2 

2.5 7.5 10       12.5       15       17.5 

FIGURE 3. Zero density of the q 1-Laguerre polynomials where the 
parameter 7 is assumed to be constant. Plotted here is the density 
for t = 1. 

FIGURE 4. Asymptotic zero density for the g-1—Laguerre polynomi- 
als where 7 = n and t = 1. That the plot terminates at x « 3 does not 
indicate that the density terminates here since b(t) ^> 3. The scale 
selected enables us to see the discontinuity in the slope of the density. 
However, near b(t), the density vanishes like a square root. Near 0, 
the density diverges like Xjyfx. This is because the left-end point, 
namely 0, is fixed. These features are general. Note the similarity of 
Figure 3 and this figure. 

5. A constructed set of orthogonal polynomials 

This example clearly illustrates how elliptic functions may occur in the asymptotic 
zero density. Consider the case: 

a(£) := \it,        fj, > 0, 

b(t) :=t(Q-t),        Q>0. 

(5.1) 

(5.2) 
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To ensure that b(t) > a(t) in t > 0, we require g > JJL and t G [0, g — //]. The density 
reads 

1     ,min(t,t+) ds 

a(xt) = — . (5.3) 
K       '        Kt Jt- y/(b(8)-x){x-a{8)) 

where b(t~) = a(t+) = x if x < jji(g — fi) and 6(t"~) = 6(t+) = x if x > ^(g — /i). 
The roots of the quadratic form in the denominator are 

aii2(a;) = |±^-x- (5.4) 

2 

where si < S2. Note that in all possible cases, 0 < x < ^-, so that all roots of the 
cubic equation, 

(s-~)(s2-£s + x) = 0, 

are always real and positive. 

Case A: 0 < /x < g/2] 0 < t < fi. When 0 < x < a(t), so that si < | < t < $2, then 

ds 

^{S-S1){S2-S){^-S) •«**-*&£ •■ • ~ - •      (5-5) 

2    ^f" .;i-s' 

When a(t) < x < 6(t), see Figure 5, so that Si < t < ^ < 52, then 

7rt^fi(s2 — si)    V2   y $2 — si J 

inie 5, so that Si < t < ^ < 52, the 

*(», t) = -^7= f    , dS (5.6) 

F  sin 
vty/nfa - Si)    V Vy % - *i /   V s2 - si 

Case B: 0 < ^i < ^/2; n <t< Q/2. When 0 < x < a(t), so that Si < ^ < t < 52, 
then 

a(x, t) = ^-[i    , dS (5.7) 
*ty£./.i   ^(s - Sl)(S2 - 8){£ - a) 

V2'vi-5i )- 
irty/fJlfa - Si) 

When a(t) < a; < ^(^ — /i), see Figure 5, so that si < t < ^ < S2, then 
M 

^,0 = -^= f    . dS (5.8) 

Ffsin-1 

TTt^n(S2 - Si)      V VV  M ~ Sl  /     V S2 - Sl 

t-sr \     iz-s,. 
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tA ts tc 
FIGURE 5. Shown here is the typical behavior of a(s) and b(s) in 
cases A, B, and C of the constructed example. Also indicated are 
possible t values corresponding to each of these cases, respectively. 

Finally see Figure 5, for IJL(Q — fj) < x < &(£), where si < t < S2 < ^, then 

1      r 
r(x,t) = —— /   — 

(5-5i)(52-5)(|-5) 

TTty/x — US i ^-im\m> 
(5.9) 

Case C: 0 < n < Q/2; Q/2 < t < g — /i. For x e [0, &(£)], see Figure 5, the expressions 
for the density are identical to Case B. For b(t) < x < g2/4 where si < S2 < t < -^ 
then 

(5.10) 
1      fS2 

<J(X, t) = —-= I        . 
-S1)(S2-S)(^-S) 

TTt^X - (IS!     V2   V f-«! 
F{*       1*2-81 

Case D: Q/2 < fj, < g; 0 < t < g — /J,. Note we always have si < X//J, < 52. When 
0 < x < a(t), then 

a(x, t) = 
ds 

rty/PJ.!   ^(S-Si)(s2-s)(f-s) 
(5.11) 

nty/lJ,(s2 - Si) 



DENSITY OF ZEROS OF SOME ORTHOGONAL POLYNOMIALS 383 

FIGURE 6. Shown here is the typical behavior of a(s) and b(s) in 
case D of the constructed example. Also indicated is a possible t 
value corresponding to this case. 

When a(t) < x < b(t), see Figure 6, we find 

* ds 

S-S1){S2-S){1-S) 

^-«/{•*" (/FD'VI^)- 
a(x,t) 

t = 0.75 

t = 0.6 

0.05 0.1 0.15 0.2 0.25   X 

(5.12) 

FIGURE 7. Zero density plots for various t values corresponding to 
cases A, B, and C where fi < g/2. Shown here are the densities when 
g=l^= 1/4, and t = 0.2,0.4,0.6,0.75. 

Observe that in Figures 7 and 8, which graph a for the above cases, the densities 
exhibit possible discontinuities in the derivative. We now discuss some of the features 
observed in the densities generated in the construction above. 
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I* = 0.1 

* = 0.3 

0.15 
0.05 

FIGURE R   A 

e-hfi** 3/5. anH * _ . 7 f/2- Shown her* 
'3A and* = 0.1,0.2 , 0.3. 

0.2      a; 

-« ior various t valiK* f 
here aro + J,    ,   d'1UesJ for a 

are the densities when 

In ail 

/« + ^ where 6 ~> 0 .n 

fe 0 ~ -_2__^ '      "^^ -a,ysis shows that 

'(f'*^))- 
where 

crfx t) r^ 9 

, '    '^^h^+V^r^a^-1-0(61) 
68 us t0 write the Jocai h^h    ■ 

(5.14) 
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Thus, we see that the gradient diverges as x —► t(Q - t) - 0, to —oo, for each case 
where t < g/2. 

However, if t > g/2, as it is in case C, by applying the above substitution, we find 

cr(X)t) 
lrty/t(Q -t)- lXSi(t{Q - t)) 

F^mQ-t))) (5.15) 

2{s2{t{Q - t)) - SMQ - t)))y/l-kl(t(Q-t)) 
Vs + 0{S). 

Prom this expression, it can be seen that as x —► t(g — t) — 0, the gradient again 
diverges, but to +oo. Again by letting 5 —> —5, the asymptotic analysis shows that 
for t > g/2, the slope does not diverge for x —> t(g — t) + 0. 

We now mention a special case where /i < g/2 and t = g — /JL. The density is seen 
to diverge at x = /x(g — /i). In order to understand the nature of the divergence, we 
use the expansion [9]: 

■(§•*) 
n\.     ,      .,..   .* -Tf^J+UJ ^TTTP-'KI-^+IWW,  *-i. 

(5.16) 

If x = /x(£ — /x) ± S where 5 —> 0, the density has the form: 

*M~;v3hsln5+0(1)- (5'17> 

As such, we can see that the gradient at this point behaves like (/i(g — fi) — x)"1. The 
zero density for cases A, B, and C are shown in Figure 7 and case D in Figure 8. 
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