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AOMOTO'S MACHINE AND THE DYSON CONSTANT TERM IDENTITY 

Kevin W. J. Kadell 

ABSTRACT. Aomoto has used the fundamental theorem of calculus to give an 
elegant proof of an extension of Selberg's integral. A constant term formulation 
of Aomoto's argument is based upon the fact that for 1 < s < n, the constant 
term in ts d/dts f(ti,... ,*n) is zero provided that /(£i,...,in) has a Laurent 
expansion around ti = • • • = tn = 0. We use this as the engine for a simple proof 
of an Aomoto-type extension of the Dyson constant term identity. We outline the 
use of Good's proof to evaluate the coefficients of ti/tn, ti^/tn-i^n? and t^/t^ 
in Tli<i<j<n(l ~ti/tj)0,1 (l — tj/ti)aj' We give a conjecture with some surprising 
symmetries and its g-analogue. 

1. Introduction and summary 

Selberg [14] has given an important multivariable beta integral which is related to con- 
stant term identities associated with root systems. Aomoto [2] has extended Selberg's 
integral to 

t- [1f[tt1)+x(i-m\l-ti){y-1)Alk(tu...,tn)dt1...dtn 
Jo       Jo ** 

-n 
i=l 

r(x + (n - i)k + x(i < m)) r(y + (n - i)k) T(l + ik) 
T(x + y + (2n - i - l)k + x(i < m)       T(l H- k) 

(1.1) 

where n, A;, and m are integers with n > 1, k > 0, and 0 < m < n, Re(a;) > 0, 
Re(y) > 0, x(^) is one or zero according to whether A is true or false, respectively, 
and 

An(t1,...,tn)=     H    (U-tj) (1.2) 
l<i<j<n 

denotes the Vandermonde determinant. When m = 0, (1,2) is Selberg's integral in 
which the integrand is symmetric in ti,..., tn. Observe that the effect of the parameter 
m is to introduce the product ti • • • £m into the integrand. 

Aomoto's elegant proof [2] is based upon the fact that if /(£i,..., tn) is continuous 
on the unit cube [0, l]n, then, by the fundamental theorem of calculus, we have 

0 = / "'■/ ^;(*l(1""*l)^l'---'t»0cttl'"'cftn" (L3) 
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Morris [13] has proven the case m = 0 of the following constant term identity which 
is equivalent to Aomoto's integral (1.1): 

mna-M-^i-i)* n (i-i)'(i-£)' 
1=1 l<i<j<n J 

" (a + b+(n-i)k + x(i< m))\ (ik)l 
l*(a + (n-i)k + x(i<m))\(b+(n-i)k)l  kl l    j 

where [w]f denotes the coefScient of the monomial w in the Laurent expansion of /. 
Let 1 < s < n. Aomoto's argument may be applied to constant term identities by 

observing that if /(£i,..., tn) has a Laurent expansion around t\ = • • • = tn = 0, then 
we have 

0=[l]isJ-(/(t1,...,tn))- (1.5) 

Let n > 2 and ai,..., an > 0. We set 

/„(ai,...,oB;ti,...,t„)=     J]     (l - ^ (l - 1)°' (1.6) 

and use capital letters to denote the constant term 

Fn(ai,...,an) = [l]/n(ai,...,an; ti,..., tn). (1.7) 

Dyson [4] conjectured the constant term identity 

Fnfo,. .. , O = (QlV" + °")!, (1.8) ai! • • • a^! 

which was proven independently by Gunson [6] and Wilson [16]. Good [5] gave a short 
proof of (1.8) using the identity 

which may be obtained [7] by expanding the Vandermonde determinant 

An(*i,...A) = det|*p|nxn (1.10) 

along the bottom row. 
Observe that Good's identity (1.9) gives 

n 

/n(ai,...,an;£i,...,£n) = ^/n(a:b- ••>%•-!) a? ~ l)%'+i5- •• jflnj^i)' ••?£n)- 

(1.11) 

Extracting the constant term from (1.11), we have 

n 

jFn(ai,...,an) = 2jjPn(ai,...,aj-i,aj - l,Oj+i,...,an). (1-12) 
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Good's proof [5] of the Dyson constant term identity (1.8) is concluded by observing 
that the multinomial coefficient (ai -\ han)!/ai! • • • an\ also satisfies (1.12) and the 
boundary condition 

i^ai,..., am_i,0, am-|_i,..., an) = Fn_i(ai,..., am_i, am+i,..., an).       (1.13) 

Let [1, n] = {1,..., n} denote the set of positive integers from one to n. We set 

kn)m(ai,.",an]ti,...,tn) = 22       z2      (1+     A2     
av) 

p=l MC[l,n]~{p}^        ve[l,n]-M      ' 
|M|=m 

X   11   (1-f-)/n(al)---^n;^l,...^n), (1.14) 

and use capital letters to denote the constant term 

^n,m(«i?..., on) = [ 1 ] fcn?m(ai,..., an; t\,..., tn). (1-15) 

Observe that we may relax the restriction M C [l,n] — {p} to M C [l,n] since 
p e M implies that IISGMCI "" tpft*) = ^ ^ w^ ^e convenient for the proof not to 
do so. 

We use (1.5) as the engine for a simple proof of an Aomoto-type generalization of 
the Dyson constant term identity (1.8). This is given by the following theorem which 
is our main result. 

Theorem 1. 

^(........j-.f;1) ('+g»)(\V.'.-y-    (1-16> 
Let TT £ 5n. The case where TT is a transposition of the symmetry 

/n(«7r(l)? • • • 5 ^7r(n); **(!)> • • • »*7r(n)) = /n(ai,. . . , OnJ ti,. . . , tn) (1-17) 

plays a silent role in our proof of Theorem 1. We avoid its use by using the engine (1.5) 
with s ranging from one to n and combining terms so as to remove the denominators 
from the partial derivatives which arise when we use the engine (1.5) of our machine. 

Defining the partial ^-derivative by 

dq    tiu +  \\       (/ftl> ' ■ • > *n) ~ /(*!» • • • »^-1? tfay Wl ' • ' > *n)) /IIQ\ ^ (M-•• .*»))- < ^rr^j .    d-18) 
we see that if /(ti,... ,tn) has a Laurent expansion around ti = • • • = tn = 0, then 
we have 

0 =[!]«. A. (/(*!,... .tn)). (1.19) 

Observe that the ^-engine (1.19) expresses the fact that the constant term is unchanged 
by the substitution ts —> qts. 

See Kadell [9-11], Stembridge [15], and Zeilberger [17, 18] for some surprisingly 
simple proofs of certain constant term identities associated with root systems using 
this idea. 

Let \q\ < 1 and set (z; q)m = nS:i(l "" ^Q1"1)- Following [1], we set 

g/n(ai,...,an;*l,...,*n)=       TT       (T'^)     (^T'^)    ' i1'20) 
l<i<j<nKti      JaiK    ti      Jaj 
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Andrews' g-Dyson conjecture [1], 

(#1 g)ai+-+an [l]g/n(ai>..->Ow;ti>...>tn)=       ^.^a1+...+a» (L21) 

has been established by Zeilberger and Bressoud [19] and extended by Bressoud and 
Goulden [3]. 

In Section 2, we use the engine (1.5) of our machine to give a constant term identity 
which involves the weighted averages Knto(au...,an) and Kn^(au...,an). 

In Section 3, we continue with the engine (1.5) of our machine and give a functional 
equation which gives the behavior of -RTn.mfai,..., an) as a function of m. 

In Section 4, we establish the Dyson constant term identity (1.8) and then complete 
the proof of Theorem 1. 

In Section 5, we outline the use of Good's proof [5] to evaluate the non-constant term 
coefficients [ti/tn] fn(au.. .,an;ti,...,tn), [ti^An-i^n] /n(ai,. ..,^^1,... ,tn), 
and [£1*2An] /n(ai»'"»an;*ij.-.,tn)' We give a conjecture with some surprising 
symmetries and its ^-analogue. 

2. The machine meets Dyson 

In this section, we use the engine (1.5) of our machine to give a constant term identity 
which involves the weighted averages ifn,o(ai, • • •, On) and ifn,i(ai> • • • 1 an)- 

We apply the engine (1.5) of our machine by using the fact that 

0=     E    l1}t8^((1-r)fn(au..-,an]tu...,tn)). (2.1) 
l<P#«<n 0 S   V ts ■    / 

Observe that 

■r 
-^rC1-!)'^-;)'- <"> 

Interchanging the roles of 5, t and a, 6 in (2.2), we have 

Replacing a by a + 1 in (2.3), we obtain 

Using (2.3) and (2.4), we obtain 

ts df \ \~ f') ^n(aij,*,'an;^1>,"^n)) 
lp + l)tp + ds^s ^^ Q>sts + ^v^v N 

^5  — tp ts  — tv        J 

X (l - ^) /n(aii • • •, Oni *li • • •, *n)- (2.5) 
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Substituting (2.5) into (2.1) and rearranging the result, we obtain 

0=     £    [l]i*\1^.+ *t'(l--*)Mal,...tanitu...ttn) 

+    $3 X!       [l]aa s    ^ v (l-f)fn(ai,...,an;t1,...,tn) 
1 ^   -j.   ^ x-\      i      r       i S V 5 l<p^s<n t;€[l,n]-{p,s} 

(2.6) 

We now remove the denominators from the terms in the two sums on the right side 
of (2.6). 

For the first sum on the right side of (2.6), observe that 

= ap + o, + l-(ap + l)(l-^). (2.7) 

rs     Tp 

Hence, we have 

£   [i](Qp V V aa^ f1 - r) Afa' • • •.a»;«i, •. ■,*») 
l<p^s<n F 

=       5Z     ^l (ap + a5 + l-(ap4-l) (i- -f) ) /n(ai,...,an;*l,...^n). 

(2.8) 

For the second sum on the right side of (2.6), we have 
n 

^2      ^2   Hp^,v) = Y2   Yl   h(p>s,v)+h(p,vis)>     (2-9) 
I^PT^*^^ v€[l,n]—{p,s} P=l     l<s<t;<n 

5,ve[l,n]-{p} 

and we observe that 

Zg by \ 0g / 61; tg \ Zy / l'S*'V 

= as^ + av^ = as + a„-as(l-^) -o„(l-^). (2.10) 
Zy Zg \ Zy / \ Zg / 

Setting 

fe(p,S^) = [l]Qf+ ^(l-^)/rt(a1,...,ara;f1,...,tn) (2.11) 

in (2.9) and using (2.10), we obtain 

^ ^2      [l)as **" v (l-^)/n(ai,...,an;ti,...,tn) 
l<P^s<n vG[l,n]-{p,s} s        v s 

  V^^ V~^ rill   ^sts "T tt^t^    / tp\ Q-i;^ + Clsfcs    / 6p\ \ 

P=l l<S<t;<n ^ ts-ty \ tgJ ty-tg \ tyJJ P- _ 
s,vG[l,n]-{p} 

^ Jni0-!) • • • ) Q"n] *1) • • • j tn) 
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= E       E       [l](as + a,-as(l-^)-^(l-^)) 
p=l     l<s<v<n ^ v s    ' 

s,ve[l,n]-{p} 

x /n(ai,..., an; ti,..., tn). (2.12) 

Substituting (2.8) and (2.12) into (2.6) gives 

0=     Y,    [1}(aP + as + l-(ap + l)(l-tf))fn(au...,an;t1:...,tn) 

+ Ys Y       f1! ( as + av " as f1 - f) - ^ f1 - f) ) fn(al> * * * ' ^5*1, • • • ,*n)» 

(2.13) 

p=l     l<s<v<n 
s,vG[l,n]-{p} 

which we may rearrange as 

((     53    ap + as + l) + (X)       X)       ^ + aj)i?n(ai,...)an) 
s,v€[l,n]-{p} 

+ E       E       [l](^(l-^)+^(l-^))/n(ai,...,an;t1,...,U. 
p=l     l<s<v<n \ w s    J 

s,t;G[l,n]-{p} 
(2.14) 

Using (2.9) and interchanging the roles of s and v in the last sum, we see that (2.14) 
gives 

* \      /   n w 

((        E       «p + as + l) + fXl E as + ^jj^nCai,....^) 
s,w€[l,n]-{p} 

=       E      [1](aP + 1) (1" ^)/n(ai,-..,an;*l,...,*n) 

+     E E       [l]at,(l-^)/n(ai,...,an;*i,..-,*n).    (2.15) 
l<p^s<n vG[l,n]—{p,s} 

Observe that 

(      E     aP + as + 1) + ( E       E       as + av ) 
l<P7^5<n ^        ^ p=l     l<s<'u<n ^ 

s,7;6[l,n]-{p} 

= 2(n - 1) ( Y a0 + n(n " !) + (n " l)(n - 2) ( E a0 
^ v=l      ^ V v=l      ' 

= n(n-l)(l + ^aA (2.16) 
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Choose p and s with 1 < p ^ s < n. Then we have 

ap+1 +   Yl   ^ = i +   X)   av' (2,17) 
ve[l,n]-{p,s} ve[l,n]-{s} 

Substituting (2.16) and (2.17) into (2.15), we obtain the functional equation 

n(n-l) ( l + ^a,, jFn(ai,...,an) 

=       E       (1+        E        ««) [l](l-^) /»(«!»••'.On;*!,.. •,«»)•      C2'^) 
l<P#*<n v€[l,n]-{s}      ^ S 

Observe that \M\ = 0 requires that M = 0. Setting m = 0 in the definition (1.14), 
we have 

Kn,o(a,u ...,on)=n(l + 5^o1,J Fn(ai,..., an). (2.19) 
^       v=l     ' 

Thus, (2.18) becomes 

(n - 1) Kn^ax,..., an) = i^ifai,. • •, fln), (2.20) 

in agreement with Theorem 1. 

3. A functional equation involving the parameter m 

In this section, we continue with the engine (1.5) of our machine and give a functional 
equation which gives the behavior of Kn^m{a\^..., an) as a function of m. 

Let 1 < m < n — 1. We apply the engine (1.5) of our machine by using the fact 
that 

0= E    £ ii]«.£((i-j;)n(i-£)/.c.-.««..-.«> 
l<P^s<n MC[l,n]-p,s S   V S     j€M ' / 

|M|=m-l 

(3.1) 

Observe that the case m = 1 of (3.1) is (2.1) which gave the functional equation (2.20). 
Let M C [l,n] -p,s with |Af| = m - 1. Using (2.3) and (2.4), we obtain 

•^(('-fc)!!^-£)/•<• «* •«-)) 
    \pJ'p   i   ^-j^p """ ^s^s V"^   Q.sts + Cbyty yr-^ CLsts + CLyty 

X(1-r) nC1"^)^^---'^;*!—•*»)• (3-2) 
Substituting (3.2) into (3.1) and rearranging the result, we obtain 

Q_     v^ y^      r ^ i (aP + typ + as^ A     ^P \ 

l<P^s<n  MC[l,n]-p,s S ~   P S 

|M|=m-l 

X   IT V1" ^)/n(ai,...,an;*l,...,*n) + 
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Q'sts ~r CLvtv  (\       t* 

l<P^s<n MC[l,n]-p,st;6M s ""   v s 

\M\=m-l 

X   11 (1~^E)/n(al>--->
an;tl,...^n) 

\^ V^ V^ r i ] asts + Q^^v  /..       ^p \ 

l<P^s<n MC[l,n]-p,5v€[l,n]-M-p,s s ~   ^ s 

|M|=m-l 

x ]l(1-i;)fn(au...,anitu...,tn). (3.3) 

We now remove the denominators from the terms in the three sums on the right 
side of (3.3). 

Using (2.7), the first sum on the right side of (3.3) becomes 

V^ V^        [ 11 (aP + typ + asts d _ tp\ 
l<p#S<n MC[l,n]-p,S '*""*? ^ ts J 

|M|=m-l 

x   11 V1^ f;)fn(Q>i,...,an;tu...,tn) 
jeM j 

= E     E   [I](«P+«.+I-(«P+I)(I-^)) 
l<p#s<n MC[l,n]-p,s V s    ' 

|M|=m-l 

Observe that when m = 1, the condition \M\ = m - 1 = 0 implies that M = 0 and 
the second sum in (3.3) is zero. Thus, for the second sum on the right side of (3.3), 
we may assume that 2 < m < n — 1. We have 

X) X)        S^Af(p,*,t;) 
l<p^5<n MC[l,n]—p,s v€M 

\M\=m-l 
n 

= $3       ^2 Yl hMu{v}(p,s,v) + hMu{s}(p,v,s).       (3.5) 
p=l     l<s<v<n      MCIljnl-lp.s,^} 

6,v€[l,n]-{p} |M|=m-2 

Observe that the function 

Ots^s   i   0>v"v  f -t        "p \    1 I   /^        ^p 

jeM 

satisfies 

hM(p,s,v) = [i}aat; + ^(i-k) n(i-^)/»(«i,....fl»;tl,...,tn)  (3.6) 

Af C [1, n] - {p, 5, v},    1 < 5 < t; < n,    5, i; G [1, n] - {p}, 

=^        ^Mu{a}(p^,s) = -^MUMCP^JV), (3.7) 
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since the factor (1 - tPlt8){l - tp/tv) appears in both hMu{s}(P)V,s) and /IMUM 

(p, s,v). Thus, (3.5) gives 

n —    \^ \^        \^ r 11 a&   "^av    ('\ — p\ 
l<p?8<n MC[l,n]-{p,s} veM s ""   v s 

|M|=m-l 

x ]\(l-fyfn(au...ian;tli...,tn). (3.8) 

For the third sum on the right side of (3.3), we have 

^<P^s<n MC[l,n]-{p,s} v€[l,n]-M-{p,s} 
|M|=m-l 

n 

= X       X X hM{p,s,v) + hM(p,v,s). (3.9) 
p=l     l<3<v<n      M 

s,vG[l,n]-{p} 

Using (2.10), we see that (3.9) gives 

p=l     l<3<v<n      MC[l,n]-{p,s,v} 
s,vG[l,n]-{p} |M|=m-l 

X^ V^ V^ r.« I Q'&i'S H" CLyty   /-  _ ^p \ 

l<p#s<n MC[l,n]-{p,s} t;€[l,n]-M-{pla} « ~   « « 
|M|=m-l 

X   JJ (l- T^J/n^l,...,^;^,...,^) 

^"^i      H^^T^^ »^/-ri     i     r i \       ts — Cv \ lsJ tv — ts \ tv/ J p=l     l<s<v<n      MC[l,n]-{p,s,v} N 

s,vG[l,n]-{p} |M|=m-l 

><   11 V1" ^)/n(ai>---»an;*l»---»*n) 

= E       E E [l](«.+a.-a.(l-i)-a.(l-i)) 
p=l     l<s<t;<n      MC[l,n]-{p,s,t;} V V S    ' 

s,t;€[l,n]--{p} |M|=m~l 

Substituting (3.4), (3.8), and (3.10) into (3.3), we obtain 

3=     E E        [l](ap + aa + l-(ap + l)(l-^)) 
l<P^5<n MC[l,n]-{p,s} ^ s    ^ 

|M|=m-l 

x JJ (l-^J/n(ai,...,an;ti,...,tn) 

+E   E        E    [i](a.+«.-«.(i-£)-<«.(i-£Y)x 
p=l     l<s<v<n      MC[l,n]-{p,s,t;} 

s,vG[l,n]-{p} |M|=m-l 
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t 

J6M 3 

which we may rearrange as 

x n^-^/n^i'--^;^---^ {?>'ll) 

l<P#s<n MC[l,n]-{p,s} j€Af     J 

|M|=m-l 

p=l  l<s<t;<n  MC[l,n]-{p,a,«} j€Af     J 

s,u€[l,n]-{p}   |M|=m-l 

= E      E   [l](ap + l)(l-^) n^-^)^01---'^*1'---'*^ 
l<p^s<n MC[l,n]-{p,s} *     J^M 3 

|M|=m-l 

p=l     l<s<'u<n      MC[l,n]-{p,a,i;} 
a,v€[l,n]-{p} |M|=m-l 

x H^-^/nCai,....^^....^). (3.12) t 

jeM 3 

Using (3.9) and interchanging the roles of s and v in the last sum, we see that (3.12) 
gives 

Y    E  UKAP+A,+I) n(i-K)/n(ai'-,,'an;ti',,''t^ 
l<P#s<^  AfC[l,n]-{p,a} J^M 3 

|Af|=m-l 

+E   E        E    [iK^+flf) nl1"^)^01'---'0"5*1'---'*^ 
p=l     l<a<v<n      AfC[l,n]-{p,a,v} J^M J 

s,v€[l,n]-{p} |Af|=m—1 

= E      E   [IIK+I)(I-^) n^-r)7"^1'---'^*1'-'"^ 
l<P^s<w MC[l,n]-{p,s} S     3^M 3 

\M\=m-l 

l<p^s<n MC[l}n]-{p,s} ve[l,n]-M-{p,s} 
|M|=m-l 

x n f1 ~ t^) -^fa1' • • •'an; ^^ • • • *tn>>' (3.13) 

jGM ^ 

Observe that 

Y, E [l]K + ^ + l)   ]\(l-tf)fn(aU...,an,t1,-.-,tn) 
^<P^<n MC[l,n]-{p,s} 3^M 3 

|M|=m-l 

= E       E      {{n-m){ap + l)+        E        a»)     x 

p=l  MC[l,n]-{p} v€[l,n]-M-{p} 
|M|=m-l 
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J6M "i* 
X   11 (1 ~ ^ ) ^n(ai' • • •» an; *1,. . . , *n) (3.14) 

and 
n     , 

Yl       Yl ^2 [l](tts + av) Y[ (l- ^J/n(ai,...,an;ti,...^n) 
p=l     l<s<i;<n      MC[l,n]-{p,s,t;} jeM 3 

s,u€[lJn]-{p} |M|=m-l 

n 

p=l  MC[l,n]-{p}   w€[l,n]-M-{p} 
|M|=m-l 

x[l] X[i^-tf)fn{a1,...,an'M,...,tn). (3.15) 

Observe that the sum of (3.14) and (3.15) is given by 

U 
Yl Yl        [l](ap + a5 + l) fj (l- ^)/n(ai,...,an;ti,...)tn) 
p^s<n MC[l,n]-{p,s} j€M ^ 

|M|=m-l 

n , 

^2,       Y2 Yl [l]{as + av) J| (l- ^J/n(ai,...,an;*i,...,tn) 
p=l     l<5<'u<n      MC[l,n]-{p,s,t;} j€M J 

5,r;€[l,n]-{p} |M|=m-l 

n 

= (n-m)£        ^       (l+     X)     o0 
p=l  MC[l,n]-{p} «€[l,n]-M 

|M|=m-l 

x[i] ni1-^)^1'---'^*1'---'^)- (3-16) 

We also have 

x;    j]  [i](ap+i)(i-^) n^-^)/^!,...^^^,...,^) 
l<P^s<n MC[l,n]-{p,s} S     jGM j 

|M|=m-l 

= mE        E      K^1)!1] Yl(}-f)fn{ai,-.*>anitu...,tn)   (3.17) 
p=l  MC[l,n]-{p} j€M * 

|M|=m 

and 

pz^s<n MC[l,n]—{p,s}  vG[l,n]—M—{p,s} 
|M|=:m-l 

X   11 V1 ~ fj fn(ai> • • • > On; *1> • • • > *n) 

:=mE    Y2   {    Y   av)t1! H(i-^J/nCoi,...,^;*!,...,^). 
p=l  MC[l,n]-{p}   v€[l,n]-M-{p} j€M ^ 

\M\=m 

(3.18) 
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Observe that the sum of (3.17) and (3.18) is given by 

£ £       [i](0p + i)(i_^)  n(l-^)/n(o1>...>oB;t1,...,«„) 
l<P&<n MC[l,n]-{p,5} s     jeM ^ 

|M|=m-l 

+ E      E E    [i]«.(i-*9 
l<P/s<n MC[l,n]-{p,5} ve[l,n]-M-{p,5} s 

|M|=m-l 
>< n(i"^)/n(fli'---»an;*i'---'itn) 

jeM * 

= mE    E   (1+ E  *.)[!] n^-r)/-^-"'0";*!'"-.*")- 
P=l  MC[l,n]~{p} v6[l,n]-M jeM J 

|M|=7n 
(3.19) 

Combining our results (3.14)-(3.19), we see that (3.13) becomes 

(n-n»)E    E   (!+ E  ^)[i] n(1-r)/"(ai'---'a'i;*i'---'t") 
P=l  MC[l,n]-{p} uG[l,n]-M jeM ^ 

|M|=m-l 

= mE        E      (1+     E     a")W X[{}-tf)fn{ai,...,an;tl,...,tn). 
P=l  MC[l,n)-{p} t;e[l,n]-M jeM ^ 

|M|=m 
(3.20) 

Comparing with the definition (1.14), we see that the functional equation (3.20) is 
given by 

(n-m)ii:n,m_i(ai,...,an) = mKnim(ai,...>an),    l<m<n-l. (3.21) 

Observe that this agrees with (2.20) when m = 1. 

4. A proof of Theorem 1 

In this section, we establish the Dyson constant term identity (1.8) and then complete 
the proof of Theorem 1. 

Observe that Theorem 1 is trivially true for m = n since 

Kn,n(aii • • •, Gn) = fcn}n(ai,..., an; ti,..., £n) = n I j = 0. 

We may rearrange (3.21) as 

(4.1) 

(nry 777,) 

-Kn,m(ai, . . . , On) =  ■Kn.m-lfali • • • j «n). (4.2) 
777' 

Using (4.2), we see by induction on m that 

^n,m(aij • • • j Gn) = jQ  :— Knjo(ai,..., an) 

i-1 J 

= fnm   J Knfiiau...,On), (4.3) 
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in agreement with Theorem 1. 
Setting m = n - 1 in (4.3) gives 

#n,n-i(ai,...,an) = ifn,o(ai,...,an). (4.4) 

Observe from the definition (1.14) that 

^Kn,n-l(&l>"->an) = [ 1 ] fcn,n-l(^l> • • • j^n^lj- • • j^n) 

!> + %>)[!]       n      (l-f)/»(ai>"->an5ti,...,*n) 
P=l i€[l,n]-{p} J 

= 2^(14- ap) -Pn(ai,..., ap-i,ap -f 1, Op+i,..., an). (4.5) 
p=i 

Substituting (4.5) and (2.19) into (4.4) gives 
n n 

2J(1 + flp) Fn(ai,...,ap_i,ap + l,ap+i,...,an) = n f 1 + 2^0 -fn(ai,... ,an). 
P=I v=i 

(4.6) 

We now use the functional equation (3.21) to prove the Dyson constant term identity 
(1.8) where n is a positive integer and ai,..., an are nonnegative integers. 

We proceed by induction on n and the minimum 

z = min(ai,...,an) (4.7) 

of the parameters ai,..., an. 
Observe that when am = 0 for 1 < m < n, the variable tm does not occur to a 

positive power in any of the terms in the expansion of fn(a>i,..., an; ti,..., tn). Thus, 
we have the boundary condition 

Fn(ai,... ,am_i,0, ara+i,.. .,an) 

= ^n-i(aij-.. jttm_i,am+i,...,an),        1 < m < n, (4.8) 

which using our induction assumption on n establishes the Dyson constant term iden- 
tity (1.8) when am = 0 for some m with 1 < m < n. 

We now assume that ai,..., an are positive integers. We let au = z where 1 < u < n 
and we have z > 1. 

Replace ai,..., an in (4.6) by ai,..., an where au = z—1 and ai = ^ for 1 < i < n, 
i T^ w. We may rearrange the result as 

n 

auFn(ai,...,an) =n [y]av) Fn(ai,. ..,an) 
v=l 

- 2j(l + am)Fn(ai,...,am_i,am + l,am+i,...,Q:n). (4.9) 
m=l 

Observe that the multinomial coefficient (aiH |-an)!/ai! • • • an! satisfies (4.6). Each 
term in the sum on the left side of (4.6) equals 1/n times the right side of (4.6). Thus, 
the multinomial coefficient also satisfies (4.9). 

Observe that 

min(ai,..., an) = z - 1 (4.10) 
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and 

1 < m < n and m^u =$> min(ai,..., am_i, am + 1, am+i,..., an) = « - 1. 
(4.11) 

Thus, we see by our induction assumption on z that all of the constant terms on the 
right side of (4.9) are given by the Dyson constant term identity (1.8). This completes 
our induction on z and establishes the Dyson constant term identity (1.8). 

Theorem 1 then follows using (2.19) and (4.3). 

5. A conjecture and its g-analogue 

In this section, we outline the use of Good's proof [5] to evaluate the non constant 
term coefficients [ti/tn]fn(ai,..., an\ ti,...,tn), [tifeAn-i*n]/n(ai, • • •, an; ti,..., tn) 
and [tit2/*n]/n(ai» • • • > an, ^i»• • • j ^n)- We give a conjecture with some surprising sym- 
metries and its g-analogue. 

Extracting the coefficient of ti/tn from (1.11), we see that the coefficient 

Jrn(oi,...,an) = [£i/£n]/n(ai,...,an;£i,...,£n) (5.1) 

satisfies the functional equation (1.12). Observe that it also satisfies the boundary 
conditions 

^7n(0,a2,...,an) = 0, (5.2) 

Fniflli   •-, Gr-lj 0, flr+lj • • • , 0<n) = ^n-lfalj • • • > ^r-lj ^r+lj • • • , an), (5.3) 

2<r <n-l, 

and 

^(ai,..., an_i, 0) = —ai Fn_i(ai,..., an_i) 

- (a2 + h an-i) Jvi-iCai, • • •, On-i). (5.4) 

The reader may readily use Good's proof [5] to obtain 

(l + y^av )^n(ai,...,an) = -ai—^-: p—. (5.5) 
V      ^2    / ai!---an! 

Observe that the coefficient ^"n(ai,..., an) is symmetric in a2,..., an. 
Let 1 < p 7^ 5 < n. Taking the Dyson constant term identity (1.9) minus (5.1) 

and using the symmetry (1.17) with the transpositions TT = (p,n) and TT = (l,s), we 
obtain 

f 1+      J^      avJ [1] (l-^J/nfai,...,^;*!,-..,^) 

~(1+S-J ■H'-^J • (5'6) 

Observe that (5.6) states that the contribution of each term on the right side of (2.18) 
to the constant term ^71,1(^1,..., an) is independent of p and 5. 

The reader may consult [12] for the details of using Good's proof [5] to establish 
the non-constant term coefficient identity 

[hh/tn-ltn] frifali • • • J 
an<> *!, • • • j^n) = [hh An] /nfal, • • • » ^nl *1 j • • • » *n) 
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di 0,2 0*2 CLl 

.(i+XX) (l+Eo,)     (l + ai+Eo,,) (I+EO 
\        v=2      '    v        v—Z      ' v v=3      '    v v=3      ' 

(ai + "- + an)l 
ai! ••• an! 

(5.7) 

Observe that this common coefficient is symmetric in ai, a2 and in as,..., an. 
Let 3 < pi,p2 < w*   Using the constant term identities (5.1) and (5.7), their 

symmetries, and some tedious computation, we obtain 

^ + ^at,)[l](l-^-)(l-^)/n(a1,...,an;t1,. ..,*„) 

= (i+E°-)(ol+,"'+?t)'- ^ 
Observe that (5.8) states that the contribution of each term on the right side of 

the definition (1.14) to the constant term ^^(ai,..., a^) is independent of p and the 
subset M. Moreover, we may let p be a function whose range is a subset of [1, n] — M. 

This leads us to make the following conjecture which provides a refinement of 
Theorem 1. 

Conjecture 2. Let M C [1, n], \M\ = m, 0 < m < n - 1, and {ps \ s £ M} n M = 0. 
TAen w;e ftave 

^1+     $3     a^Il] n^-^/n^i^.^aniti,...,^) 

V      ^J    /      ail-.-an! 

Conjecture 2 states that the contribution of each term on the right side of the 
definition (1.14) to the constant term Knim(ai,... ,an) is independent of p and the 
subset M. Moreover, we may let p be a function whose range is a subset of [1, n] — M. 
That is, we may replace the variable tp in the numerator of the extra factors in the 
definition (1.14) by tps where tP3 € [l,n] — M for all s e M. 

It is well known (see [1, 7]) that the case n = 2 of (1.21) 

is equivalent to the g-binomial theorem. Observe that we may interpret the symmetry 
of (5.10) in a and b as stating that if we add one to the subscript a or b and multiply 
by (1 — qa+1) or (1 — g6+1), respectively, then we obtain the same constant term. In 
particular, the presence or absence of q in the argument s/t or qt/s does not affect 
the result. 

This leads us to make the following conjecture which provides a ^-analogue of 
Conjecture 2. 

Conjecture 3. Let M C [1, n], \M\ = m, 0 < m < n - 1, and {ps \ s € M} fl M = 0. 
Tften we have 

\ / T^^.-^-   
VtJ      / ai-fx(jGM and 1=2?^) V   t^      / aj-+x(i€M and 3=Pi) 
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V / (a: au* • • • la: a)n_ 
(g; g)fl  

(g;g)a1"-feg)an 

Observe that the right side of (5.11) is independent of the function p and the subset M. 
In [7], we observed the elementary symmetry 

qfn{a>2,- - • jflnjAlJ^j- • • j^njg^l) = qfnfau •• • j^n^lj-- • j*n)> (5.12) 

which extends (1.17) for long cycles in Sn. As happened in [8], (5.12) allows us 
to compute the partial ^-derivatives required by the g-engine (1.19). Since the case 
ai = • • • = an = k of (5.12) is central to the simple proof in [10], we may ask if there 
is a simple proof of the Zeilberger-Bressoud theorem (1.21) using the symmetry (5.12) 
and the fact that the constant term is unchanged by the substitution t8 —» qbs where 
1 < s < n. 
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