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ON A CLASS OF QUASILINEAR DIFFERENTIAL EQUATIONS: 
THE NEUMANN PROBLEM 

Nikolaos C. Kourogenis and Nikolaos S. Papageorgiou 

ABSTRACT. In this paper, we consider a quasilinear ordinary differential equation 
with Neumann boundary conditions. Our formulation is general and incorporates 
the case of the one-dimensional Laplacian. Using an abstract result on the range 
of the sum of certain monotone operators, we prove the existence of a solution. 
Our approach is based on the theory of monotone operators and does not use 
degree theoretic arguments, which is usually the case in the literature for such 
problems. 

1. Introduction 

Let T = [0, b] and consider the following quasilinear Neumann problem: 

- (a(\x'(t)\2)x'{t)y + f{t,x(t)) = v(t)    a.e. on T 

x'(0) = xf(b) = 0. (1) 

Here a : R —► R is a continuous map which satisfies certain geometric and growth 
conditions (see hypothesis H(a) in Section 3). One possibility is to have a(r2) = 
(r2)(p-2)/2^ p > 2) in which case we obtain the differential operator — (|2:/(£)|p"""2a;/(£))/ 

(the one-dimensional p-Laplacian). The version of problem (1) with the p-Laplacian 
and with homogeneous Dirichlet boundary conditions was studied by Boccardo et al. [1] 
and Pino et al. [6]. In that case, the differential operator 

Ax(t) = -(\x'(t)r2x'(t)y 

is invertible and compact, and so a degree theoretic approach based on the Leray- 
Schauder degree is possible. However, for the Neumann problem, as well as for the 
periodic problem, the differential operator is no longer invertible, and so a different 
approach is needed. In [5], we studied the periodic problem using techniques from 
the perturbation theory of maximal monotone operators. In this paper, again our 
approach is based on the theory of maximal monotone operators and, more specifically, 
we use a theorem on the range of the sum of two monotone operators, due to Gupta 
and Hess [3] (see Section 2). 
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2. Preliminaries 

Let X be a reflexive Banach space, X* its topological dual, and A : X —► 2X*. We 
recall some basic notions, namely: the domain of A is the set D(A) = {x G X : 
;4(a) ^ 0}, the range of A is the set R(A) = {x* e X* : x* e A(x),x G D(A)}, and 
the graph of A is the subset of X x X* defined by Gr A = {(#, re*) G X x X* : # G 
J5(yl), x* G A(x)}. We note that we can identify each subset G C X x X* with a map 
^ : X -> 2** by setting Afc) = {x* G X* : (x, a*) G G}. 

Definition. A map A: X —> 2X* is said to be monotone, if for any x, y e D(A) and 
x* G A(a;), y* G A(y), we have 

<a*-V*,3-l/)>0 (2) 

where by (•, •) we denote the duality brackets for the pair (X, X*). We say that A is 
strictly monotone, if equality in (2) implies x = y. 

A is maximal monotone, if it is monotone and for (y,y*) G X x X*, the inequalities 

(x* - y*, x - y) > 0    for all (x, x*) G Gr A, 

imply (y,y*) GGrA 

Remark. From the above definition, it is clear that A : X —> 2X* is maximal mono- 
tone if and only if its graph is a monotone subset of X x X* which is maximal with 
respect to inclusion. 

In our analysis of problem (1), we also will need the following specification of a 
monotone map. 

Definition. A map A : X —> 2X* is said to be 3-monotone if 

(x* - y*,z - x) < (y* - z*,y - z) 

for all (a;,x*), (j/,2/*), {z,z*) G Gr A. 

Remark. It is clear that a 3-monotone map is monotone, but the converse is not true 
in general. 

For a single-valued map B : X —> X* with D(B) = X, we say that £?(•) is demi- 
continuous if xn —> x in X implies B{xn) —■> B{x) in X* as n —> oo. It is well known 
that a monotone demicontinuous map 5 : X —> X* is maximal monotone. We say 
that B : X —» X* is bounded if it maps bounded sets of X into bounded sets of X*. 
For further details on these and related issues, we refer to Zeidler [7]. 

Definition. The map A : X —► 2X* is said to be boundedly inversely compact, if for 
any pair of bounded sets C C X and C* C X*, we have that Cn-A~1(C*) is relatively 
compact in X (here A"1^*) = {x G 23(i4) : (a?,x*) G Gr A for some x* G C*}). 

Remark. It is easy to see that if K : X* —» X maps bounded sets of X* into relatively 
compact subsets of X, then if-1 : X —> 2X* is boundedly inversely compact. We recall 
the following abstract result of Gupta and Hess [3], which is crucial in our approach. 

Theorem 1. Let A : X —» 2X* be monotone, let Bi : X —> X* 6e 3-monotone such 
that (i) £>(,4) C 2?(Bi), (ii) 0 G (A + JBi)(0), and (iii) A + ^i : X -> 2X* zs maximal 
monotone and boundedly inversely compact, and let B2 : X —* X* be a demicontinuous 
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map satisfying the condition that for every k > 0, we can find a constant c(k) such 
that 

(B2(x),x) > k\\B2(x)\\ - c(k)   for all x G X. 

Then u e mt(R(A) + JR(BI)) implies that u e R{A + Bx + B2). 

Remark. If B2 = 0, then we do not need to assume that the mapping is boundedly 
inversely compact. Also note that because of the condition we imposed, B2 is bounded. 
Finally, in our subsequent considerations, we will need the following basic inequality: 

(|a|p-2a - W-2b) (a-b)> 2*)-2|a - b\p. 

3. Auxiliary results 

First, let us introduce our hypotheses on the data of problem (1). 

H(a)    a : R —► R is a continuous function with a(0) = 0 such that: 
,2 

(i) t —> h(t) = IJQ  a(s)ds is strictly convex, and 

(ii) ci|t|p-2 < a(t2) <C2 + c3\t\p-2 for all t G R and with ci, C3 > 0, C2 > 0, and 
p>2. 

Remark. If a(t) is a polynomial with nonnegative coefficients, a(t) = 1 + l/(t + I)2, 
or a(t) = t 2 , p > 2, then a(-) satisfies hypotheses H(a). Of special interest is the 
last case because it corresponds to the p-Laplacian. 

H(f)    /:TxR—►Risa function such that: 
(i) for every x G R, t —> f(t,x) is measurable, 

(ii) for almost allt G T, x —» /(t, x) is continuous, 
(iii) \f(t,x)\ < f3(t) + jlxl?-1 a.e. on T with /3 G Lg(T), i + i = 1 and 7 > 0, and 

(iv) there exists u G I/P(T)+ such that for almost all t G T and all \x\ > u(t), we 
have f(t,x)x > 0 (generalized sign condition). 

We introduce the operator A : W1*^) -* W1'P(T)* defined by 
rb 

(A(x),y)= f a(\x'(t)r2)x'(t)y'(t)dt. 
Jo 

Henceforth, we will denote the duality brackets for the pair (W1'1,(T), W^T)*) 
by<-,-)- 

Proposition 2. A : WliP(T) —> WltP(T)* is maximal monotone. 

Proof. We will show that A is monotone and demicontinuous. Then this will imply 
that A is maximal monotone (see Section 2). First, we show the monotonicity of A. 
By hypothesis, /i(-) is strictly convex r —► h^r) = a(r2)r is strictly monotone. For all 
x G WliP(T), we have 

(A(x) - Aiy),x - y) = f (a (|^(t)|2) x'(t) - a fl^*)!2) ^(t)) (^(t) - i/(t)) eft 

= /' (ft'^W) - fc'(^(t))) {x'it) - y'(t)) dt > 0, 

and equality holds only when x' = y'. This proves the (strict) monotonicity of A. 
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Next we will show the demicontinuity of A. To this end, let xn 
n-:=^ x in W1,P(T). 

By passing to a subsequence if necessary, we may assume that x'^t) —► x'(t) a.e. on T. 
As a(') is continuous by hypothesis, we have that ada^Wl^nW ~^ ^^d^'WH^W 
a.e. on T. Moreover, from hypothesis H(a)(ii), we see that {a(|24|2)a4}n>i is 
bounded in Lq(T) (recall that p > 2, hence q < 2). Thus we deduce that a(|a4|2)a4 -^ 
a(\x'\2)xf in L9(r) (see, for example, Hewitt and Stromberg [4], Theorem 13.44, 
p. 207). Prom this, it follows that for every y E W1'P(T), we have 

(A(xn) - A(x), y) = f {a {\x'n{t)\*) x'n{t) - a fla^t)!2) x'{t)) dt n^? 0, 

therefore A(xn) A A{x) in W1^^)*, i.e., A is demicontinuous. 
Because A is monotone and demicontinuous, it is maximal monotone (see, for ex- 

ample, Zeidler [7], Proposition 32.7, p. 854). □ 

Now let Ai : D1 C U>{T) -► L«(r) be defined by 

Aifc) = il(a:) for all xeD1 = {xe W^T) : Afc) G L9(T)} . 

Proposition 3. A\ : Di C LP(T) —> I/9(T) is maximal monotone. 

Proof. Let J : L^(T) -+ L«(r) be defined by J(a?)(-) = |x(-)|p-2a;(-). We claim that 
it suffices to show that R(Ai + J) = Lq(T). Indeed, suppose that this surjectivity 
condition holds, and let v e LP(T), v* G Lq(T) be such that 

(Ai(s)-t;*,*-*)^ >0 (3) 

for all x e Di. Here, by (•, •), we denote the duality brackets for the pair (LP(T), 
Lq(T)). Since by hypothesis R(Ai + J) = L9(T), we can find x G A such that 
Ai(x) + J(a;) = v* + J(v). Using this in (3) above, we obtain 

(J(v) - J(x), x - v)pq > 0. 

But using the inequality mentioned at the end of Section 2, we can easily check 
that J(-) is strictly monotone. Hence x = v, and so Ai(x) = v*. This proves the 
maximality of -Ai(-). Thus we have to show that R(Ai -f J) = Lq(T). Let J = 
J
UI,P(T) (the restriction of J(.) on W^T)). Then J : W1^^) -> ^^(r)* (recall 

that I/9(T) is embedded continuously in WliP(T)*). Evidently J(-) is monotone and 
continuous, thus maximal monotone. Combining this fact with Proposition 2, we have 
that A + J : W^P(T) -► W^P(T)* is maximal monotone (see Zeidler [7], Theorem 
32.1, p. 888). Moreover, we have 

(A{x) 4- J(x),x) = (A(x),x) + (J(x),x)pq > aWx'W* + \\x\\p = c^xW^ 

where c = min{ci, 1} and || • [[i^ denotes the norm of the Sobolev space WliP(T). 

Therefore, (A + J)(-) is coercive. But a maximal monotone, coercive operator is 
surjective (see Zeidler [7], Corollary 32.35, p. 887). Thus R(A + J) = Whp(Ty. 
Therefore, given any g G Lq(T), we can find x G WliP(T) C LP(T) such that A(x) + 
J(x) = g => A{x) = g - J{x) G Lq(T) =^ A(x) = Ai{x). Hence, Ai{x) + J{x) = g. 
Because g G Lq(T) was arbitrary, we conclude that R{Ai + J) = Lq(T), and, as we 
already showed, this implies the maximal monotonicity of Ai. D 

The next two propositions give us a complete description of the range of Ai('). 
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Proposition 4. If g € R(Ai), then for some x G Di, we have (ada;'^)!2)^'^))' = 
g(t) a.e. on T and ^'(O) = rf(b) = 0. 

Proof. Since g G i?(.Ai), we have that g = Ai(x) for some x G Di. Then for every 
<l>eCiF(T)y we have 

(A^x), (j>)pq = (y, (/Op,,    hence     /   a (^(t)]2) AWV) * = /   fl(*)^(*) *    (4) 

Prom the definition of the distributional derivative and from (4), we infer that 
adx'OlVO) G W^iT) and -{a(\x,(t)\2)x,{t)y = fl(t) a.e. on T. Since W1'^!1) 
is continuously embedded in C(T), we have that a(\x'(')\2)xf(') G C(T). Exploit- 
ing the strict monotonicity of r —> a(r2)r, we obtain that #'(•) G C(T). For every 
y G W1,P(T), from Green's formula (integration by parts), we have 

f"g(t)y(t) dt = f - (a (\x'(t)\2) x'(t))' y(t) dt 
Jo Jo 

= J a{\x'{t)2\)x'{t)y'{t)dt 

- a (|x'(6)|2) X'(b)y(b) + a (^'(O)]2) x'(0)y(0). 

Using the definition of Ai, we obtain 

a (|x'(6)|2) x'(b)y(b) = a (|x'(0)|2) x'(0)y(0). (5) 

Let y 6 W1'P(T) be such that 2/(0) = y(b) = 1. We have 

a(\x'(b)\2)x'(b) = a(\x'm2)x'(0). 

Once again via the strict monotonicity of t —> a(t2)t, we obtain that ^(O) = x'(b). 
Using this in (5) and recalling that y G W1'P(T) is arbitrary, we conclude that a/(0) = 
xf(b) = 0. □ 

Remark. A byproduct of this proof is that Di C C1(T). 

Propositions. Let S = {# G L«(T) : fig^dt = 0}. T/ien i?(Ai) = 5. 

Proo/. Let p G i?(Ai). Then we can find # G JDI such that Ai(x) = ^. Taking 
y = 1 € W^T), we have 

6 

^(*) dt = (g, l)pq = (Ai, l)pg = 0, 

therefore JfJ(i4i) C 5. (6) 

Next we will show that the opposite inclusion is also true. To this end, let V = 
W1'P(T)/R (i.e., we factor out of WltP(T) the space of constant functions). Let 
p : Wl'p(T) -> R be the projection map defined by p^x) = JQ x(t) dt. The quotient 
norm on V is given by || [x] ||y = \\x —p(x)\\p + H^'Up. Our claim is that there exists 
c > 0 such that \\x — p(x)\\p < cH^Hp. Suppose that this is not the case. Then we 

can find {xn}n>i C WliP(T) such that \\xn -p(a:n)||p = 1 and ||a4||p n-::^) 0. Let 
Vn = ocn -p(xn), n > 1. Evidently {yn}n>i is bounded in W1,P(T), and because 
^^^(T) is embedded compactly in LP(T), we also have that yn 

n-^P y in LP(r). 

/ 
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Observe that /0 y(t) dt = 0. Also from the weak lower semicontinuity of the norm 
functional, we have 

||l/||p<Im||l4llp=liffi|Kllp = 0, 
therefore yf = 0, i.e. y(t) = c e R for alU G T. 

Because /0 y(t) dt = 0, we deduce that c = 0. Hence ||y||p = 0. But 

1 = \\Xn - p(Xn)\\p = \\yn\\p "-^ 0, 

a contradiction. So [a;] —> \\xf\\p is an equivalent norm on V. Next let E : V —* V* be 
the nonlinear operator defined by 

PW, m = f o {Wit)?) AtW(t) ^ with [x], [y] € V 
Jo 

where by ((•,•))» we denote the duality brackets for the dual pair of Banach spaces 
(V, V*). Clearly £'(•) is well defined. Using the fact that [x] —> \\x'\\p is an equivalent 
norm on V and arguing as in the proof of Proposition 2, we can check that E(') is 
monotone, demicontinuous, coercive, thus surjective (i.e., R(E) = V*). Let g G S and 

consider the map [x] —► /0 g(i)x(t) dt. Since /0 ^(t) rf^ = 0, we see that this map is 
well defined, linear, and continuous. Thus it belongs to V*. Because R(E) = V*, we 
infer that there exists x G W1,P(T) such that 

/ g(t)y(t) dt = [ a (Wit)]2) xf(t)t/{t) dt     for all y G W^T), 
Jo Jo 

therefore (g - A(x), y)=0 for all y G W1'^), so A(x) = g, i.e., g G i?(i4i). 
Thus we have proved that 

S C i?^). (7) 

Prom (6) and (7), we conclude that R(Ai) = S. D 

We introduce the penalty function (3 : T x R —► R defined by 

'(x-uft))*-1 if ^(t) <x, 
/?(^ x) = < 0 if - w(t) < x < u(t), 

< -(-u(t) - x)*-1     iix< -u(t). 

It is clear from this definition that the following is true: 

Proposition 6. (3{t,x) is measurable in t G T, continuous in x G R (i.e., (3 is 
a Caratheodory function), and \P(t,x)\ < ai(t) + ci|a:|p"'1 a.e. on T, with ai G 
L«(r),ci>0. 

Then we decompose /(£, x) as / = /i + /2 with /i : T x R —► R defined by 

fi(t,x) = < 
(wff(t,y))AP(t,x)     ifx>0, 
y>X 

(mpf(t9y))Vl3(t9x)     ifx<0, 

and f2(t,x) = f(t,x) - h{t,x).  Also, we set /+(£) = lim^-^oo/^ja;) and /_(£) = 
lima.__00/(*,a;). 

The next proposition establishes the properties of fi{t,x) and of the two limit 
functions /+ and /_. 
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Proposition 7. For every x G R, t —> fi(t,x) is measurable and for almost all 
t e T, x —> fi(t,x) is continuous, nondecreasing, and lim^oo /i(t,x) = /+(£), 
lima;_,_00 fi(t,x) = /-(£). So both functions /+ and /_ are measurable. 

Proof Fix x € R and let {yn}n>i be dense in the half line {y € R : x < y}. We have 

inf f(t,y)= inf' f(t,yn), 
y>x n>l 

therefore t —> infy^a; f(t,y) is measurable. 
Similarly we have that t —> sup^g, f(t,y) is measurable, and so we conclude that 

t—>fi (£, x) is measurable. 
Next let t 6 T\iV where iV C T is the Lebesgue null set outside of which /(£, •) is 

continuous (see hypothesis H(f)(ii)). Let H{x) = {y G R : x < y}. If xn —> x in R, 

then H(xn) -> JH'(X) as n —> OO where by —>, we denote the Kuratowski convergence 
of sets (see, for example, Dal Maso [2], p. 42). Prom this, we have that 5H{xn) -^ ^H{X) 

as n -^ oo where by A, we denote the epigraphical (or Y—) convergence (see Dal Maso 
[2], Proposition 4.15, p. 43) and for any C C R, 

-{■ 
.0 if x G C, 

C~Voo    ifx^C. 

G R, inf^^/ = \id[f{t,z) + Jirfa:')^) : * G R]- Using 
Proposition 6.20, p. 62 of Dal Maso [2], we have that /(£,-) + &H(xn) ^ /(*,-) + 
5if(x) as n -^ oo, so finally we can apply Theorem 7.4, p. 69 of Dal Maso [2] and 

have that mfy>Xn f(t,y) n-:=^? 'm£y>x f(t,y). This proves the continuity of x —> 
infy^a f(t,y). Similarly we establish the continuity of x —» supy < xf(t,y). So com- 
bining these facts with Proposition 6, we have that x —» (mfy>x f(t,y)) A f3(t,x) 
and x —> (sup^aj/^y)) V (3(t,x) are both continuous. Therefore, a: —► fi(t,x) 
is continuous, and it is clear that it is nondecreasing. Moreover, directly from the 
definition of fi(t,x), we see that lim^-^oo/i(t,x) = \Ymx-+00f(t,x) = /+(£) and 
lim^^-oo/i^,^) = lim^^.^/^jx) = f-(t). Therefore, t ->• /+(£), /-(t) are both 
measurable functions. □ 

Then /2(t, x) = /(t, x) — /i(t, x) is measurable in £ and for almost alH G T continu- 
ous in x (a Caratheodory function). Moreover, for almost alH G T and all |a;| > u(t), 
we have f2(t,x)x > 0. By virtue of hypothesis H(f)(iii) and Proposition 6, we can 
find /3i, #2 G Lq(T) and 71, 72 > 0 such that for almost alH G T and all x G R, we 
have 

l/i^^l^ft^+^^r1 and |/2(t,x)|</32(t)+72Np-1 

Now let Bi, B2 : LP(T) —» Lq(T) be the Nemitsky (superposition) operators cor- 
responding to the functions /1 and /2, respectively; i.e., Bi(x)(-) — /i(•,#(•)) and 
B2(x)(-) = /2(-,a:(-)). Prom Krasnoselskii's theorem, we know that i?i, B2 are con- 
tinuous and bounded (see Zeidler [7], Proposition 26.6, p. 561). Also by virtue of 
Proposition 7 and Proposition 32.44, p. 905 of Zeidler [7], we have that Bi is maximal 
monotone and 3-monotone. 

Proposition 8. If hypotheses H(a) and H(f) hold, then 

A1+B1:DlQU>{T)->L(i{T) 

is maximal monotone and boundedly inversely compact. 
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Proof. The maximal monotonicity of A\ +i?i follows from Proposition 3, the maximal 
monotonicity of Bi, the fact that Bi is defined on all of Z^T) and Theorem 32.1, p. 888 
of Zeidler [7]. Now we will show that (Ai + i?i)(-) is boundedly inversely compact. 
Let C* C L^T) and C C D>(T) be bounded sets. Let G = C n (^i + Bi)"1^*) ^ 
Lp(r). Take re G G. Then, by definition, Ai{X) + Bi(X) = w € C*. Exploiting the 
monotonicity of Bi, we have 

co||a/||£ < {A^xlx)^ < {A1[x) + B1{x)'-B1{{i),x)pq 

= (w - B1(0),x)pq < (\\w\\q + ||/?i||,)|k||p 

<(\C*\ + mq)\C\ = M<oc, 

therefore G is bounded in WliP(T). 
Because W1,P(T) is compactly embedded in I^T), we conclude that G is relatively 

compact in ^(T). Therefore, (Ai + Bi)(-) is boundedly inversely compact. □ 

Proposition 9. // hypotheses H(f) hold, then for every k>0, we can find such that 
for all x G LP(T), we have 

k\\B2(x)\\q-c{k)<(B2{x),x)pq. 

Proof We have 

(B2(x),x)pq= [ f2(t,x(t))x(t)dt 
Jo 

= f f2(t,x(t))x(t) dt+ [ /2(t,x(t))x(t) dt . 
J{\x\>u(t)} J{\x\<u(t)} 

By virtue of the fact that fofa x)\ < fait) +72klp"1 a.e. with ^ e L«(T), 72 > 0, 
we have 

/ f2(t,x(t))x(t)dt\ < f \f2(t,x(t))\ \x(t)\dt < Mi < 00 . 
I J{|a:|<u(*)} I        J{\x\<u(t)} 

Moreover, we have 

m,xmq/p < (m+K\x\^)q/p 

</?2(*)*/p+72/PMa.e. onT 

(recall that if a, c > 0 and 0 < r < 1, then (a + c)r < ar + cr; here r = £ < 1 since 

p > 2 and £ + - = 1). Also, for almost alH G T and all |a;| > u(t), we have 

/ f2(t)x(t))x(t)dt= f fo&xm !*(*)!* 

> -   / |/2(*,x(t))| (\f2(tMt))\q/P-fo(t)*'*)  dt       (With 73 =72^) 
73 J{|a:|>ti(t)} V / 

= - /      (m,xm1+q/p-mq/pm,xm) *. 
73 J{\x\>u(t)} V / /{|x|>u(t)} 

Using Young's inequality with e > 0, we obtain 
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Choose e > 0 such that 1 - eq/q > 0. We have 

/ f2(t,x(t)Mt)dt > i-l"/ (l - £) |/2(*,x(t))|« - -±-mq] dt 
J{\x\>u(t)} 73 U{\x\>u(t)}  \ Q J £pp 

= C4(e) / ^(t^xitWdt-c^WP^-ceie) [ \f2(t,xmqdt 
JO J{\x\<u(t)} 

for some 04(5:), 05(5:), C6(e:) > 0. On {|x| < u(t)}, we have \f2(t,x(t))\ < 7j(t) a.e. on 
Twith77GL9(T). So 

/{|a:|<ti(t)} 

Therefore we have 

Cft(e) / |/2(*,a(*)|a*>-C60 ejiiS. 

(B2{x)ix)pq > -c4(e)\\B2(x)\\qq - 07(e) 

for some C7(e) > 0 (recall that we have fixed e > 0 so that 1 — eq/q > 0). A new 
application of Young's inequality tells us that given fc7 > 0, we can find cgik') such 
that 

\\B2(x)\\q<^\\B2(xWq-cs(k'), 

hence 

k'\\B2(x)\\q-c8(k')<c4(s)\\B2(xWq. 

Therefore, finally, we have that for every k > 0, there exists c(k) = cs(kc±(£))/c^e) 
such that 

(B(x),x)vq>k\\B2{x)\\q-c{k) . 

□ 
4. Existence theorem 

In this section, we prove an existence theorem for problem (1). 

Definition. By a solution of (1), we mean a function x G C1(T) such that 
a{\xf(')\2)x'(-) e W^T), -{a{\x'{t)\2)x'{t)y + f(t,x(t)) = v{t) a.e. on T, and 
a-'(O) = x'(b) = 0. 

Using the auxiliary results of Section 3 and Theorem 1 in Section 2, we can prove 
the following existence theorem. 

Theorem 10. If hypotheses H(a), H(f) hold, v G Lq(T) and 
nb pb nb 

/   f-(t)dt<  /   v(t)dt<  /   U(t)dt, 
Jo Jo Jo 

then problem (1) has a solution. 

Proof. Since for almost all t G T, /i(t, •) is nondecreasing, lim^^oo fi(t, x) = f+(t) 
and lima;__00/i(t,x) = f-(t) (see Proposition 7) from the monotone convergence 
theorem, given 5 > 0, we can find n > 1 large enough such that 

pb pb pb 

/   /i(t>-n)dt< / (v{t) + h(t))dt< /  fi(t,n)dt 
Jo Jo Jo 
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for all h € Lq(T) with \\h\\q < 5.   Fix such an h.   From the continuity of x -* 

/o fi(t)X)dt and the intermediate value theorem, we deduce that there exists XQ E 
[—n, n] such that 

f{v(t) + /i(t)) eft = / /i(t, xo) eft . 

We write 

v(t) + h(t) = v(t) + h(t) -If (v(t) + h(t)) dt+\ f (v(t) + h(t)) dt 
° Jo o Jo 

= v(t) + h(t)-jiJ (v{t) + h(t))dt+^J fi{t)xo)dt-f1(t,xo) + Mt,xo). 

Let w(t) = v(t) + h(t) - I ^(v(t) + h(t)) dt+l /o A (*, so) oft - A (t, XQ). Evidently, 
w E Lq(T) and $w(t)db = 0. Thus w e i?(^i) (Proposition 5). So t; + ft = 
w + /i( •,XQ) € -R(i4i) + i?(Si). Since h e Lq(T), \\h\\q < 5 was arbitrary, we see that 
v G int(iJ(i4i) 4- R(Bi)). Apply Theorem 1 to conclude that v € int R(A1 +Bi+ B2). 
Hence there exists x G Di C C^T) such that Ai(x) + Bi(x) + ^(s) = v. Finally 
using Proposition 4, we conclude that 

- (a(\x'(t)\2)x'(t)y + f{t,x{t)) = v(t)    a.e. on T 

a/(0) = a/(6) = 0. (8) 

Thus, x(') is the desired solution of (1). □ 
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