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REFINEMENT DIFFERENTIAL EQUATIONS AND WAVELETS 

Jianhong Shen 

ABSTRACT. We study the following type of refinement differential equations 
(RDE): 

P(D)<l>(x) = 2[H(E)<l>](2x) 

where P(X) is a real polynomial, H(z) a real Laurent polynomial, D = d/dx, and 
E is the backward translation operator Ef(x) = f(x + 1). If the differential part 
P(A) = 1, the equation is the famous refinement equation for designing scaling 
functions in wavelet theory. In this paper, we reveal the general structure of 
solutions to RDEs and establish the relation between RDEs and certain types 
of refinement functional equations (RFE). This makes it possible to solve RDEs 
using the generalized subdivision scheme. The probability idea of Rvachev and 
Derfel is explored in a more systematic way. Finally, our results are applied to 
the construction of smoothed wavelets and quasi-multiresolution. 

1. Introduction 

Let E and D denote the translation operator and derivative operator 

f{x) -+ E(f) = f{x + 1),        fix) -> Dif) = fix). 

Let P(A) be a polynomial in A and H(z) a Laurent polynomial in z, both with real 
coefficients: 

P(A) = cNXN + Civ-iA^-1 + • • • -1- co,        N > 0,    c^ ^ 0, 

H(Z) = hmZ-m + /lm_i2rm+1 + • • • + hm-LZ-m+L, hmhm-L ^ 0. 

In this paper, we consider equations of the form 

PiD)4>ix) = 2[HiE)(j>}i2x). (1.1) 

We call it a refinement differential equation (RDE) of type (P, if), order N and length 
L. 

If H(z) = 0, the RDE becomes an ordinary differential equation (linear homoge- 
neous equation of order AT). If, on the other hand, P(A) = 1, the RDE is the famous 
refinement equation (for designing scaling functions with compact supports) in wavelet 
theory. Therefore, in this paper, we shall assume H ^ 0 and degP = N > 1. The 
dilation factor 2 in the equation is not essential and can be replaced by any general 
integer k > 1. It is kept here to follow the literature in wavelet theory and digital 
signal processing (see Daubechies [4] and Strang and Nguyen [35]). 
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RDEs of form (1.1) arise in many contexts. The first work that should be mentioned 
is Mahler's remarkable paper [24] in 1939. Initiated by an integer partition problem 
in combinatorics, he studied the functional equation 

6(x + a) — Six)      ,,    N ^ J-—^^ = <j){qx),        a ^ 0,    0 < q < 1. 
a 

As the difference parameter a tends to zero, the equation evolves to an RDE: <l)'(x) = 
(i)(qx) {q 7^ 2, however). He constructed a special solution through a tricky integral 
transform. De Bruijn's work [7] on equations of the following type 

$'(5) = eas+/3$(5 - 1) 

gives a complete account of equations like (^'(x) = a<j)(qx) with q £ (0,1). The 
connection is realized by the change of variables (Kato and McLeod [22]) 

x = es,    q = ec,     <I>(s) = (j)(x). 

In 1971, many authors (Fox and Mayers [16], Kato and McLeod [22], Prederickson 
[17]) studied the special functional-differential equation 

^(x) = a(j){qx) + 60(x), 

which had arisen from the mathematical modeling of an industrial problem involving 
wave motion in the overhead supply line for a high speed train. It was Kato and 
McLeod who gave the complete investigation on this equation for all types of parame- 
ters. As an initial value problem, they showed the equation is well-posed if q < 1 and 
ill-posed if q > 1. Moreover, when q > 1, the solution to the IVP is not unique. The 
non-uniqueness had made the equation less interesting to people working on ODEs, 
to whom existence and uniqueness are two of the most fundamental elements. Inter- 
est in this classically "singular" case has arisen only after the ODE sunglasses were 
abandoned and wavelet theory appeared. 

The early 70s saw many papers (see Myshkis' survey paper [26]) on functional- 
differential equations, most of which were motivated by applications in circuit and 
control theory. It was probably Rvachev who first deviated from the ODE point of 
view of the main stream. His interests in the functional properties of the solutions led 
him to the study of the interesting functional-differential equation (see Rvachev [30] 
and Rvachev and Rvachev [31]), 

<l>'(x) = 2(i)(2x + 1) - 2(f)(2x - 1). (1.2) 

In this paper, we shall call it the Rvachev equation. The unique solution with a 
unit total integral was named up(x) by Rvachev. It is an even and non-negative 
C00 function supported on [—1,1]. The significance of up(x) in the function-theoretic 
sense can be seen from its "atomic" role in certain spaces consisting of C00 functions 
(Rvachev [30]), parallel to what a wavelet does in L2(R). The connection between 
Rvachev's up function and wavelet theory was explained by the work of Derfel et 
al. [10] on the Stieltjes subdivision scheme and the non-stationary subdivision process. 

Their work on this can be summarized as follows. The classical subdivision process 
for the Bernoulli (two-point) random distribution leads to the Haar scaling function. 
Then the continuous subdivision process associated with the Haar scaling function 
generates Rvachev's up function. Part of our current work is to reveal the general 
principle hidden in this intriguing example (Section 5). We show that, generally, for 
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each refinement differential equation of form (1.1), one can associate to it a refinement 
functional equation (RFE) 

<t>(x) = {T,<f>(2x--)), 

where T is a suitable distribution. If the distribution allows a "density" function, 
then the equation can be solved using the continuous subdivision process (Section 
6.5). This opens an entirely new window (contrast to the classical ODE point of view 
for functional-differential equations) to RDEs. It is one of our initial goals to find the 
bridge connecting wavelet theory and functional-differential equations. 

If, in certain circumstances, the associated distribution T is a probability distribu- 
tion, then a probability method applies to the underlying RDE. For the up function, 
this already has been noticed by Rvachev [30] and Derfel [9] and can be traced back 
further to Jessen and Wintner's work in 1935 on infinite convolutions of symmetric 
Bernoulli distributions [21]. Related work also can be found in Erdos [14, 15], Garsia 
[18], and Brown and Moran [2] (as initially referred to in Daubechies and Lagarias 
[5]). In Section 6, we develop the probability interpretation of certain basic RDEs, 
particularly for the Rvachev equation and the kam equation (see Section 2 for defini- 
tion). The connection between the exponential distribution and the kam equation is 
entirely new and provides an efficient approach to construct a uniform approximation 
to the kam function. We also explain why the normal distribution cannot produce 
new functions along this probability line. 

Our paper is organized as follows. In Section 2, we introduce some necessary 
concepts and make a few assumptions for the rest of the paper. The main result of 
the section is written in the Structure Theorem (Theorem 1), which is not difficult 
to prove but plays a crucial role in the paper. Section 3 presents the main results 
on RDEs of type (P(A),1). New functions kam(a;) and $a(^) are introduced as the 
atomic solutions to RDEs of type (^(A), 1) when P(X) contains no purely imaginary 
roots. When P(A) has at least one purely imaginary root, we construct a set of 
linearly independent, periodic and C00 solutions based on the well-adapted structure 
of Dirichlet series. As a by-product, we also show that RDEs of type (^(A), 1) always 
carry a single-parameter family of C00 and almost periodic solutions. In Section 4, we 
construct the solutions to general RDEs. The main result is that a scaling function 
designed by the (l,il(^)) refinement equation is smoothed by the (P(A),1) RDE to 
yield a C00 solution to the original (P(A),i?(A)) RDE. Sections 5 and 6 are devoted 
to developing the connections among RDE, RFE, the probabilistic method, and the 
generalized subdivision process. In the last section, we demonstrate one possible 
application of our results in wavelet theory, namely, the construction of smoothed 
wavelets and quasi-multiresolution. 

2. Regular equations and the structure theorem 

To formulate a well-posed problem, let us first understand the major difference between 
RDEs of form (1.1) and linear homogeneous ODEs. This is done by considering the 
example of an initial-value problem, 

<t>'{t) + <t>{t) = q<l>{qt), 0(0) = 1. 
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Assume first that q G (0,1). Integration yields 

W) = 1-1 <t>(T) dr = Rq<i>{t). 
Jqt 

It is clear that the affine operator Rq is contracting if restricted on C[0, p] for any p < 1. 
Hence, the local existence and uniqueness follow immediately from the Contracting 
Mapping Theorem, and the local solution can be obtained from the iterations of Rq 

on any initial continuous function. Therefore, if q < 1, the equation is essentially the 
same as an ordinary differential equation. 

This is not the case when q > 1. The integration now gives 
rqt 

(j)(t) = 1 + /    (J){T) dr = Rq(j){t). 

Rq is not contracting any more since the domain expands! The system is non-causal if 
we borrow the terminology from signal processing. What occurs at time t is influenced 
by "future" events up to time qt since q > 1. This causes the difficulty. However, the 
equation is backward well-posed in the following sense. Suppose we already know a 
"future" segment of the solution 

0MJ        t > qn,        for certain integer n. 

Then, by solving the non-homogeneous equations iteratively 

(j>\t) + (t>(t) = fm(t) = qftqt),        q™-1 KtKq™,        m < n, 

the "history" of <fi(t) : 0 < t < qn can be recovered uniquely! 
Therefore, for q > 1, it is easy for us to construct infinitely many solutions on (0, oo). 

Start with any function k(x) G C00^,*/] satisfying the compatibility condition, 

JbW+i)(l) + fcO)(1) = qi+^j\q),    j = 0,1,2,... 

(for example, any function in CQ^I, q])- Define (f)(t) = k(t) for t G [1, q]. By the above 
discussion, (j)(t) on (0,1) can be determined uniquely. For t > q, (j)(t) is solved by the 
following explicit iteration: 

cj>{qt) = - [</>'$) + 4>{t)], qn < t < qn+\n = 0,1,.... 

The example makes it clear that the ODE point of view for RDEs of form (1.1) 
is inappropriate. In fact, as shown in Section 6, the subdivision scheme 5c (a linear 
operator) works much better than Rq, which is a major contribution from wavelet 
theory. 

Just as the refinement equation has to satisfy certain compatibility conditions in 
wavelet theory (Daubechies and Lagarias [5]), RDEs must satisfy certain solvability 
conditions before we can start to discuss their solutions. 

Definition 2.1. An RDE of type {P{\),H{z)) is said to be regular if 

P(A) = Q)^),       H{z) = (1 - z-'YKz) 

for some non-negative integer r and 

p(0) = h{l) * 0; 

r is called the index of the equation. 
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We shall restrict ourselves to regular equations. The class already includes most 
functionally interesting examples such as the Rvachev equation and kam equation. 

It is easy to see that (l)(x) = 0 is a solution. But it is a trivial one. By a non- 
trivial solution, we mean, in the most relaxed form, a non-zero C^ function (j)(x) 
such that (1.1) is satisfied pointwise. Here N is the order of the equation. Such a 
solution is necessarily to be C00. However, unlike the homogeneous ODE with constant 
coefficients, it is not C*. 

In addition, we also are interested in the following two properties: (1) L1 and (2) 
periodicity or almost periodicity (see Section 3.3 for the definition). If the solution is 
in Ll(R), we secure the uniqueness by imposing the integral normalization condition 

(1,0)= / <l>(x)dx = C, 
JR 

for some convenient non-zero constant C. The existence of (almost) periodic solutions 
to RDEs is shown through the construction of Dirichlet series. 

There are two alternative methods for studying regular RDEs, namely, the fre- 
quency-domain method and the time-domain method (Daubechies [4]). The first tech- 
nique is particularly powerful for regularity analysis of the solution, now widely known 
and practiced in wavelet theory. In this paper, however, we prefer the time-domain 
method because (1) unlike wavelets and scaling functions in wavelet theory, solutions 
to regular RDEs are always C00 and, hence, analysis on regularity is redundant, and 
(2) the solutions to RDEs carry very rich structures and contents in the time-domain. 
The time-domain method is based on the convolution operator "*". 

Here we list some properties of the convolution operator that will be useful in the 
paper. 

(a) Suppose f(x) e C00, and g(x) E L1 and is compactly supported. Then / * g e 
C00. 

(b) Suppose f(x) is absolutely continuous and has a finite total variation, and 
g{x) € L1. Then at least in L1, 

Dtf*g) = {Df)*g. 

(c) Suppose / * g is well-defined (in the ordinary sense or L1). Then 

2(/*fl)(2a:) = [2/(2a:)]*[2fl(2a:)]> 

£(/*0) = £(/)*£ = /*£(<?). 

Theorera 2.1 (Structure Theorem). Consider an RDE of type (P(\),H(z)). Sup- 
pose 

P(X) = P1(X) • P2(A),        H(z) = H^z) • H2{z) 

where -Pi(A) are polynomials in A and Hi(z) Laurent polynomials in z. Assume (j)i{x) 
is the solution to the RDE of type (Pi, Hi), i = 1,2. If cj) = fa * fa is well defined, 
then it is a solution to the RDE of type (P(\),H(z)). 

Proof Let us check this directly. 
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P(D)<t> = P1(D)-P2(D)[<l>1*<t>2} 

= [P1(D)<f>1}*[P2(D)4>2] 

= 2[H1(E)<t>1](2x) * 2[H2(E)4>2](2x) 

= 2[H1{E)<t>1*H2{E)<t>2}{2x) 

= 2[H1-H2{E)<l>l*<l>2]{2x) 

= 2{H(E)cl>}(2x). 

Hence, ^(x) is the solution to the RDE of type (-P(A), H(z)). □ 

Corollary 2.1 (Smoothed Scaling Function). Suppose a regular equation of type 
(P(\))H(z)) has index r = 0. If (t)p(x) is the solution to (^(A), 1), ^(x) (the scaling 
function) to (l,H(z)) (the refinement equation), and (j)(x) = (j)v * </>s is well defined, 
then (t){x) is the solution to (P(\),H(z)). 

This corollary is applied to the construction of smoothed wavelets and quasi- 
multiresolution in Section 7. 

In the following, we first consider regular equations of type (P(A), 1). The complete 
discussion on general regular equations is in Section 4. 

3. Solutions to regular RDEs of type (P(A),1) 

Any real polynomial P(A) with P(0) = 1 can be factored to 

i 3 

where ai are non-zero real scalars, and dj{\) irreducible quadratic polynomials with 
dj(0) = 1. By the preceding proposition, to solve RDE of type (-PCA), 1), it suffices to 
consider the two types of equations 

a(t),{x) + (j){x) = 2(j){2x), (3.1) 

a(/>" (z) + btfix) + (j){x) = 2(j){2x). (3.2) 

3.1. a(j)f{x) + (/>(x) = 2(j){2x) and the kam function. By a change of variables, x —► 
at, we can assume a = 1. 

In 1971, Kato and McLeod [22] studied the initial value problem 

y'(t) = ay(qt) + by(t),        t>Q, 

in full details.  Since wavelet theory was not formally on the stage of mathematical 
analysis at that time, they treated it as a regular initial value problem. The existence, 
uniqueness, and asymptotic behavior of the solution were of the most concern. 

Their results lead to the following: 

(i)   The only solution to (a = q = 2 and b = — 1) 

yf{t)+y(t) = 2y(2t),        t>0, 

that decays faster than 0(t-1) as t —> H-oo is a constant multiple of the following 
function (which in fact decays exponentially fast, and is named after the two authors 
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here: "ka" for Kato and "m" for McLeod) 

n=l 
(2-l)(22-l)...(2^-l)' 

(ii)   Any other solution is not in L1(0, oo). The two authors constructed a family 
of solutions that have the exact order 0(t_1) near -f oo. 

The Dirichlet series solution in (3.3) also was studied by Prederickson [17] at the 
same time. He considered general solutions of the form, 

oo 

^(t)=   Y,  Cn,pexp(l3qnt) 
n=—oo 

parameterized by /? for equations with q > 1. It can be verified easily that /? = — 1 is 
the only parameter that allows Cn^ = 0 for all n < 0 and hence 0/3 (£) = ^(t-1) near 
+00. 

We, therefore, conclude that if there is a solution (j)(x) G Cl(R) D i1(i?) to 

<lf{x) + 00*0 = 20(2:z), / 0(0;) da? = 1, 
JR 

then 0(a;)|x>o must be a constant multiple of kam(aj). For future reference, we call 
this the kam equation. 

For convenience, we introduce the combinatorial notation {n)q for a g-analog num- 
ber (see Goldman and Rota [19, 20]) defined by 

(n)q=
<^: = l + q + ---qn-\ 

and (n)q\ for the ^-analog factorial given by 

(nV = (l),(2), •••(»»),. 

Then the expression of kani(a;) simplifies to 

kam(x) = V ^^ exp(-2na;) 
4o(n)2! 

where (0)9! is defined to be 1. Series in this form are called Euler Series in combina- 
torics, if x is treated as a parameter. 

Theorem 3.1 (Properties of kam(x)). Define kam(:r) = 0 for all x < 0.  Then 
(a) The alternating infinite series converges uniformly to kam(a;)  at a rate of 

O(2-C0) for x > 0. 

(b) lsam(x)eC00(R). 

(c) kam(cc) > 0 for all x > 0. Hence supp[kam(a;)] = [0, oo). 

(d) fR kam(a;) dx = exp2(—1) G (f,^) where expq(x) is the q-analog exponential 
function defined by 

00     X* 

n=0 v   'q 
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Proof. Set 

Q*(X) = W eXp("2 ^ = (2 - 1)(22 - 1)... (y - 1) -        ^ = 1'2"- 

Then 

OTH-IOE) _ 2 
an(a?)        (2n+1 - 1) exp(2nx) 

for all n > 1 and x > 0. Hence, the alternating infinite series converges to kam(a;) at 

an(0) = 0(2-©) 

for all x > 0 (and even much faster away from x = 0). 
Fix any positive integer fc, 

(fc)       _       2(fc-H>"exp(-2'V) 
l«n Wl      (2-i)(22-l)...(2«-l) 

2(fc+l)n 

- (2 - 1)(22 - 1) • • • (2" - 1) 

= 0(2-(")+fen), 

which is uniformly exponentially small as n —► +00. Therefore, for x > 0, 

^fanK*)-^   1)      (2-l)(22-l)...(2"-l)' 

which implies kam(x) G C00^, oo).   To prove that kam(x) G C00(i2), it suffices to 
show that 

kam(A0 (0+) = 0,        for all k = 0,1,.... 

In fact, 

Hk ™ o(fc+i)n 

= i + y,   ^n       2to(2"-l) + 2fe" 
4? (2-l)(22-l)---(2n-l) 

jfe-i jfe-i 
= -2fe(-1)fe"1^rkam(0+) + (-1)fc"1^rkam(0+) 

= (l_2^)(-l)^A__kam(0+). 

Thus, an induction proves (b). 
Since (an(x)) is a strictly decreasing positive sequence, (c) is obvious. The equality 

part of (d) can be obtained by integrating the infinite series term by term; and the 
rest is due to 

exp2(-l) = l-l + -- — + ... . 

The proof is complete. □ 

From now on, kam(x) denotes its zero-extended version. 
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Corollary 3.1.  When x ^> 1, the leading term o/kam(a;) is exp(—x). 

Corollary 3.2. For any non-zero real scalar a, the first-order RDE 

a<l>'(x) + <l)(x) = 20(2x), / <l>(x) = exp2(-l) 
JR 

has the unique C1(i?) solution 

0a(2O= |-|kam(-). 
|a| a 

In particular, supp</>a = sign(a) • [0, oo). 

Proposition 3.1 (Integration versus Summation). Define 

K+(x)=       kain(t)dt,        K-(x) = /    kain(t){ft,        x > 0. 

Then 
oo oo 

n=l 7i=0 

Proof. Take the second equation for example. Call the function on the right side L(x). 
Then 

oo 

L,(a:) = ^2nkam,(2na;) 
n=0 

oo 

= ^2 2n[2kain(2n+1x) - kam(2nx)] 
n=0 

oo 

= J2 2" kam(2na;) - ^ 2n kam(2nx) 
n—1 n=0 

= — kam(x). 

Obviously, L(x) —> 0 as x —> oo. Hence, I/(rr) = iir_(a;). D 

Notice that L(0+) ^ L(0). 

3.2. OL(j),f{x) + 2b(j)f{x) + 0(a?) = 20(2a;), a > 62. By a suitable change of variables 
x = ±v^, we can assume a = 1 and 6 > 0. Hence, it suffices to consider the standard 
equation, 

(j)n{x) + 2 cos00'(z) + (j>{x) = 20(2a;),;       0 € (0, | ]. (3.4) 

To make the solution unique, the following integral normalization condition is ap- 
plied: 

/<Kt)dt=[exp2(-l)]2. (3.5) 
JR 

The solution is denoted by ^Q{X). 
For a given angle 0, define u = exp(20), and 

n=0   v     / 

for all t > 0. Here J^ and Jf denote the real and imaginary parts of Je. 
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FIGURE 1. kam^jkam'^), and kam(2x) 

Lemma 3.1. Suppose 0 < 9 < 7r/2.  Then, 

Proof. For any t > 0, 

sup | J(t)\ < 2exp2(l) csc^. 
t>0 

w>i^2E7m  -_?- 
m>0 M2! t>o,m>o \Q-t2-mu>\ 

= 2exp2(l)sup 
t>o \w-tu\ 

< 
2exp2(l) 

smt 
D 

Theorem 3.2 ($^(x)). Suppose 0 < 0 < |.  Subject to the normalization condition 
(3.5), (3.4) has the unique solution, 

3 (x) = f E^o y? exp(-2Hx) [J*(2») cos(2"aa;) + J?(2») smf^aa:)]    x > 0, 

(3.6) 
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Here b = cos0 and a = sin0. $o(x) € Coc(i?), and for x > 0, its derivatives can be 
obtained by differentiating the infinite series in (3.6) term by term, whose converging 

rate is 0(2~^'¥kn) for the k-th derivative. 

Proof. We only sketch the proof. Uniqueness can be proved by the technique of Kato 
and McLeod [22] or the frequency-domain method. The rest of the proof is done in 
the following three steps. 

First, with the help of Lemma 3.1, we can show that $0(2;) is C00 for x > 0. The 
derivatives can be obtained by taking differentiation on the infinite series term by 
term and have the predicted converging rate (see the proof in the preceding theorem). 

Secondly, we show $o(0+) = ^9^+) = 0- Take *^(0+) = 0> for example; then 

^(0+)--ReEw2nCjJ'(2n) 
n>0   ^   ^ 

(_2)"+m 2nUJ 

= -2Re ^   (n)2!(m)2!2™a;-2"u; 
m,n>0 

/_2>)Ti+ra v-^      (_2)n+m 

-2   £   fnWfmW       2Re  ^ 
"w 

^0 w^i     mr>o w^2mG3 - ^ 

= 2Re 52 

(-2)n+m       2na) 

(n)2!(m)2! 2na) - 

(_2)n+,n       2na; 

-    SR-6  2^   (n)2!(n»)2! 2na) - 2^ 
m,n>0 

ro]n>0(n)2!(m)2!2-a;-2^- 

Comparison of the second line with the last line verifies that ^(O*) = 0. 
In the final step, we show that for x > 0, $e(x) is the solution to the given RDE. 

We ask readers to fill in the proof. 
The combination of the last two steps and the original RDE implies that $9 (0+) = 

0 for all non-negative integer k. Hence, *^(a;) € C00^) and satisfies the given RDE. 
Finally, a direct computation shows that $o satisfies the prescribed integral normal- 
ization condition. This completes the proof. ^ 

Corollary 3.3 (Damped Oscillation). If0<6< ir/2, or equivalently b > 0, the 
leading term of the solution to (3.4) and (3.5) for x > 1 is the damped oscillation, 

&e(x) ^ e~bx[Ae cos(ax) + Be sm(ax)] 

where, b = cos0, a = sin0, and the real constants AQ and Be are given by 

Ae + iBe = 2Y^ 
m>0 

(-l)m 1 
(m)2! u>-2-mu;' 

Notice the leading term is a special solution to the ODE defined by the left side of 
the RDE. 

Corollary 3.4 (Periodic Solution for 0 = f). Suppose 9 = f.   Then $j(aO defined 
in (3.6) is forward periodic with period 27r when x > 0; that is, 

&0(x) = $o(x + 2ir),        x>0. 

$3i (x) is a special solution to (3.4). 
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FIGURE 2. $e(x) for different angles: Damped oscillation (0 < |) 
and periodicity (6 = f). 

Remark. It is not difficult to see that both Qz. (x) and Qz (—x) are solutions to (3.4). 
Hence, the solution space is at least 2-dimensional. It can be shown further that in 
this extremal case, (3.4) has no solution in Crl(-R) fl ^(R). We will discuss this case 
in more detail in the coming subsection. 

For convenience, we extend the range of the parameter 0 in $0 to include 8 G 
(7r/2, TT) by defining 

Q0(x) = S^C-aO,        9 e (7r/2, TT). 

Corollary 3.5. Suppose the real quadratic polynomial aX2 + bX + 1 has two complex 
roots re±ie for some r > 0 and 0 G (0,7r)\|. Then, the unique C2 D L1 solution to 

atf'ix) + 6^(a?) 4- ^(ar) = 20(20?), / 0(a;)d^ = 1 
JR 

is Qoi—rx) up to a multiplicative constant 

Finally, by the Structure Theorem, we achieve the main result of this section. 

Theorem 3.3 (Main Theorem, Part I). Consider an RDE of type (P(A), 1) with 
P(0) = 1. Suppose P(X) has no imaginary roots. Then, (3.4) has a C00(R) solu- 
tion which decays exponentially fast near ±00. In fact, up to a constant multiple, the 
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solution takes the form 

<f)(x) — kam(—\ix) * • • • * kam(—\kx) * $e1 {—rix) * • • • * $^m (—rmx). 

Here, Ai,...,Afc are all real roots of P(\), and r^exp(±dj), rj > 0, ^ € (0,TT), 

J = 1,..., m, ore all the complex roots. 

3.3. Dirichlet series solution and periodicity. Generally, for a given regular 
RDE of type (P(A), 1), P(0) = 1, 

P(D)(j)(x) = 20(220, 

one always can try the Dirichlet series solution, 

n 

where the index n runs over all integers and f3 is a parameter to be discussed. The 
necessary condition for such a function (j)(x) to be a solution is the following recursion 
formula for the coefficients: 

Cn,f,P{-F0) = 2Cn_1,/3. (3.7) 

First, let us assume the parameter /? is chosen so that A = — 2n/?, n = 0, ±1,..., 
are all not roots of P(A). Then, for any n > 0, 

Cn>P = p(_2^)C'n"1'/3' 

and for any n < 0, 

Cn,p = ip(-2n+1/3)Cn+1)/3. 

Therefore, there exists a unique Dirichlet series "solution" subject to CQ^ = 1. 
However, we have to check the convergence properties of the resulting series and 

justify the above differentiation term by term. This is done by the following estimation. 
Suppose P(A) is of order N > 1. The above recurrence formula implies that 

-^- = 0(2-niV),        n»l, 
kn-1,/3 

r-*- -9>       n<-l. 

Hence, 

Cn,i(3 = 0(2-(2)iV),    n>0,        and       Cn^ = 0(2n),    n < 0. 

Definition 3.1 (Almost Periodicity). A function f(x) is said to be almost periodic 
if for any e > 0, there exists a periodic function fe(x) such that the uniform norm 
||/-/£|| <c holds. 

The above estimation leads to: 

Proposition 3.2 (Almost Periodic Solution). Consider an RDE of type (P(A),1) 
and a given purely imaginary parameter /?. If P(A) has no root in the form of —2n/3 
for any integer n, then the real and imaginary parts of (j)^{x) with Co,f3 = 1 are two 
linearly independent and C(X)(R) real solutions to the RDE. Furthermore, they are 
both almost periodic. 
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Please note that the proposition makes no sense if (3 is not purely imaginary, in 
which case, the Dirichlet series does not converge for any x ^ 0. 

Now we consider the case when there exists an integer n such that P{—2nf3) = 0. 
Let no denote the largest integer satisfying this condition. By choosing /?' = 2Tl0/3, we 
can assume no = 0. Prom the recursion formula, 

2 
Cn,/3 = 0, n < 0, Cnfi =     ,   2n0xCn-i,/3, n > 0. 

Hence, by choosing Co,/? = 1, we obtain the unique (complex) Dirichlet series solution: 

n>0 

If the real part of /3 is not zero, the above expression cannot give a global solution 
since the series diverges on one of the half-axes. It can be fixed, however, if there exists 
some XQ in the convergent half-axis such that (f)p (x) (or one of its real and imaginary 

parts) and all of its derivatives are zero at this point: (/>£ (XQ) = 0 for k = 0,1,  
This is indeed the case for kam(#) and $9(x) (XQ = 0 for both of them). Otherwise, 
we cannot obtain a global C1 solution from the Dirichlet series. 

If (} is purely imaginary, we have: 

Proposition 3.3 (Periodic Solution). Suppose P(X) (P(0) = 1) contains a purely 
imaginary root f3 = iu, for which no —2nf3, n > 0, is a root of P(X). Then, the real 
and imaginary parts of (j)p{x) with Co,/? = 1 are two linearly independent and periodic 
C00 real solutions to the RDE of type (P(A), 1). 

Definition 3.2 (Binary Degree). Two complex numbers a and b are said to be binary 
dependent if a/b is an integer power of 2. A set of complex numbers are said to be 
binary independent if no two distinct numbers are binary dependent. The binary degree 
of a finite set is the cardinality of the maximal subset that is binary independent. 

This concept and the above discussion lead to the second part of our Main Theorem. 

Theorem 3.4 (Main Theorem, Part II). Given a real polynomial P(\), P(0) = 1, 
let Z denote all its purely imaginary roots with positive imaginary parts. Suppose the 
binary degree of Z is d > 0. Then the RDE of type (P(A), 1) has at least 2d linearly 
independent and periodic C00 solutions. 

3.4. Analytic domain. In the above, we have shown that both kam(a:) and §o{x) 
(9 e (0, f)) belong to C00(i?). Since both have support on the positive half axis, they 
cannot be analytic. However, we have the following results. 

Proposition 3.4 (Analytic Extension of kam(a:)). There is a unique analytic func- 
tion K(z) that is defined on the right-half plane: Re z > 0 and continuous to the 
imaginary axis, such that its restriction on the positive half-axis is kam(x). 

Proof. In fact, K(z) must be the function, 

00   (—2)n 

K(z) = Y" VTT exp(-2n2),       Re z > 0. 

It also is not difficult to see that K(z) is continuous to the imaginary axis. □ 
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Proposition 3.5 (Analytic Extension of ^(z)). Suppose 6 G  (0, |).    There is a 
unique analytic function that is analytic inside the angular domain defined by 

ft     *     * ft     * -- + 9<kxgz<--e, 

and continuous to the boundary, such that its restriction on the positive half-axis is 

*«(t). 

Proof. In fact, this function must be given by the infinite series (see Eq.(3.6)); 

"   (-2)n 

^2 Vry exp(-2n&2) [J*(2n) cos(2naz) + jf(2n) sin(2na^)] . 
n=0   W2' 

a 

4. General regular RDEs 

In this section, we consider general regular RDEs of type (P(A), H(z)) and with index 
r. Since the equation is regular, we can assume 

P(A) = (^)rp(A)'        H{Z) = {1- ^Y*1^ 
with p(0) = h(i) 7^ 0. Without loss of generality, assume p(0) = h(l) = 1. 

4.1. Type (|, 1 - z"1) and Rvachev's up function. An RDE of type (^, 1 — z'1) 
has the form, 

\<l/(x) = 2^{2x) - 2(t)(2x - 1), / (f)(x) dx = 1. (4.1) 
2 JR 

By the change of variables: 

y = 2x-l,       ^y)=1-^x) = l<f)^y±iy 

the equation is transformed to 

<i>'(y) = 24>(2x + 1) - 24>{2x - 1), 

which is exactly the Rvachev equation! Therefore, 

Proposition 4.1.  The unique solution to (4.1) is given by 

up+(a;) = 2up(2x — 1), 

which is a non-negative C00 function supported on [0,1]. 

The Fourier transform of the up function first appeared in Jessen and Wintner's 
paper [21] in 1935 as an example of infinite convolutions of symmetric Bernoulli dis- 
tributions. Later in 1971, Rvachev [31] studied (1.2) and obtained up(a;) as a solu- 
tion. Since then, it was rediscovered by many other authors in different contexts (see 
Kirov and Totkov [23] and de Reina Martinez [8], for examples), and its roles in ap- 
proximation theory and in the representation of smooth functions have been studied 
extensively. More references can be found in Myshkis' survey paper [26] in 1977 and 
Rvachev [30] in 1990. 

Integrating both sides of the Rvachev equation 

<l>'(x) = 2(t)(2x + 1) - 2<£(2z - 1), 
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with the assumption that (f>(x) € C1
(JR) fl i1(i?), we obtain 

(j)(x)= /        4>(t)dt. (4.2) 
J2X-1 

Define the Rvachev operator R to be 

p2x+l 

Rf = /      /(*) *. 
J2x-1 

Restrict Dom R = L1(i?). Then R has the following three properties: (1) the subspace 
of all L1(i2) functions that are supported on [—1,1] is invariant; (2) the total integral 
J^oo f(t)dt is conserved; and finally (3) R improves smoothness by one order. 

Rvachev obtained the up function by iterating R on the initial candidate 0o(^) = 
I l[_i ,!](#). That is, define 

for all n = 0,1, — He showed that the (spline) sequence </)n(x) converges uniformly. 
The limit is called the up function, which is a non-negative C00 function supported 
on [-1,1]. 

We list some other functional properties of up (a): 

(1)  \xp(x) + up(a; — 1) = 1 for x G [0,1]. This follows directly from taking the first 
derivative. In particular, 

00 

]r  up(z-n) = l. 

(2) For any non-negative integer j, up^ (x) is a linear combination of the translated 
and dilated copies up(2J# + fc). This is proved by induction. 

From the multiresolution point of view, up^(a;) is inside V}(up), the space spanned 
(and closed) by all functions \ip(2^x — k) for k = 0, ±1, — 

4.2. Type (l,iJ(z)) and the scaling function. A regular RDE of type (l,H(z)) 
(#(!) = 1) 

m 

<t>{x) = 2   2   hk<t>{2x-k) 
k=m—L 

is the famous refinement equation in wavelet theory and computer aided design. Many 
authors have contributed to its development. Complete references can be found in 
Daubechies and Lagarias [5, 6], and Daubechies [4]. In the following, we summarize 
some main results. 

Deslauriers and Dubuc [12] showed that the equation is always solvable in the 
distributional sense (the solution therefore is called the scaling distribution in the 
following). The non-trivial distributional solution is supported on [m — L, m]. Mallat 
[25] considered the equation which satisfies the "orthogonal condition" 

H{z)H(z-1) + Hi-z^i-z-1) = 1. 
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He showed that a refinement equation with such an orthogonal real filter H(z) has a 
non-trivial L2(R) solution. Daubechies [3] studied the equation when the filter H(z) 
satisfies the strong lowpass condition 

She established the following regularity result: if ||.L(z)||si < 2p~q for some non- 
negative number </, then ^{x) € Cq. Here the norm refers to the supremum norm 
restricted on the unit circle S1 :\z\ = l. More results on the existence and regularity 
properties of the solution can be found in Daubechies and Lagarias [5, 6]. 

4.3. Solutions to general regular equations. Combining all the results so far, 
we achieve the last part of the main theorem. 

Theorem 4.1 (Main Theorem, Part III). Suppose a regular equation (P(X),H(z)) 
has order N = r + n > 1, length L = r +1, and index r. 

(a) // P(X) has no purely imaginary roots, then the equation has a unique (up to 
a multiplicative constant) CN(R) fl ^(R) solution in the form, 

(/>(#) = up+(#) * K(x) * $(x) * <l)h(x) 

where 
up!!j_r(a;) is the r-th convolutional power of\xp+(x), 

K(x) is a convolutional product of some scaled kam(a;) functions, 
$(x) is a convolutional product of some scaled §Q{X) functions, 

<j)h(x) is a certain scaling distribution with a compact support of length I. 

(b) // the set of all purely imaginary roots of P(X) with positive parts has a binary 
degree d (Section 3.3), then the equation has at least 2d linearly independent, periodic, 
and CN real solutions in the form, 

<f)(x) = up+(#) * §p{x) * <i>h(%) 

where $p{x) is some periodic solution of trigonometric Dirichlet series (Section 3.3). 

5. Distributions and refinement functional equations 

The probability explanation of the up function can be found in Rvachev [30]. Derfel [9] 
generalized the refinement equation in wavelet theory by allowing arbitrary probability 
masks (filters). Derfel et al. [10] studied the convergence properties of the continuous 
and non-stationary subdivision process with more general Stieltjes masks, which gave 
further probability explanations to Rvachev's up function. Following this line, we will 
discuss the probability side of some typical RDEs in the next section. In this section, 
we first develop a more general framework based on distribution theory, by which a 
close connection is found between regular RDEs and a class of refinement equations 
with distributional masks, or the refinement functional equations (RFE) as called in 
this paper. 

In what follows, we consider only the class S of Schwartz functions and the space 
S' of Schwartz distributions, though some of the theory applies to a much larger class 
of distributions. 
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Recall that a C00 function <f)(x) belongs to S if and only if, for any non-negative 
integer k and N, 

snp\^k\x)\(l + \x\)N <oo. 
xGR 

Hence S is closed under the differentiating operator D. The space of all linear func- 
tionals on <S is denoted by S'. Elements in Sf are usually denoted by capital letters 
T,JF,— and called Schwartz distributions (or tempered distributions). The value 
T((f)) is conventionally denoted by the scalar product (T, (/>}. 

Given a Schwartz distribution T, let us consider the refinement functional equa- 
tion(RFE), 

0(aO = <r,0(2a:-.)>,        <Kx) G 5. (5.1) 

Here, T acts on the variable in the position of • and x plays the role of a parameter. 
Since S is invariant under translation (^(t) —» <f)(t — a)) and dilation ((j)(t) —► <f>(at)) 
for any non-zero constant a, the equation is well defined. 

All solutions to a given RFE constitute a linear subspace of S. In most interesting 
cases, it is a line. Therefore, to make the solution unique, we usually add another 
scalar character for the solution, such as 

(1,0) = [ (t>(t)dt = , 
JR 

for a specified constant c ^ 0. 
RFEs and RDEs are connected through the following concepts. 

Definition 5.1 (£-train). A S-train is the functional 
oo 

F=    ^2   CnSfa-ri), 
n=—oo 

with the coefficients cn satisfying the temper growth condition: there exists an integer 
K, such that 

\cn\ sup .        ,   ,N^ < OO. 
n   (l + \n\)K 

This condition makes the 5-train a Schwartz distribution. If there are only finitely 
many non-zero CnS, the 5-train is said to be compactly supported. The maximal non- 
negative integer L such that there exists m, cmcm_L ^ 0, is called the length of the 
train. 

The most famous 5-train is the uniform train: 
oo 

P=   £  6(x-n), 
n=—oo 

which is closely related to the famous Poisson Summation Formula (see Strichartz 
[36]), and also is directly connected to Shannon's Sampling Theorem (see Oppenheim 
and Schafer [28]). The interesting class of J-trains in wavelet theory are those with 
compact supports. 
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Definition 5.2 (5-simple). A Schwartz distribution T is said to be S-simple if it solves 
the distributional differential equation, 

aNTW + aN-^-V + ... + atf + a0T = F, (5.2) 

for some scalars a*, k = 0,1,..., N, aN + 0, and some J-train F. N is called the 
order of T. If F is compactly supported and with length L, then so is T. 

The following properties are obvious: 

(a) T is (S-simple if and only if T(-x) is. 
(b) If Ti and T2 are 5-simple, and T = Ti * T2 is well-defined, then T is 5-simple. 

(c) Suppose T is <S-simple. Then any finite sum of the following form is also ^-simple, 

^ckT(x-k). 
k 

It is easily seen that a 5-simple distribution is a linear combination of integer 
translates of the fundamental solution (to the associated ODE). 

Theorem 5.1 (Second Main Theorem). Suppose T is a S-simple Schwartz distribu- 
tion of order N and length L, and (j)(x) £ S is the solution to RFE (5.1). Then <£(&) 
is the solution to an RDE with the same order and length. Conversely, suppose a 
regular RDE of order N and length L has a non-trivial solution </> that belongs to the 
Schwartz class S. Then ^(x) must solve an RFE with a 5-simple distribution mask T 
of the same order and length. 

Proof. Suppose T satisfies 

aNTw + • • • + aiT' + aoT = cmS(t - m) + • • • + Cm-LSQ -m + L). 

Applying both sides to the t-function 0(2x -1) parameterized by x, we have 
N rn 

Yiak(T^,4>(2x-t))=   J2   ci<l>(2x-l). 
k=0 l=m—L 

On the other hand, the left side of the above equation is 

l.h.s = £afc(T,(-l)fc#V(2x-t)) 
k=0 

N   ■  dik) 

-E^.^rrt2*-*)) 
k=0 

N 

fc=0 

where D = d/dx. Suppose ^(x) solves the RFE with mask T. Then 

k=0 

Hence, ^(x) solves the RDE of type (P(A),#(A)) 
N       / \\k 1     m 

fc=:0 ^     ^ l=m- 

N / x \ k i       rn 

ciz-\ (5.3) 
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which obviously has order N and length L. 
The converse is proved in a similar way. □ 

Relation (5.3) is very useful in computations. 

Examples: 
(i) Suppose T itself is a 5-train: 

T = 2coS(x) + 2c1S(x -!) + ••• + 2cLS(x - L). 

Then T is ^-simple (of order 0 and length L). The corresponding RFE (5.1) 
directly gives the refinement equation in wavelet theory: 

<f>(t) = 2co(t)(2t) + 2c1(j){2t - 1) + • • • + 2cL(j){2t - L). 

(ii) Define 

T = aexp(—ot\x\),       for some positive constant a. 

Obviously, T is a Schwartz distribution solving 
rptl 

 2 +T = 25. a2 

Therefore, T is a second-order ^-simple distribution of length 0. If (j){x) G <S 
satisfies 

^{x)= [ ae-aW(i)(2x - t) dt, 
JR IR 

then it must solve the second-order RDE of length 0, 

-^ + <l>{x) = 2<t>{2x). 

(iii) Let T be the characteristic of interval [—1,1]: 

(T9<l>(x)) = J_ <Kx)dx. 

Then, 

T' = 6(x + l)-6(x-l). 

Hence, the associated RDE is 

^(x) = 2(j)(2x + 1) - 2^(2x - 1), 

which is exactly the Rvachev equation. 

(iv) Set T = lx>o(x)2sm f, which is the solution to the distributional differential 
equation, 

4T" + T = 25. 

Hence, the associated RDE is given by 

(l)"(x) + <t)(x) = 2(t)(2x). 
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Remark. As an equation, RFE (5.1) is well defined for any Schwartz distribution. 
However, it may have no solutions in the Schwartz class S. On the contrary, a regular 
RDE as a point-wise equation always can be solved as shown in the previous sections. 
For instance, in the last example, the associated RDE does have at least one non- 
trivial C00 solution which is periodic (see Section 3). But a non-zero Schwartz function 
cannot be periodic. 

The second main theorem connects regular RDEs to a special class of RFEs with 
(J-simple distributional masks. It provides a new way to interpret and solve generic 
regular RDEs. In the section below, we show that the two "building block" functions, 
up(x) and kam(x), can be studied successfully in this way. 

6. Probability method and continuous subdivision process 

Following the discussion in the preceding section, we consider a special class of distri- 
bution masks called probability measure masks. The connection between Rvachev's 
up function and probability has been pointed out in Rvachev [30], Derfel [9], and Der- 
fel et al. [10]. In this section, we develop systematically the probabilistic method for 
RDEs, especially for the two "building block" equations, the Rvachev equation and 
the kam equation. Derfel's generalized subdivision process is applied to generic RDEs. 
By "generic equations," we mean regular RDEs of type (P(X)^H(z)) such that P(A) 
contains no imaginary roots. 

6.1. Probability interpretation of certain RFEs. When T is a probability dis- 
tribution of some random variable X, RFE (5.1) can be rewritten as 

0(a;) = E(20(2a;-X)). (6.1) 

Here E is the expectation operator. The first number 2 indicates that we are taking 
2dfj, for T, if d/j, stands for the probability measure of X. 

Given a random variable X, we define an "X-averaging" operator ^x* which trans- 
forms any random variable Y that is independent of X to a new random variable 
Ax(y) defined by 

Ax(Y) = £±I. 
The "fixed point" of this operator is the most interesting. A random variable Y 
independent of X is called a fixed point of Ax if Ax{Y) has the same distribution 
asF. 

By recursion, it is not difficult to show the 

Proposition 6.1. Let X, Xn) n = 1,2, — be a sequence of i.i.d. random variables 
on some probability space. If the following infinite series converges a.s. to a random 
variable Yx 

OO       ^r 

x = 2.^ "o^"' 
n=l 

then Yx is the unique (in the sense of distribution) fixed point for Ax - 

The following lemma describes a qualitative relation between Yx and X. 

Lemma 6.1. Suppose supp X = [a, 6] and Prob(c < X < d) > 0 for any c, d, 
a < c < d < b. Then, Yx has the same properties. 
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Proof. It is not difficult to see supp Yx C [a, 6] from the infinite summation. Hence, 
we only need to show that Yx shares the second property. Set A = max(|a|, |6|). Then, 

£ 2n < A2-N,        a.s. 
n>iV 

Denote A2~N by 5. For any c, d, a < c < d < 6, 

Piob[c<Yx<d] >Prob[c + 5<^-^ <d-6] 
n=l 

c+S        v d-5 
>Prob[I^^<Xn<T-5Z^  : n = l,2,...,iv]. 

Choose N large enough so that a < c' < d1 < b where c? = (c + S)/(l — 2 N) and 
d' = (d-5)/(l-2-N). Then 

Prob(c < Yx < d) > [ProbCc' < X < df)]N > 0. 

D 

By the standard truncation technique, a and/or b can be relaxed to oo provided 
that E(\X\) < oo. 

For any random variable Y independent of X, define Z = Ax(Y). Suppose Y has 
the probability density function (p.d.f.) pY. 

Proposition 6.2. If the p.d.f. pz of Z exists, then 

pz(x) = E(2pY(2x-X)). 

Proof. This is because (1) E(pY(x - X)) is the p.d.f. of X + Y whenever X and Y 
are independent; and (2) 2p(2x) is the p.d.f. of X/2 if X has p.d.f. p(x). D 

Corollary 6.1 (Probability Meaning of RFEs). If the fixed point Yx of Ax exists 
and has p.d.f. p{x), then (j){x) — p(x) solves (6.1). 

Remark. In the above argument, we have left out some technical details of the reg- 
ularity conditions on the random variables involved. For instance, in Proposition 6.1, 
it is not difficult to show that, by applying Kolmogrov's Three Series Theorem (see 
Rao [29], for example), if E(|X|) < oo, then the infinite series of Yx does converge 
almost surely. We refer to Derfel et al. [10] for more information on convergence and 
regularity conditions. 

6.2. The uniform distribution and up(a;). Let Xu ~ U[—l, 1] be a random vari- 
able uniformly distributed on [—1,1]. The corresponding T is denoted by Tu and given 
by 

Tu = l[-i,i](x), 

the characteristic of interval [—1,1]. Tu is a ^-simple distribution of order 1 and length 
2 since 

Ti = S(x + l)-6(x-l). 

Hence, the solution <f)(x) to (6.1) satisfies the following RDE according to the previous 
section 

(f)'(x) = 20(22; + 1) - 20(22; - 1), 
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which is the Rvachev Equation. Thus, up to a multiplicative constant, the solution is 
up(x). 

Corollary 6.2. supp[up] = [—1,1], and \ip(x) > 0 for all x G [—1,1]. 

Proof. Let Xn, n = 1,2, be a sequence of i.i.d.   random variables of type Xu. 
Define 

oo    v 
y   _ V^ An 
Iu - 2^  On * 

n=l  * 

By the second Main Theorem and the integral normalization condition, up(x) = pY (x). 
The proof is complete after applying the preceding lemma to (Xu, Yu). D 

6.3. The exponential distribution and kam(x). Let Xe be any random variable 
with mean 2 and exponentially distributed along the positive half-axis. The corre- 
sponding T is denoted by Te: 

x 
Te = exp(--)la.>o. 

Tg is a <5-simple distribution of first order since it satisfies 

2Te' + re = 250r). 

Therefore, the solution (j){x) to the associated RFE also must solve 

0/(x) + 0(x) = 20(2x). 

Up to a multiplicative constant, the only solution is kam(a;). 

Corollary 6.3. supp[kam] = [0, oo), and kam(x) > 0 for all x > 0. 

Proof. Let Xn, n = 1,2,... be i.i.d. random variables of exponential type Xe on some 
probability space. Define 

Xn 
oo 

V  - V^ ±2. Ie ~ Zs  On 
n=l  Z 

Then, Fe is well defined, and its p.d.f. is given by 

pY(x) = 
Ys\ _   kani(x) 

exp2(-l), 

An application of the preceding lemma completes the proof. □ 

6.4. The normal distribution and "fixed point". So far, we have discussed two 
important probability distributions. To be complete, it is natural to ask what is the 
function (j)(x) that corresponds to the normal distribution. The answer is: the normal 
distribution does not lead to new functions because of the semi-group property: 

N(0,t) + N(0,8)"N(09t + s). 

Here, iV(0, t) stands for a normal random variable of mean 0 and variance t, and the 
first two random variables are assumed to be independent. 

The normal distribution serves as a famous "fixed point" in the Central Limit 
Theorem and Fourier transform. It does here also for the refinement equations. 
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For the normal distribution, we define the corresponding Schwartz distribution Tn 

to be 

T" = f^(-T) 
It solves the following first-order equation, 

from which it is obvious that Tn is not ^-simple. Hence, one should not expect that 
the solution 0(x) to (6.1) also can solve an RDE. 

On the other hand, let Xn, n = 1,2, — be a sequence of i.i.d. random variables 
of type iV(0,1) and define 

Xn 
oo 

n=l 

Because of the semi-group property, i.e., the sum of any two independent normal 
random variables is still of normal type, Y must be a normal random variable also. 
Since 

n>l n>l 

we conclude that the solution to (6.1) for the normal distribution is (subject to the 
integral normalization condition (1,0) = 1) 

tw = vJexp (-.ir) 
Notice the major difference between the solution in this case and those in the 

previous two cases: the solution here is C^l 

6.5. Continuous subdivision scheme for generic RDEs. The connection be- 
tween RFEs and RDEs makes it possible to solve generic RDEs using the continuous 
subdivision process (Derfel et al. [10]). 

We first review briefly the role of the subdivision scheme in wavelet theory. For a 
given refinement equation 

0(aO = 2^/^(2*-n), 
n 

the associated subdivision scheme S is the "refining operator," 

(5f)[n] = 2 J2 hn-2kf[%        n = 0, ±1,..., 
k 

which maps an infinite sequence f [n] to another (refined) sequence ST (Daubechies 
[4]). The subdivision scheme shall be better viewed as a grid transfer function in the 
Multigrid Method (see Briggs [1]). The subdivision process (SP) refers to the iteration 
process starting with the "impulse signal" S[n] 

5, S6, S2S,.... 
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It is said to be convergent uniformly if there exists a continuous function (j)(x) such 
that 

Mm 11^-^1100 = 0 

where sequence ^ is defined by ^[fc] = (/>(fc/2J). Obviously if the SP converges, 
(f)(x) must be unique. Indeed, in the case of finite length filter, hn, (j>(x) is the unique 
solution to the refinement equation subject to the integral normalization condition 
/(j){x)dx = 1. 

SP is very useful in computer graphics for generating continuous objects from dis- 
crete data (see Deslauriers and Dubuc [11], and Dyn and Levin [13]). It also appears in 
the analysis of the Picard-Lindelof iteration in numerical computation of ODE systems 
(see Nevanlinna [27]). 

For refinement equations with continuous masks, Derfel et al. [10] generalizes the 
subdivision process in a natural way. Their results now also apply to RDEs based on 
the connection we established in the previous section. 

Given a refinement differential equation of type (P(X),H(z)), suppose T is the 5- 
simple distribution associated to it. Assume T has a "density" function p(x) G I/1(i?) 
(not necessary to be non-negative), i.e., 

(T,g(x))= [ p(x)g(t)dx, 
JR 

for any test function g(x). We require JRp{x) dx = 2. 
The continuous subdivision scheme is the operator Sc (subscript c stands for "con- 

tinuous") defined by 

Scf(x)= [ p(x-2t)f(t)dt 
JR 

It is easy to see that for any p with 1 < p < 00, 

SC(LP(R)) C LV(R). 

Let S = 5(x) be the Dirac distribution. The generalized SP is the iteration: 

5,SC5,SC6, — 

It is said to converge uniformly to a continuous function (j)(x) if 

.lim   ||S£j(x)-#2-*s)||oo = 0 

and converge weakly to a distribution R if for any test function g(x), 

lim    / SiS(x)2-jg(2-jx) dx = (R, g(x)). 
j-++(X) J 

The result of Derfel et al. [10] leads to the following. 

Proposition 6.3 (Derfel et al. [10], Corollary 15 modified). // p{x) is rapidly de- 
creasing, then the generalized SP converges in the weak sense to an infinitely dif- 
ferentiable function in Ll(R), which is the unique solution of the corresponding RFE 
in Ll{R) subject to the integral normalization condition. Furthermore, if p(x) consists 
of finitely many smooth pieces, then the convergence is uniform in any Cm(R). 
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The continuous subdivision process points to an algorithm for generic regular RDEs. 
We demonstrate it through the following three examples. Notice that the SP also 
provides an efficient way to compute convolutions like / * 0 for an arbitrary function 
f(x) if (^(x) is an solution to certain RFE: one does not need to know the explicit 
expression of (j)(x) and simply starts the SP with /, instead of S. 

Examples: 

(i) Rvachev equation: (f)'(x) = 2^(2a; + 1) - 2(j)(2x - 1). 
In this case, pu(x) = l[_iji](x). The subdivision scheme Su is given by 

x+l 

Suf(x)= [ Pu(x-2t)f(t)dt= [ 2   f(t)dt. 
JR J^ 

Hence, 

SuS(x) = pu(x) = li-lil](x), 

Sl5 = I 

2±S -3<a:<-ij 

1 -l<a;<l, 

^ 1 < x < 3, 
^0, elsewhere 

If we look at the rescaled (spline) functions Su5(2x), S^<5(4#), it is easy to 
observe the following properties (those invariant during the SP) of the limiting function 
up(x): 

(a) supp[up] = [—1,1] and up(a:) > 0 for all x £ (—1,1); 

(b) up(x) is infinitely flat at x = ±1 and x = 0, and up(0) = 1, up(=bl) = 0; 

(c) up |[o,i] is mirror symmetric around |: up(l — x) = 1 — up(x). 

(ii) The kam equation: ^(x) + (f)(x) = 2(j)(2x). 
Here we have pe(x) = exp(—|)la:>o. The subdivision scheme Se is defined by 

Sef(x)= [ pe(x-2t)f(t)dt = e-% f2  e'mdt 
JR J-OO 

In particular, if supp / C [0, oo), then 

Sef(x) = lx>oe-*  f2 cV(*) dt. 
Jo 

Hence, the first few steps of the SP are given by 

SeS = Pe = exp(~)lx>o,       S2
e5 = [2e-i - 2c-*]la.>o, 

Se       L3e  8 "       4 +3e  2\lx>^ 

Generally, 3^5 can be obtained by solving a linear system in the following way. Assume 

k 

Sk
e8{x) = lx>0YJ^~x/2i- 

3=1 
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FIGURE 3. exp2(—l)5g5(2fca:) gives a better uniform approximation 
to kam(a;) compared with the partial sum sequence Skix), k = 3. 

To determine the coefficients Cj, we impose the following k conditions: 

Sk
e5(2kx)dx = 1;    —l^Sfrx) = 0,    m = 0,1,...,k - 2. 

This establishes a linear system of Vandermonde type 

k k 

J^ CJ2J = 2k'>     Y, c32~jm = 0'     m = 0, 1, . . . , fc - 2. 

It is well defined and has a unique solution. 
Now two sequences of functions are available to approximate kam(x): the scaled 

SP sequence exp2(—l)S^8{2kx) and the fc-th partial sum in (3.3): 

k-1 (—<)\rn 

m=0   V"v^- 

Prom Figure 3, the SP sequence gives a better uniform approximation. Sk{x) is only 
good away from x — 0. 
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(iii) ££2 + <l/{x) + ^(x) = 20(2x). 
The "density" function for this equation is 

P(a0 = l^oe'^sin-. 

Hence, the resulting subdivision scheme S for any function / supported in the positive 
half-axis is 

Sf(x) = lx>oe   2 sin ^ I    et costf(t) dt-cos^ I    e1 smtf(t) dt 
2 Jo 2 Jo 

It is guaranteed by the preceding proposition that Sk5(2kx), k = 0,1, — converges 
uniformly to y/2^^(y/2x) up to a multiplicative constant. 

Remark. The probability method and subdivision algorithm in this section recently 
have been generalized to combinatorics by the author [32]. 

7. Application: smoothed wavelets and quasi-multiresolution 

In this section, we present one application of the previous results in wavelet theory, 
namely, the construction of smoothed wavelets and quasi-multiresolution. 

The application is controversial because the "smoothed wavelets" are, in fact, no 
longer wavelets in the classical sense. The multiresolution axioms now only hold 
approximately! 

However, if we go beyond the multiresolution idea and open our minds more widely 
to the field, the application brings a lot of good news. The new class of functions 
constructed below are C00 and nearly orthogonal. Their essential supports are almost 
the same as their classical counterparts. Most importantly, their derivatives can be 
expressed in terms of their translated and dilated copies, a merit so crucial to the 
numerical computation of differential equations, but pitifully and inevitably missed 
by classical wavelets. 

Therefore, we optimistically anticipate more applications in the future in numerical 
computations and data processing (in statistics, for example). 

7.1. Classical wavelets with compact support. Wavelets with compact supports 
are of particular interest in applications. The design starts with the refinement equa- 
tion, 

771 

<l>(x) = 2[H(E)4>](2x) = 2   J2   hn<j>(2x-n). (7.1) 
71=771 — Lr 

Once the scaling function has been worked out, the associated (mother) wavelet 
il)(x) is obtained from the wavelet equation, 

tl>(x) = 2[G(E)<l>](2x) = 2   J2   gk<t>(2x-k). (7.2) 
k=p—M 

Here 

G(z)=   £   gkz-
k 

k=p—M 

is the companion highpass filter of H(z), which must satisfy the highpass condition: 
G(1) = 0. 
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The scaling function and wavelet generate a multiresolution (MR) in the following 
way. For any function f(x) G L2(R) and integer j, denote by Vj(f) the closed subspace 
in L2(i?), 

span{/(2^ - fc) | fc = 0, ±1,... }. 

MR is the iteration (w.r.t. j) of the relation in L2(R) given by 

Here © denotes the direct sum of subspaces. For orthogonal multiresolution, it is an 
orthonormal sum. 

With more restrictions on the filters, the resulting MR is complete in the sense 
that UJGZKK^) ^ dense in L2(R). Further conditions on the filters can lead to the 
orthogonality of the scaling functions and wavelets (Daubechies [4]). 

One major defect of classical compact wavelets is that they are not C00. In some ap- 
plications such as applying the wavelet-Galerkin method to solve differential equations 
numerically, C00 (or piecewise C00) basis functions are welcomed (classically, trigono- 
metric functions, splines, orthogonal polynomials, and eigenfunctions of a Sturm- 
Liouville problem). The naive idea to achieve high-order smoothness is to mollify 
the scaling functions and wavelets in existence. This is indeed what the following 
perturbed refinement equation (a special RDE) achieves. 

7.2. Smoothed wavelets and quasi-multiresolution. For a system of refinement 
and wavelet equations defined through a given filter pair (H(z), G(z)), let us consider 
the following first-order perturbed system, 

e#(aO + &(*) = 2[H(E)<t>e](2x), (7.3) 

e#(*) + &(*) = 2[G(E)<f>e\(2x), (7.4) 

where e is a small perturbation parameter and assumed to be positive harmlessly. We 
impose again the normalization condition f ^(x) dx = 1. 

By the Structure Theorem, if (^(x),ip(x) solves the original unperturbed system, 
then the solution to the above system is 

06(x) = Ke(x) * 0(x),        ipe(x) = Ke(x) * ip(x) 

where Ke(x) is the scaled kam function 

_ €-1kam(6-1x) 
K*{X)-     exp2(-l)     ' 

It is interesting to see that Ke(x) plays the exact role of a mollifier in functional 
analysis. Since both 0(x) and ip(x) are compactly supported, we have: 

(1) 0€ and ipe both belong to the Schwartz class, and 

(2) 0e and ipe converge to 0 and ip in Ca(R) and LP(R) whenever (j) e Ca(R) for 
some a > 0. 

If e is small enough, Vj(<j)€) and Vj(ipe) are two subspaces very "close" to Vj(<j)) and 
Vjfy) in the sense that Shen and Strang gave in [34]. Thus it can be expected that 
the following relation should still hold approximately: 

The iteration of this approximate relation is called a quasi-multiresolution (QMR). 
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FIGURE 4. First-order perturbed Haar scaling function and D4 (e = 0.04). 

If the original unperturbed system is orthogonal, that is, 

/ (j)(x)(j)(x -n)dx = Sni / 0(x)'0(a: - n) dx = 0, 
JR JR 

/ ipfatyfa — n)dx = 5n, 
JR 

then the perturbed system must satisfy 

/ (j)e(x)(j)e{x -n)dx = 5n + sn, / (f)€(x)ip€(x -n)dx = rn, (7.5) 
JR JR 

il)e(x)il)e{x -n)dx = 8n+ wn, (7.6) L 
where sequences (sn), (rn), (wn) are uniformly (for e < 1) exponentially small for 
large |n| and the sequence supremum norms are O(e) (in fact, 0(e2) as we shall show 
later). This is to say that the resulting QMR is near orthogonal 

For example, in Figure 4, we have plotted the smoothed Haar scaling function 
and Daubechies min-phase orthogonal scaling function D4 (see Daubechies [4]), both 
obtained by choosing the perturbation parameter e to be 0.04. 
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7.3. Smoothing versus small shifting. In this section, we show that the solutions 
to the perturbed system (7.3) and (7.4) are very close to a small shifting of the original 
scaling functions and wavelets. 

Let us consider another perturbed system, 

$e(x + e) = 2[H(E)4e](2x)9 (7.7) 

^e(a: + c) = 2[G(JE?)^](2a?)> (7.8) 

with the same integral normalization condition for the scaling function. 

Proposition 7.1 (Small Shifting). //(</>(£), ^(x)) is the scaling function and wavelet 
pair for the original system, then (7.7) and (7.8) have solutions 

}e(x) = (j){x - 2e),        ^e(a?) = il>{x - 2c). 

Proof A direct check using the original refinement and wavelet equation. □ 

When the lowpass filter H(z) vanishes rapidly at u == TT or z = —1, 0(a:) and ^(x) 
are differentiable for finitely many times, so are 0€ and ^e according to the proposition. 
We can apply Taylor expansion to e: 

4>e(x + c) = 4>(x) + e<p(x) + 0(e2),        $e(x + c) = $(x) + ^(x) + 0(e2). 

Hence, up to the second order, 

efie(x) + Ux)-2[H(E)$e}(2x), 

6i>'e(x) + Mx)c±2[G(E)$e}(2x). 

That is, (0e,^e) solves the first perturbed system (7.3) and (7.4) approximately. In 
fact, 

Corollary 7.1 (Smoothing versus Small Shifting). Suppose the original scaling func- 
tion (j){x) is Ca(R) for some a>2. Then, uniformly for all x, 

(j)€(x) = (ftx - 2c) + 0(c2),        i;e(x) = il>(x - 2c) + 0(c2). 

Proof We only sketch the proof. Set Ac(a;) = <i>e(x) — (t>e(x). By the regularity 
condition, we can assume that 

Ae(x) = cAi(x) + -AsOr) + • • • 

where Ai(a?), A2(a:),.. • are functions independent of c. By the integration normaliza- 
tion condition, JR Ak(x) dx = 0 for k = 1,2, — On the other hand, since 

€2_ 

<j)€(x + c) = M*) + e^O*) + y^ (») +■•••> 

we have 
c2 

2[H(E)Ae\(2x) - A€(x) - cA'e(a;) =—<f>e(x) + higher order c terms. 

Comparison of the first-order c terms yields 

Ai(aO = 2[fr(.E)Ai](2aO. 
Hence, Ai is a constant multiple of the unperturbed scaling function <\>{x). It must 
be 0 since /^ A\{x) dx = 0. Therefore, 

&(*) - ^(«) = Ae(x) = ^A2(x) + • • • = 0(c2). 
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The proof for ^(x) is done in a similar manner. □ 

Therefore, visually, 0€(x) accomplishes two things simultaneously: infinitely 
smoothing the original scaling function (j)(x) (hence, also the wavelet) and shifting it 
(rightward) by a small distance 2e. 

Corollary 7.2 (Linear Orthogonality). Suppose the original scaling function and 
wavelet lead to an orthogonal MR, and the scaling function is at least C2, then the 
sequences {sn), (rn), and (wn) in (7.5) and (7.6) are 0(e2). In such a case, we say 
that the QMR is linearly orthogonal 

Finally, we point out that if one considers the second-order perturbed refinement 
equation (or wavelet equation), 

<2W + €<2(*) + 06,2(2?) = 2[H(E)(j>€d(2x), [ 4>ef2(x) dx = 1, 
JR 2 

then the following results can be established in the same fashion. 

(1)  0e)2 = K^2 * ^ where 

1 V^L    fy/2 

(2) </>€j2 belongs to the Schwartz class, and 

(3) (Quadratic Orthogonality) If the original scaling function ^{x) is C* for some 
a > 3, then 

0e,2(x) = <Kx-2e) + C>(e3), 

^€,2(aO = #r-2e) + C>(€3), 

and the uniform norm of (sn), (rn), and (wn) all are 0(e3) if the original MR is 
orthogonal. Hence, the QMR is "more" orthogonal than the previous case. 
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