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MEROMORPHIC SOLUTIONS OF SOME FUNCTIONAL EQUATIONS 

Walter Bergweiler, Katsuya Ishizaki, and Niro Yanagihara 

ABSTRACT. It is shown that transcendental meromorphic solutions f(z) of the 
functional equation ]C?=o aj(z)f(c^z) = Q(z) where 0 < |c| < 1 is a complex 
number and aj(Z), j = 0,1,..., n, and Q(z) are rational functions with ao(z) ^ 0, 
an(z) = 1, satisfy T(r,f) = 0((logr)2) and (logr)2 = 0{T(r,f)). Moreover, in 
the case n = 2 and Q(z) = 0, necessary and sufficient conditions for the existence 
of solutions are given. 

1. Introduction 

The functional equations of Schroder, Bottcher, and Abel have intimate relations to 
iteration theory and have been studied in detail in this context. In this note, we treat 
the functional equation 

jraj(z)f(ciz) = Q(z) (1.1) 
i=o 

where 0 < |c| < 1 is a complex number and aj(z),j = 0,1,..., n, and Q(z) are rational 
functions with ao(z) ^ 0, an(z) = 1. The equation has some similarity to the Schroder 
equation, but its study shows somewhat different aspects. We focus on the existence 
and the growth of solutions. 

Throughout this paper, we use the value distribution theory. We use standard 
notations in the Nevanlinna theory (see, e.g., [3, 6, 7]). Let f(z) be a meromorphic 
function. Here, and in the following, the word "meromorphic" means meromorphic 
in \z\ < oo. Let M(r,/), m(r,/), n(r, /), N(r,f), and T(r, /) denote the maximum 
modulus, the proximity function, the unintegrated counting function, the counting 
function, and the characteristic function of /(^), respectively. 

In this section, we state two results of the growth of meromorphic solutions of 
(1.1), which are proved in Section 2. In Section 3, we are concerned with an existence 
theorem of meromorphic solutions for the case n = 2 and Q(z) = 0 in (1.1), i.e., 

f(c2z) + a(z)f(cz) + b(z)f(z) = 0 (1.2) 

where a(z), b(z), \a\ + |6| ^ 0 are rational functions. An example is given and a 
question posed in Section 4. 

For the case n = 1, Wittich [14] treated entire solutions of the functional equation 

f(sz) = P1(z)f(z) + P0(z) (1.3) 
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where Pi(z) and Po(^) are polynomials and \s\ > 1. Wittich proved that all solutions 
f(z) of (1.3) satisfy 

logM(rJ)^^—(logr)2 

as r —> oo where m is the degree of Pi. 

Theorem 1.1. All meromorphic solutions of (1.1) satisfy T(r, /) = 0((logr)2). 

Theorem 1.2. A/Z transcendental meromorphic solutions of (1.1) satisfy 

(logr)2 = 0(T(rJ)). 

The main idea in the proofs of Theorems 1.1 and 1.2 is to compare the Nevan- 
linna functions of f(z) and f(cz).    Prom the definitions, we have M(r,f(cz)) = 
max|z|=r \f(cz)\ = maxw=|c|r \f(z)\ = M(|c|r,/) and 

-i       /»27r 1       /»27r 

m(rj(cz)) = -^    log+\f(reie)\de=-jG    log+ |/(|c|rc^+a))|c» 

= m(|c|r,/),    argc = a. 

Since the number of poles of f(z) in { \z\ < \c\r } is equal to the the number of poles 
of f(cz) in {|^| < r }, we have n(|c|r,/) = n(r,f(cz)), and in particular, n(0,/) = 
n(0, f{cz)). This implies that 

r^n(t,f)-n(0,f) N(\c\r, f) = JQ
Cr Z&LjWJldt + n(o,/)log|c|r 

n(s,f(cz))-n(0,f(cz)) 
-J Jo 

ds + n(0,/(c2;))(logr + log|c|) 
to ^ 

= iV(r, f(cz)) + n(0, f(cz)) log |c|. 

Hence, we have T(r, /(c^)) = T(|c|r, /) + 0(1). 
This estimate can be used to show that if all coefficients of (1.1) are constant, then 

(1.1) has no transcendental meromorphic solution. To do this, we assume that (1.1) 
with constant coefficients possesses a meromorphic solution f(z). From (1.1), we have 

n n 

r(r, /) < £T(r, /(c>z)) + 0(1) < ^r(|cKr, /) + 0(1) < nr(|c|r, /) + O(l); 
3=1 3=1 

hence, there exist B > 0 and R large enough such that 

logT(r, /) < logT(|c|r, /) + £,    r > R. (1.4) 

For any r > R, there exists an integer m such that 

R     <r<^. (1.5) IcI™-1 ~ m 

From (1.4) and (1.5), 

logT(r, /) < logT(|c|mr, /) + mB 

<logT(RJ) + B(^-^X+l 
Vlog^     log^ 

It follows that logT(r, /) = (B/ log A) logr+0(l). This implies that f(z) is a rational 
function. 
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2. Proofs of Theorem 1.1 and Theorem 1.2 

Proof of Theorem 1.1. Let s = 1/c. Choose R so large that Q and the aj have no 
zeros or poles in BR := {2 € C : |z| > i?}. If w G B/? and if s^w is not a pole of / for 
j = 0,1,..., n — 1, then, by (1.1), s71^ is not a pole of /. It follows by induction that 
s^w is not a pole of / for any j £ N. Let tui,..., wm be the poles of / in {z € C : R < 
\z\ < \s\nR}. Then all poles of / in BR are contained in {s^wi : j G N, Z G {1,..., rn}}. 
Prom this, it is not difficult to deduce that n(r, /) = O(logr). This implies that 

iV(r,/) = 0((logr)2). (2.1) 

To estimate m(r,/), note that it follows from (1.1) that there exists an A > 0 such 
that if r > snR, then 

M(r,/)<rA(f;M(|cPr, /) + lY 
V 7=1 ' 

This inequality is useful only if the right-hand side is finite; that is, if / has no poles 
with modulus |cpr, r = 1,..., n. Thus we fix T G [i?, |s|ni?] such that Is^l ^ T for 
all j G {1,..., n} and I G {1,..., m}. Then there is no pole of / with modulus |sp'T 
for any j G N. For k G N, we define 

Mfc=    max   M(|sP'T,/) + l. 
,7=0,1,...,fc 

It follows that 
fc-i 

M(|s|fcT, /) < (|s|fer)^ ( Y, M(ISIJ'T' /) +1 

^ j=k—n 

<\s\kATA[    Y  Mi + l) 
■j=k—n 

for A; > n and thus 

Mfe < HB*Mfc_i 

for some S > A and all A; € N. With L^ = log Mk and C = B log |s|, we deduce that 

Lk<Ck + Lk-i. 

Induction shows that 

Lk<CYi + Lo = C1^^-+LQ<Ck2 

for large fc. It follows that 

m{\s\kT,f) < \ogM{\s\kT,f) <Ck2 = C (Mfjg^iSil)2.        (2.2) 

Combining (2.1) and (2.2), we obtain 

r(r, /) = m(r, f) + N(r, f) = 0((logr)2) 

for r = \s\kT, k G N, fc —* oo. Since T(r, /) is increasing, it is now not difficult to see 
that the last equation also holds if r —► oo through any sequence of r-values. □ 



MEROMORPHIC SOLUTIONS OF SOME FUNCTIONAL EQUATIONS 251 

Proof of Theorem 1.2. As before, we put s = 1/c and we choose a large R as in the 
proof of Theorem 1.1. The arguments used there show that if / has infinitely many 
poles, then the annulus {z e C : S < \z\ < \s\nS} contains a pole of / for all S > R. 
We deduce that logr = 0(n(r,/)) and this implies that (logr)2 = 0(N(rJ)) and 
hence (logr)2 = 0(T(r,/)). 

Hence, we only need to consider the case that / has only finitely many poles and thus 
may assume without loss of generality that / is entire. We assume that \aj (z) | ~ Cj \z\di 
and \Q(z)\ ~ p\z\q as \z\ -> oo where Cj,p > 0 and dj,q e Z, j = 0,1,...,n. Let 
d = max{dj : j = 0,1,..., n} and £ = min{j : dt = d}. For i G N, we define 

Ti^MQafRtf). 

Clearly, the Ti form an increasing sequence. Since logM(r,/) is convex in logr and 
since / is transcendental, 

M(r, /) r? 

as r —► oo for each fixed a, /? G M, a > 1. This implies that 

1        oo   and    -4 —> oo (2.3) 
Ti-x T 

for each 7 > 0 as i —> 00. We write (1.1) in the form 

£-1 n 

ai(z)f{<*z) = -'Etaj(z)f(ciz)-  £ aj(z)f^z) + Q(z). 
j=0 j=£+l 

For m e N, m > 4 we choose 2 such that \z\ = |s|mi? and Tm_^ = |/(c£^)| and obtain 

aR^sl^Tm-e 
,£-1 n x 

<(l + o(l))(YtcjK
i'\8\md'Tm-j+ Yl CjR^lsr^Tm-j+pRilsro) 

^ j=0 j=£+l ' 

as m -*' 00. Here the first sum is empty if I — 0 and the second one is empty if I = n. 
Using (2.3) and the fact that dj < d for all j, we immediately obtain a contradiction 
if I = 0. We may thus assume that £ > 0 and consider the above estimate for m = k£ 
where k G N, k > 2. Using ^ < d - 1 for 0 < j < £ - 1 and dj < d for £ + 1 < j < n, 
as well as the monotonicity of the T^, we obtain 

ctRd\s\kMTik-1)£ 

<(l + o(l))(^cjR
d-1\s\k^-^Tke+ JT cjR'lsrT^^^pR^srA. 

\j=0 j=£+l ' 

It follows that 

T(fc_iK < AM'^u Hh i42r(ik-.i,^i + A3Mfc^-d) 

with positive constants A^. Now the first part of (2.3) implies that 
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and the second part of (2.3) implies that 

Az\s\M{q-d) =AM^-d)\4k-mq-d) < \T(k-i)L, 

provided k is large enough. It follows for k sufficiently large that 

T(k-i)i < 3Ai|5|~   TM- 

We put Sk = Tki and deduce that if B < £, then 

Sk > |s|B*5fc_i 

for all large k G N. An induction argument similar to the one used in the proof of 
Theorem 1.1 for Mk now implies that logSfc > Ck2 for some C > 0 and large k £ N. 
As before, we can conclude from this first that 

^^^^((^FNF-0^)^02 

for r = \s\keR, k E N, k —► oo, and then deduce again that this holds as r -> oo 
through any sequence of r-values. Using the inequality logM(r,/) < 3T(2r, /), we 
see that the last inequality also holds with logM(r, /) replaced by T(r, /). □ 

3.  Existence of meromorphic solutions 

In this section, we are concerned with an existence theorem for the functional equation 
(1.2) when a(z) = Y^k=oakzk an(l Kz) = ^2f=obeze are polynomials. We prove 

Theorem 3.1. (i) If there exists no integer p satisfying c2p + aocp+bo = 0, then (1.2) 
does not possess any transcendental meromorphic solution. 

(ii) Ifbo^O and there exists an integer p such that c?p + aocp 4- &o = 0, then (1.2) 
possesses a transcendental meromorphic solution. 

(iii) if bo = 0; then (1.2) does not possess any transcendental meromorphic solution. 

Proof. We consider a formal solution of (1.2) which is given by a series at the origin. 
Let p be an integer (negative may be possible). Set 

oo 

f(z) = J2<XnZn,    ap?0. (3.1) 

We may avoid the case where a(z) and b(z) are constants, namely we assume that 
M := max(A, B) > 0 because (1.2) does not possess a transcendental meromorphic 
solution when a(z) and b(z) are constants. Prom (1.2), 

f; anc2nzn + ( £ akz
k) ( g ancnzA + ( £ btA ( £ anzA = 0, 

n=p ^ k=0 '   ^ n=p ' ^ £=0 '   ^ n=p ^ 

that is, 
oo oo    • min(A,n-p) v oo    / min(B,n-p) v 

J^anc^z"+ "£(      J2      akan-kcn-k)zn + Y/{      E      btOn-A^ = 0. 
n—p TI=0 ^        fc=p ' n=0 ^ £=p ' 

Comparing the coefficients of ^n, we get for n = p,p + 1,..., 
min(A,n—p) min(B,n—p) 

anc2n+      E      afc^n-fec""^      J]      &€a„_€ = 0. (3.2) 
fc=0 fcO 
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Putting n = p in (3.2), we have ap(c2p+aocp+&o) = 0. This implies that |ao| + |6o| 7^ 0 
and 

c2p + aocP + 60 = 0. (3.3) 

Hence, in the case where there is no integer satisfying (3.3), we conclude that (1.2) 
has no meromorphic solution, which proves (i). 

We remark that if (1.1) possesses a local solution, then the global solution can 
be obtained by meromorphic continuation using equation (1.1). To say this in more 
detail, we denote the radius of convergence of the local solution at z = 0 by R > 0, and 
define Dm = {\z\ < i2/|c|m}, noting that Um=o ^^ = ^ First, we show that the local 
solution which exists in Do can be extended into Di by meromorphic continuation. 
In fact, we define f(z) in Di \ Do as follows: 

The rational functions aj(z)/ao(z), j = 1,... ,n, are, of course, meromorphic in Di, 
and the functions f(cPz) are also meromorphic in Di since cPz € Ab j = 1,... ,71. 
Hence, the right-hand side is defined in Di. Therefore, f(z) is meromorphic in Di 
and satisfies (1.1). Repeating this process we construct a global solution. 

Next we prove (ii). We note that if there are two integers pi, P2 satisfying (3.3), 
then we choose max(pi,p2) as a p in (3.1). If we choose ap first, then ap+i, ap+2,..., 
are determined by (3.2) recursively. In particular, for the case n > M, from (3.2) 

an(c2n + aocn + 60) + an-^c71-1 + 61) Hh • • • + an-M(aMCn-M + 6M) = 0    (3.4) 

where aj = 0, j = A + 1,..., M, if M > A and bi = 0, i = B + 1,..., M, if 
M > B. Thus an depends only on an_M5 ^n-M+i?..., c*n_i. We already have noted 
that if (1.2) possesses a local solution, in other words, the formal solution (3.1) has 
a positive convergence radius, then the global solution could be obtained by analytic 
continuation using equation (1.2). Suppose that (3.1) has no positive convergence 
radius, say limsupfc..^ \/fafcJ = 00. Put £& = maxp<^<fc <(/|a^|. Then £& —> 00 as 
k —> 00. Choose a subsequence {.o^.} such that ^^/fc^TJ = ^ and k3-^\akj-i\ < ^, 
i = 1,..., M. Since ^ —► 00 as j —> 00, from (3.4) we get 

^(M-M^-laollcl*') 

< ^"'(KHcl^-1 + |6i|) + • • • +^rM(|aM||c|^-M + \bM\), 

hence 

&.(|6o| - o(l)) < |&i| + • • • + \bM\ + o(l). 

Since 60 7^ 0, the inequality above yields a contradiction. 
Before we prove (iii), we shall outline the proof here. Assume that there exists a 

transcendental meromorphic solution f{z). Write f{z) as (3.1) in a neighborhood of 
the origin. We try to find a contradiction by showing that there exists an integer N 
such that an = 0, n > N. To do this, we divide the proof into two steps. First, we 
show that for any 77 > 0, there exists a T > 0 such that 

\5n\<(l + rj)nT,    for any n, 
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where 5n = £~nc7n an, t and 7 > 0 are constant. This will be inequality (3.6) in the 
proof. The second step is that by using the inequality above and (3.4), we show that 
for any u 

linl^^TTidcl^Tir 
where n is fixed and arbitrary, and Ci, T, and Ti are constants independent of n 
and z/, which will be numbered (3.20) in the proof.  Then we can find N such that 
5n = an = 0, when ||c|27nTi| < 1, n > N. 

Now we start the proof of (iii).   Similarly as before, we see that for large n, 
(3.4) holds. Define K to be the smallest integer such that 6^ does not vanish, i.e., 
b0 — - • • = bK-i = 0, BK 7^ 0, and set 7 = 1/(2K). Note that ao ^ 0 in this case. In 

2 
(3.4), if we put am = /?mC~7m  for any m, then 

/?nc-^
2(c2n + cnao) + • • • + /?n-K+ic-7(n-*+1) V-*+V-i) 

+ /^c-^-*) V-'V + bK) + - + Pn-MC-^n-M)2(cn-MaM + 6M) = 0. 

Dividing both sides by c~^n~K>)   and arranging as 

+ /?„_*-! (ax+ic71-*-1 + 6ic+i)^+1 + • • • + /3n-M(aMCn-M + &M)C^) 

where 

^ = 2717(7 " 1) +7^2 " 7J2 - Ji    for J = 1.2,...,K, and 
^=n(27J-27-l)+7(ir2-.72)    for j = K + 1,^ + 2,... ,M. 

Further, we put -bK/(aocK/2) = tK and ^m = tm5m for all m. Then we get 

where 

8n - 8n-K H $n = -^""(ri^-i -\ h VMSTI-M) 
do 

.. - ^L.rJPo-K/^ . ==1  9 ry- 

(3.5) 

r7- = foe" J' + bi)ra,-K/2      • = 

CLoP 
\    j = K + l,K + 2,...,M. 

We see that |rj| < i?j for some constants i?j, and note that Rj are independent of n. 
In fact, we have 

hi = 
a3   c2n7(j-l)+7^2-7J2-J-^/2 

a0P 
|c|7K2-7j2-j-iir/2 

for j = 1,2,...,K, and 

\r\ — {djJ1   i+6i)cn(2-Y.?-2-y-l)+7(/i '2-j2)-ii:/2 ^(N + N)|r| 
-     |«o||*K    ' ' \rj\ - a0P 

for j = if + 1, K + 2,..., M. For the sake of brevity, we put Ri H h i?M = L. We 
first assert that for any rj > 0, there exists T > 0 such that for any n 

\Sn\<(l + v)nT. (3.6) 
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(3.7) 

(3.8) 

In fact, for any fixed rf, we find an no such that for any m > no 

1 + \c\2^mL      , 
1 - |c|ro/|ao| 

We choose T > 0 large enough such that, for m < no, 

(1 + r))m -   ' 

i.e., (3.6) holds for m < no- We suppose that (3.6) holds for all m < n — 1 where 
n - 1 > no- Then, from (3.5) and (3.8), 

|*»|(1 - g}) < |*n(l + g)| < |*„_K| +C2^|r1<J„_1 + • • • + rMSn-M\ 

< K-KI + |c|27n(l + vT^TL < (1 + ^"-^(l + |c|2TnL). 

Thus, by (3.7), 

N<(i+,r-1T(^||^f)<(i+,rT. 

This implies that (3.6) holds for all n, hence the assertion follows.   We write the 
right-hand side of (3.5) simply as 5n, so that 

do 

and 

(3.9) 

(3.10) 

(3.11) 

We assert that linin-^oo Sn = 0. In fact, if we assume the contrary, then there exists 
a subsequence {n^} such that \6nk\ > e > 0. Recalling the definition of 5n, namely 

2 

Sn = c7n an/t
n

1 we have 

|Sn|<|c|^(l+f?)nrL. 

Using (3.9), we get 
-        771 771 

-5n_K + 5n+mK = 2J ^^    fin+JK + X/ '^ri+i^* 
GO 

nVKJ = 
tnfc 

C7    * 
> ,    '    "V^   —^ oo (as k —> oo). 

This gives l/limsupn_>00 \/|an| < limfc_>oo 1/ n\/lanJ = 0, which implies that the 
convergence radius is zero, a contradiction. Hence, letting m —> oo in (3.11), we get 

-5n-K = X; ^"Sn+jK + Y) Sn+jK. (3.12) 

For simplicity, we denote by Ei and S2 the first and the second sum in the right-hand 
side of (3.12), respectively. Prom (3.6) and (3.10), 

1     w (lc|(l + t?))' 
lao| 

TY,(\cKl + r)))jK, (3.13) 
3=0 '   U| j=0 

00 00 

is2| <J2\sn+jK\ < (\c\^(i+V)rTLY/(\c\2'i(i+v))iK- 
3=0 j=0 

(3.14) 
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Put ci := |c|27(l+r7) > |c|(l+r7). Then, for a sufficiently small rj > 0, we may assume 
that ci < 1. Prom (3.11), (3.13), and (3.14), 

n        00 00 i i 

\sn.K\ < pxi + isy < gi^g^' + c"Tig^ = C
"
T
(M 

+ L) (rr^)- 

Set (jk\ + WKT^P?) 
= Tl- Then we have \sn-K\ < tfTTi. Thus, we see that 

|*n| < #TTi. (3-15) 

Using (3.15) instead of (3.6), we estimate Sn, Si : 

\Sn\< IcI^cf-^TTiL, (3.16) 
1       00 I   In  n 00 

|Si| < j^-r Y \c\n+*K<%+iKTT1 < l^-^TT1 Y(|c|ci)^. (3.17) 

Prom (3.16), 

oo oo 

|S2| < J2 \SnHK\ < Icl^cf "^TTiL j;(|c|^ci)^. (3.18) 
j=0 j=0 

Combining (3.12), (3.17), and (3.18), we have 

c\nc 

\<*o\ 
\6n-K\ < |Ei| + |Ea| < ^TT1Yf4

K + \c\^(rMTT1L^24K 

j=o j=o 

Thus, we obtain 

|*n| < \c\^nc^TT^ (3.19) 

Similarly, we get \5n\ < \c\4/ync^TT^ by using (3.19) to estimate 5n, Ei, and S2. 
Repeating this process, we obtain for any 1/ e N : 

\8n\ < \c\^nuc^TTi;+1 = c^TTidcl^Ti)^. (3.20) 

We now choose N such that |c|27nTi < 1 for n > N. Letting 1/ -> 00 in (3.20) for 
n > iV, we see that 5n = 0 for n > N. This implies that an = 0 for n > iV, so the 
solution is a rational function, a contradiction. □ 
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4. An example and a question 

We consider the specific equation 

f(c2z) - zf{cz) - bf(z) = 0,    0 < |c| < 1, (4.1) 

where b is a constant satisfying cp — b = 0 for some integer p. By Theorem 3.1, (4.1) 
possesses a meromorphic solution f(z). If we write f(z) in the neighborhood of the 
origin as (3.1), then from (3.3) for any n > p, we have 

an(c2n -b)- an^cn-1 = 0. (4.2) 

Hence, we see that an_i/an = (c2n—^/c71"1 —> oo, which implies that the convergence 
radius of (3.1) is oo. Further, from (4.2), we obtain 

Ot-n —  -i-m /  o*.       , \ ^D — 
nLp+i^ - b)p  nLp+i((c2)fe(^)+1) ns-i *' 

Since Y^kLp \c2\k < 00> we see ^at nfcLp+i((c2)fc(;^) +1) converges to a finite value. 
Hence, using cp = b, we find that 

|an|~#|cr(n-1)/2-2np (4.3) 

as n —> oo, for a positive constant if. Let 

//(r,/) = max|a:nr
n| 

n 

be the maximum term.  A computation shows that the maximum of the right-hand 
side of (4.3) is attained for 

n = _^ + 0(l), 
-log|c| 

and this leads to 

This implies that 

logrtr,/)-   ^^ 

T{r,f)~]QgM(r,f) 

-2iog|cr 

(logr)2 

-21og|c|' 

see, e.g., Jank and Volkman [5, Satz 4.6], or Hayman [4, §4]. 
Wittich [14] proved that transcendental entire solutions of (1.3) are hypertran- 

scendental. Ritt [8] proved that meromorphic solutions of the Schroder equation 
f(cz) = R(f(z)) where R(z) is a rational function in z are hypertranscendental, except 
for certain cases where they are given in terms of exponential, trigonometric, or elliptic 
functions. As Rubel posed in [9, 10], there is an open problem on hypertranscendency 
for the equation f(Xz) = R(z, f(z)) where A is a complex constant and R(z, f) is a 
rational function in z and /. We mention other articles or expositions for the study of 
hypertranscendency of solutions of some functional equations, for instance, Becker and 
Bergweiler [1, 2], Laine [6, Chapter 14], Takano [11], and Yanagihara [12, 13]. Finally 
we pose a question : What can we say about the hypertranscendency for solutions of 
(i.i)? 
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