
Methods and Applications of Analysis © 1998 International Press 
5 (2) 1998, pp. 157-168 ISSN 1073-2772 

LIQUID HAMMER FOR THE DE-ENERGIZED RADIAL INFLOW TURBINE 
GENERATOR 

Donald R. Smith and Hans £. Kimmel 

ABSTRACT. Pressure pulses due to liquid hammer effects are studied for a model 
of the hydraulic behavior of radial inflow turbines following a power failure dur- 
ing operation. The relevant system of nonlinear differential equations has distinct 
properties and is of interest in its own right. It is shown that periodic pulsations 
do not occur for the present time-dependent, spatial-independent model which 
omits periodic disturbing terms. A pressure pulse occurs and decays quickly as 
the state of the system surges toward an equilibrium curve which is an attractor 
in the phase plane. In addition to the nonexistence of periodic pulsations, the 
path of motion and the location of the limiting state in the phase plane are de- 
termined along with the magnitude of the pressure change for the liquid hammer, 
and a quantitative estimate is given for the pulse decay. The study employs a 
combination of perturbation techniques and phase plane analysis. 

1. Introduction 

The hydraulic behavior of turbines with variable speed is governed by the conservation 
or balance laws of mass, energy, and momentum. We employ the common assumption 
that the mass flows across the inlet and the outlet of the turbine are the same, so 
conservation of mass is automatically satisfied. We use the term "hydraulic" in a 
generalized sense to refer to any suitable incompressible (or almost incompressible) 
liquid such as water but also to include other liquids such as oil and liquid natural 
gas. The present work was initiated in relation to cryogenic pumps for liquid natural 
gas. 

Typical turbines contain many irregular shaped internal channels with variable 
curved surfaces and variable cross sections. For this reason, the mathematical study 
of the flow of incompressible fluids through turbines is difficult and is still in its infancy 
as compared to such well-studied problems as the flow of compressible fluids through 
nozzles or across airfoils. A simplified black box model for the flow of incompressible 
liquids through turbines is considered here involving only the average rotation speed 
of the turbine rotor and the average liquid flow rate through the turbine. In this case, 
conservation of angular momentum and conservation of energy lead to the nonlinear 
system (see Kimmel [l]-[3]) 
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for real-valued functions x and y (of time t) which represent, respectively, the rotation 
speed of the turbine rotor and the liquid flow rate. The constant e > 0 is the (scaled) 
inertia of the turbine rotor, and a and /3 are effective kinetic energy coefficients, 
respectively, for the rotating turbine and for the liquid flow (cf. (1.10) below). The 
expression y(y — Xx) represents the (scaled) torque due to the turbine shaft where 
the constant A is a coefficient of shaft torque. The constant 7 is the average of 
the upstream and downstream values of the Joukowski coefficient for the differential 
pressure or hydraulic head H. In this regard, we note that conservation of linear 
momentum follows automatically from the stated two conservation laws of angular 
momentum and energy along with Joukowski's constitutive equation H = —2^1/ (cf. 
Stepanoff [6, p.435]). The constants e, /?, a, A, and 7 all have positive values, and e is 
small for typical radial inflow turbines for common liquids. 

The quantity T(x) represents the (scaled) applied torque due to the generator, and 
it is assumed to be modeled by a suitable specified function of the turbine speed x. 
For example, in the case of a linear generator model, one uses T = Tc + /J>(x — xs) 
where the constant x3 is the synchronous speed of the generator, Tc is the constant 
value of the shaft torque at the synchronous speed, and the constant /J, is a measure 
of the rate of change of generator torque with respect to speed (at the synchronous 
speed). 

The generator torque function T(x) = T(x, t) also may depend explicitly on certain 
switching times which are values of t for which the form of the torque function may 
change abruptly. We consider the case of a single switching time to and take the 
applied generator torque as 

T{z) = lT-{x)   f0r   *-*0' (1.2) 
1^0 for   t > to, 

for a given nonzero function Tgen- The time to corresponds to a power failure at 
which time the generator is de-energized and the previously nonzero generator torque 
Tgen is suddenly switched to zero. The time to is called the disconnect time since the 
generator may be considered to be disconnected from the turbine at this time. 

During steady-state energized operation prior to the disconnect time, the driven 
turbine is assumed to operate at a constant equilibrium state 

x(t) = XQ    and   y(t) = yo    for       t < to (1.3) 

for suitable fixed constants #0 and yo which are the coordinates of the equilibrium state 
in the (x^y) phase plane. The equilibrium state (xo,yo) corresponds to a balance of 
(the generally opposing) shaft and generator torques, so the point (XQ, yo) in the phase 
plane satisfies the equilibrium equation (see (1.1), (1.2)) 

yoiVO ~ AXQ) = TgenO&o) (1.4) 

where the generator torque is nonzero prior to the disconnect time (during the powered 
or energized operation), 

TgenOzo) # 0. (1.5) 

The constant equilibrium operating state (xo,yo) of (1.3)-(1.5) is said to be a rated 
state for the energized turbine. For the radial inflow turbine, we make the customary 
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assumption that the rated state is in the first quadrant in the phase plane, 

xo > 0       and       yo>0 (1.6) 

where there is no loss in allowing #o to vanish as long as the liquid flow rate is positive, 
yo > 0. In practice, for the radial inflow1 turbine, one sometimes also stipulates the 
condition yo > XXQ in addition to (1.6), but here we consider the three broader cases 
indicated by (3.2)-(3.4) below. 

We consider a power failure corresponding to a disconnection of the generator from 
the turbine at the time to as in (1.2). Following the disconnect time, the system begins 
to move away from the previous rated equilibrium state (xo,yo) under the influence 
of a modified system (1.1) which now becomes 

dx 
^ = 2/(2/-Ax), 

dy        axy(y - \x) 
e-rr = ^-        for   t > to, 

dt py + i 

(1.7) 

subject to the initial conditions 

x = #0   and   y = yo   at       t = to (1.8) 

where the initial state (#0,2/0) satisfies the conditions of (1.4)-(1.6). (The quantities 
x(t) and y(t) are assumed to be continuous across the disconnect time.) 

The system (1.7) (or (1.1)) can be solved explicitly by quadrature. For example, 
the flow rate y = y(t) can be studied for (1.7)-(1.8) with the relation 

t = to + T(y(t))       for       t > to 

where the function T = T(y) is given as 

T(y)-=-e(y        (/3s + 7)rfS 

with N(s) defined as 

N(s) := ^ ylaffi + lPto+iP-tfis + i)* (1.9) 

for values of s near yo. The speed x{t) is obtained explicitly from the flow value 2/(t), 
and it is delivered by the function M evaluated at s = y(t) as 

x{t)=N{y{t)) 

where the positive square root is used in (1.9) in accordance with (1.6). This solution 
algorithm makes use of the first integral (2.3) below. We do not pursue this approach 
here; in the following, we give a direct study of the relevant problem based on a 
combination of phase plane analysis and perturbation techniques. 

The differential pressure or hydraulic head from the inlet to the outlet of the turbine 
is denoted as H. It represents the potential energy associated with the contact or stress 
forces in the fluid. Conservation of energy requires that this hydraulic head potential 
energy must balance the sum of the kinetic energies of the flow and of the rotating 
turbine with 

H = ax2 + 0y2. (1.10) 

■'■The case yo < 0 corresponds to a radial outflow turbine which is known to have low efficiency 
and is not considered here. 
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A pressure pulse or pressure jump known as a liquid hammer is generated in the 
fluid by the power failure at time t = to, and it is important to predict the magnitude 
and decay properties of this hammer. One also wishes to know whether such pressure 
pulses due to a hammer may or may not persist in a periodic fashion. 

In Section 2, we give a first (energy) integral for the system (1.1) (including (1.7)), 
and we show that periodic pressure pulsations do not occur for the present model in 
the case of a power failure. In Section 3, we show that the equilibrium line 

y = Xx (1.11) 

is an attractorfoi (1.7) in the first quadrant of the phase plane, which means that every 
solution moves asymptotically toward a (solution dependent) limiting point (x*,y*) 
located on the line (1.11). We obtain explicit formulas for the coordinates of this 
limiting point. For small e, the state of the system surges rapidly from the initial 
state (xo,yo) to close proximity of the limiting state (x*,y*) within a small time 
period that is proportional to e. The pressure change due to the pulse is denoted as 
AH and is given as 

AH = a[(x*)2-xl}+l3[(y*)*-y2
0). (1.12) 

An explicit formula is given for AH in terms of the data in Section 3 where it is 
shown that AH is proportional to the difference yo — y* between the rated value and 
the limiting value of the liquid flow rate, with the constant of proportionality given 
by the negative of twice Joukowski's coefficient of differential pressure. The solutions 
of the systems (1.1) or (1.7) depend on the scaled time variable t/e. Quantitative 
error estimates are given in Section 4 which show that the pressure pulse decays 
exponentially fast with a time constant proportional to e. 

2. The energy integral 

Assuming that the rotation speed x = x(t) and the liquid flow rate y = y(i) are 
continuously differentiable during a period of operation of the turbine, the following 
first integral or energy relation (2.1) is obtained directly from (1.1). 

Theorem 1. The rotation speed x = x(i) and the flow rate y = y(i) for the turbine 
system (1.1) satisfy 

afix2 + (f3y + 7)2 = constant (2.1) 

during any time interval for which the turbine undergoes a smooth operation, where 
the constant on the right-hand side of (2.1) can be evaluated as 

constant = a/fo? + (J3yi + 7)2 (2.2) 

with x\ and yi taken to be the values of the rotation speed and flow at any fixed instant 
during the operation of the turbine. 

Proof. Upon differentiation of the expression a/3x(t)2 + (/3y(t) + 7)2, with (1.1), one 
finds directly the result 

±[af3x(t)2 + (l3y(t)+1f} = 0 

for all t during the flow, from which the stated result follows immediately. □ 



LIQUID HAMMER FOR RADIAL TURBINE GENERATOR 161 

FIGURE 1 

For any fixed positive values of a and /3, the energy equation (2.1) characterizes 
an ellipse in the (z, y) phase plane for each specified positive value of the constant on 
the right-hand side of (2.1). There is a unique ellipse (2.1) passing through each point 
in the phase plane, with constant given by (2.2) as indicated in Figure 1. Theorem 1 
states that each solution of (1.1) will move along the appropriate ellipse (2.1) in the 
phase plane during the operation of the turbine—provided the state of the system is 
not forced to jump or switch from one ellipse to another by an externally imposed 
change in (or addition or modification to) any of the model properties. 

For the power failure case, we have 

Theorem 2. For the initial value problem (1.7) and (1.8), the solution functions 
x = x(t) and y = y(t) satisfy 

a/3x2 + (J3y + 7)2 = a/fog + (fiyo + 7)2 (2.3) 

fort>to. 

Proof (2.3) follows directly from Theorem 1 and the initial conditions (1.8). □ 

Theorem 2 implies directly the following important result on the nonexistence of 
periodic solutions. 

Theorem 3. The system of differential equations (1.7) has no nontrivial (i.e., non- 
constant) periodic solutions. 

Proof. A nonconstant periodic solution must follow a path in the phase plane that re- 
turns to its initial state after each period. The solution path also must coincide with 
a portion (or all) of the appropriate ellipse (2.1) or (2.3). Such a periodic solution 
cannot oscillate back and forth between two distinct points along a segment of the 
ellipse (without making a complete traversal of the ellipse) because otherwise there 
would be points on this segment for which the solution would have different (oppo- 
site) signs for x and for y at the same point with the motion reversed, coming and 
going in different directions. But this would contradict the fact that the system (1.7) 
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FIGURE 2 

determines unique values for x and y at each point in the phase plane. Hence any- 
such nontrivial periodic solution must correspond to (successive) complete traversals 
around the appropriate ellipse (2.1) with no retracements. 

We now show that no such "complete traversal" solution can occur. To this end, 
note that every ellipse (2.1) intersects the line /3y+^f = 0 at a point (a:, y) in the fourth 
quadrant with x > 0, y < 0. However, in the fourth quadrant, there holds y — Xx < 0, 
and then 

—axy(y — Xx) < 0       for all    (rr, y)    in the fourth quadrant (2.4) 

where x > 0 and y < 0. It follows from (2.4) and the second equation of (1.7) that, in 
the fourth quadrant, there holds 

f y < 0 for y > -7//?, 

\y > 0 for y < -7//?. 

That is, in the fourth quadrant, every solution moves along the appropriate ellipse 
toward the line y — —/?/7, both from above and from below this line, as indicated in 
Figure 2. Hence no solution can cross this line y = —/?/7, and no solution can traverse 
its ellipse completely without retracement. □ 

3. The attracting equilibrium curve 

The line y = Xx is a line of equilibrium points for (1.7), which means that any point 
(#(b 2/o) on this line in the phase plane is a fixed point solution. That is, the constant 
functions 

x(t) = XQ   and   y(t) = yo    for all t 

provide solutions for (1.7) if 

2/o = XXQ. 

(3.1) 

(3.2) 
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y =X x 

FIGURE 3 

In this case not only is the generator torque zero (disconnected power), but also there 
is no load because the shaft torque y(y — Xx) is also zero.2 

We consider initial states in the first quadrant. In addition to (3.2), there are two 
other possibilities, namely 

and 

2/o > AXQ 

2/o < Azo 

where in both cases we assume3 

XQ > 0   and   yo > 0. 

The differential equations of (1.7) yield directly 

x(to) > 0   and   y(^o) < 0   h* the case (3.3), 

and 

x(to) < 0   and   y(to) > 0   in the case (3.4). 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

In the first quadrant of the phase plane, with increasing t, the system moves "down" 
along the ellipse (2.1)-(2.2) toward the line y = Xx in the case (3.3), while the system 
moves "up" along the ellipse toward y = Xx in the other case (3.4), as indicated in 
Figure 3. 

2The shaft torque is zero also for y = 0, so the line y = 0 in the phase plane is also a line of 
equilibrium points for (1.7). These latter equilibrium points are of no particular importance in the 
case considered here with the initial state taken to be in the first quadrant. 

3The case XQ = 0 also can be included provided yo > 0 holds. The cc-axis, y = 0, also consists 
of equilibrium points for (1.7), but such equilibrium points (xo>0) are unstable for XQ ^ 0 and are 
excluded by (1.6). 
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A routine calculation shows that the intersection point (#*, y*) of the line y—Xx = 0 
and the ellipse (2.3) in the first quadrant has coordinates 

a?  - x 1*0,2/0) - ^j^ -,      (3a8) 

V* = y*(xo,yo) = Arr*(a:o,2/o). 

In the following we also use the identity 

dt 
x(t) _aPx(t)2 + (py(t)+'r) 

■y(tMt)-Xx(t)], (3.9) 
[Py(t)+7\ (Pv(t)+'Y)* 

which can be checked by direct differentiation on the left-hand side of (3.9) using the 
equations of (1.7). 

Theorem 4. The equilibrium line y = Xx is an attractor in the first quadrant for 
the system (1.7). For initial states (#0,2/0) in the first quadrant, the solution state 
(x(t),y(t)) for the initial value problem (1.7)-(1.8) moves along the ellipse (2.3) to- 
ward the limiting point (3.8) located at the point of intersection of the ellipse and the 
attracting line y = Xx. In the case yo = XXQ, the solution state is constant and coin- 
cides with the limiting state x = XQ = x* and y = y0 = y*. Otherwise (if yo ^ XXQ) 

the solution state approaches the limiting point (x*,y*) asymptotically along the ellipse 
(2.3), but the state of the system never arrives at this limiting point in any finite time. 
Moreover, 

[y(t) - Xx(t)] • [yo - XXQ] > 0 for all t>to       if      yo ± M), (3.10) 

so the sign of y(t) — Xx(t) is invariant and coincides always with the initial sign of 
yo — XXQ. Finally, ifyo > XXQ, then 

axo      .    ax(t)           ax* 
— < ——— <         and 
pyo + j- Py(t) + 7 - /V + '7 (3.11) 

XQ < x(t) <x*,    y* < y(t) < yo     for all t>to 

while ifyo < XXQ, then 

ax* ax(t) axo 
T. "^ T.—rr ^ ~z         ana 
Py*+j- Py(t) + 7 - Pyo + 7 (3.12) 

x* < x(t) < XQ,    yo < y(t) < y*     for all t>to 

Proof. The standard uniqueness theorem for the initial value problem is used several 
times in the following discussion. First, the case yo = XXQ is trivial since the constant 
state (3.1) is a solution (hence the only solution) of (1.7)-(1.8) in this case. 

If the initial state in the first quadrant satisfies yo - XXQ > 0, then (2.3) and (3.6) 
imply that the solution moves along the ellipse initially towards the limiting point (3.8) 
on the line y — Xx = 0. The limiting point (3.8) is itself a constant equilibrium solution 
of the system, so the uniqueness theorem guarantees that the solution point beginning 
at (xo,2/o) 7^ (#*,2/*) never arrives at the limiting point in finite time in this case. 
Moreover, in this case, the differential equations of (1.7) guarantee that the solution 
satisfies x > 0 and y < 0 for all t > to, so the solution continues to move toward the 
limiting point which is the nearest equilibrium point (in the direction of motion for the 
system) on the ellipse. It follows with the uniqueness theorem that y(t) — Xx(i) > 0 
for t > to holds, which proves the validity of (3.10) in this case. The results of (3.11) 
for ax/((ly + i) follow from (3.9) since (3.9) and (3.10) imply that x(t)/(/3y(t)+j) is 
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a strictly increasing function of t in the present case with t/o — AXQ > 0. The results 
of (3.11) for x(t) and y(i) follow directly from (1.7) and (3.10). This completes the 
proof of the theorem in the case (3.3), and similar arguments handle the other case 
(3.4). □ 

According to (1.12), the change AH in the hydraulic head due to the liquid hammer 
appears to depend quadratically on the coordinates of the rated and limiting points 
in the phase plane. However, upon inserting (3.8) into (1.12), a routine calculation 
shows that this pressure change actually depends linearly on the difference between 
the liquid flow rates at the rated state and at the limiting state, with 

AH = -2T[y*-yo}, (3.13) 

which is in agreement with Joukowski's relation (d/dt)H = —2jy. In particular, 
AH = 0 holds if and only if either 7 = 0 or yo = XXQ (with y* = yo). 

The (scaled) inertia e of the turbine rotor is small for typical turbines as considered 
here. In these cases, the system (1.7) is singularly perturbed, and it is shown in 
Section 4 that the solution point (x(t),y(t)) moves quickly to a close proximity of 
the appropriate limiting point (x*,2/*) on the equilibrium line. The limiting point 
is itself a constant state fixed point solution of the system (1.7). As noted earlier, it 
follows from the standard uniqueness theorem for ODE initial value problems that the 
solution points (a;(t),y(t)) corresponding to the cases (3.3) and (3.4) never actually 
arrive at the limiting point (#*, y*) in any finite time in an exact mathematical sense. 
However, the system moves quickly to very close proximity of the limiting point when 
e is small, so that, in a practical sense, the state of the system can be considered to 
arrive essentially at the equilibrium limiting point in a short time that is proportional 
to the inertia e. 

4. Pulse decay 

When we wish to emphasize the dependence of the solution on the initial state (XQ, yo) 
for the initial value problem (1.7)-(1.8), we denote the solution functions as 

x(t) = x(t] XQ,yo)   and   y(t) = y(t; xo, yo)- (4.1) 

The following theorem, which gives estimates on the differences x(t;xo^yo) — x* and 
y(t] #0, yo) — y* between the solution functions and the coordinates of the correspond- 
ing limiting equilibrium point (a;*,?/*), is proved using techniques from perturbation 
theory (cf. Smith [5]). 

The linearization of (1.7) about the limiting equilibrium point (x*, y*) has one 
negative eigenvalue and one zero eigenvalue, so (#*, y*) is not a hyperbolic equilibrium 
point for (1.7). A center manifold for (x*,y*) is the attractor line y = Xx > 0 
(consisting itself solely of equilibrium points), while the stable manifold for (x*,?/*) 
is the portion of the ellipse (2.3) lying in the upper half-plane and passing through 
(a;*,2/*); cf. Perko [4]. 

Theorem 5. Assume that the initial state (xo,yo) lies in the first quadrant (so that 
(3.5) holds) with yo ^ XXQ, and assume that the parameters e, a, (3, 7, and A appearing 
in the system (1.7) are all positive.   Then the solution functions (4.1) for the initial 
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x(t)-x 

FIGURE 4 

for t > to, (4.2) 

value problem (1.7)-(1.8) satisfy the estimates 

\x(t\ xo, »>) - x*| < £ • \yo -\xo\- e-**-**"', 

\y(t; xo, yo)-y*\<V' \yo - Xxo\ • e-^-^6 

for positive constants £ and rj and for a positive decay constant K that may be given as 

axo 
- -tAjy      ij yo > AXO, 

(4.3) 0 < K := < 
'(^+A)2/* i/2/0>Aa;o' 

I      GtX* 
^^r^; + A)2/o   ifyo<Xx(h 

where the limiting values x* = a;*(a:o,2/o) a^c? 2/* = y*(xo,yo) are given by (3.8), and 
where the positive constants £ and rj may be taken as 

£ = -r-    and   rj = 1. 
A 

(4.4) 

Tfte quantity \yo — Xxo\ appearing as a factor on the right-hand side of the estimates 
0/(4.2) may be replaced with |T^eri(a;o)/2/o| as in (1-4). 

Before giving the proof of Theorem 5 we note that the estimates of (4.2) imply that 
the functions x(t) and y(t) decay rapidly to their constant limiting values x* and y* 
for small e > 0 and t > to. Indeed, 

so (4.2) implies 

r 

poo 

/    e-rt-Wdt = -, 
Jto K 

\x(t)-x*\dt<^lyo-Xxol.e 

along with an analogous result for y(t). Hence, for t > to, the area between the graphs 
of x(t) and x* (or the area between y(t) and y*) is small, of order e, as indicated in 
Figure 4 for x(t). 
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Proof of Theorem 5. For brevity, introduce the difference functions X and Y defined 
as 

(4.5) 
X(t) = X(t\ so, tfo) := »(*; ^0,1/o) - »*> 

y(t) = Yfax^yo) := y(t;xo,yo) - y*, 

with z = z* + X and 2/ = y* + y and where x* = x*{xo,yo) and y* = y*(x(hyo) 
are given by (3.8). Insert (4.5) into (1.7) and use the relation y* = \x* to find the 
differential equations 

e^=y(t)(Y-XX), 

gdr _    ax(t)y(t)      _ ^ 

for t > to, 

dt /3y(*)+7 

X = XQ - x*   and   Y = yo - y*   at   t = to. 

(4.6) 

(4.7) 

Multiply the first equation of (4.6) by A and subtract the resulting equation from 
the second equation of (4.6) to find 

&-*> — 
ax(t) 

j9|/(i) + 7 
+ X y{t)(Y-XX)   for   t > to, 

subject to the initial condition 

Y - XX = 3/0 - Aaio   at   * = *o> 

(4.8) 

(4.9) 

where (4.7) has been used along with the relation y* = \x*. The equations (4.8) and 
(4.9) yield directly the equivalent integral relation 

Y(t)-\X(t) =e-ift*oA(s)ds>Q   for   t>tQ    (with yo _ Xxo ^ 0) (4JLo) 
yo - A:ro 

for the function Y - \X where the function A(t) (which depends on the considered 
solution functions x(t) and 2/(t)) is given as 

■^-(si^+*><'> fo' (£'°- (411) 

We first consider the case (3.3) with y^ - Axo > 0. Then Theorem 4 leads to the 
inequality 

/_^      \ /   a^ + A\     (4^)^   for (412) 

V^(*)+7       / V/32/0+7       / 

which with (4.11) gives -\A{$) < -n/e < 0 for t > to. This last inequality for A(t) 
can be integrated to yield 

-- [ A(s)ds<-K'(t-to)/e   for   t > to, (4.13) 
6 Jto 

and then the monotonicity of the exponential function along with (4.12), (4.9), and 
(4.10) yield 

Y(t)-\X(t)   =Y(t)-\X(t)^e_^_t0)/t    for   ^^ (414) 

yo - Aa;o 2/o - Aa:o 
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in the present case yo > XXQ. A similar analysis yields this same result (4.13) in the 
other case yo < AXQ with the appropriate value of K given by (4.3). 

If yo > AXQ, then by Theorem 4 Y > 0 and X < 0 holds, from which |JC| = -X < 
X-^Y - XX] = X-^Y - XX\ and |r| = Y < Y - XX = \Y - \X\. These inequalities, 
along with (4.13), yield the stated results of (4.2)-(4.4) in the case yo > AXQ. In 
the other case yo < AXQ, by Theorem 4 Y < 0 and X > 0 holds, from which |-X"| = 
X < X-^-Y + AX] = A-1^ - XX\ and \Y\ =-Y < XX-Y = \Y - XX\. These 
inequalities with (4.13) yield (4.2)-(4.4) if yo < AZQ, and this completes the proof of 
the estimates (4.2) with the constants £ and 77 given as in (4.4). □ 

Note that the analysis also yields useful results if the initial state is in the second 
quadrant of the phase plane. 

Estimates of the form (4.2) follow from general considerations related to the Center 
Manifold Theorem (cf. Perko [4]), but the present proof is convenient to provide 
explicit constants such as those of (4.3) and (4.4). 

Acknowledgments. We thank a referee for helpful comments on an earlier version of 
this paper. 
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