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A SIMPLE PROOF OF AN AOMOTO-TYPE EXTENSION OF 
GUSTAFSON'S ASKEY-WILSON SELBERG ^-INTEGRAL 

Kevin W. J. Kadell 

ABSTRACT. Selberg has given an important multivariable beta integral which is 
related to constant term identities associated with root systems, multivariate sta- 
tistical analysis, the energy levels of complex physical systems, and other topics. 
Aomoto and Anderson have given additional proofs which have been used by many 
workers to extend Selberg's integral and give constant term identities associated 
with root systems. Gustafson evaluated several Selberg-type integrals which ex- 
tend certain beta integrals including the Askey-Wilson integral. We give a simple 
proof of an Aomoto-type extension of a constant term formulation of Gustafson's 
Askey-Wilson Selberg g-integral. We require an elementary algebraic result which 
we call the ^-transportation theory for the root system BCn and which is the core 
of a more complex proof modeled on Aomoto's argument. 

1. Introduction and summary 

Selberg [28] has given an important multivariable beta integral which is related to 
constant term identities associated with root systems, multivariate statistical analysis, 
the energy levels of complex physical systems, and other topics. Morris [26] and 
Macdonald [21] gave a basic conjecture whose proof by many authors has led to an 
ongoing development of orthogonal polynomials associated with root systems. See 
Richards [27], Stanley [29], Kadell [20], and Macdonald [22, Ch. VI; 23] who gives 
many references to the current work of Opdam, Heckman, Cherednik, and others. 
The Wishart distribution of the eigenvalues of the variance-covariance matrix and 
the zonal polynomials are related to the case k = 1/2 where the beta distribution is 
replaced by the limiting normal distribution; see Wishart [31] and Wilks [30, Ch. 18]. 
Dyson [9] introduced the connection with the energy levels of complex physical systems 
and Selberg-type integrals around the unit circle; see also Mehta and Dyson [25] and 
Mehta [24]. See Askey [6] for an extended discussion of these and other topics related 
to Selberg's integral. 

Aomoto [5] and Anderson [1, 2] have given additional proofs of Selberg's integral 
which have been used by many workers to extend Selberg's integral and give constant 
term identities associated with root systems. 

Let n, fc, and m be integers with n > 1, k > 0, and 0 < m < n. Let Re(a;) > 0 and 
Re(2/) > 0. We omit m when m = 0, and we omit k when n = 1. 

Aomoto's extension of Selberg's integral is given by the following theorem. 
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Theorem 1 (Aomoto [5]). 

4m(*,y)=   f1"- f1f[tt1)+X(i-m)(l-ti^-1)A2
n
k(tu...,tn)dt1...dtn   (1.1) 

Jo       Jo fJi 

_ yr Tjx + (n - i)k + x(i < m)) T(y + (n - Qfe) r(l + «fc) 
AA       r(a; + y + (2n - i - l)fc + x(i < m)       r(l + fc) 

w/iere xC-A) is 1 or 0 according to whether A is true or false, respectively, and 

An(ti,...,in)=     ]l    (ti-tj) (1.2) 
l<i<j<n 

denotes the Vandermonde determinant 

When m = 0, we obtain Selberg's integral in which the integrand is symmetric in 
£1,... ,£n. Observe that the effect of the parameter m is to introduce the product 
ti'"tm into the integrand. 

Let q be complex with 0 < q < 1 and set (#; g)n = nl^o 0- ~xc?)'> n ^ 0. Following 
Jackson [15], we have the g-gamma function 

r«(*) = (1-*)1"X^' (1-3) 

and we define the g-integral by 
pa oo 
/   /(tHt = a(l-?)£«Vfafn)' (1.4) 

■fo n=0 

/ f{t) dqt = f m dqt - f
a /(«) d,*. (i.5) 

Ja JO JO 

Let [w] f denote the coefficient of the monomial w in the Laurent expansion of /. 
We have (see Andrews [4]) the g-beta integral 

/•V^M%^-^# (1-6) 
Jo (qvt;q)oo   q        Tg(x + y) V     ' 

and the equivalent constant term formulation of the g-binomial theorem 

[i](«;g)a(g/«;g)6= J!;g)^ ■ (1-7) 
(g;g)a(g;g)6 

We have (see Andrews and Askey [3]) the ^-beta integral 

(gf/a;g)oo   (g*/&;g)oo d ab     rq(g)rg(y)   (-b/a^)^     {-a/b;q)c 

(gx*/o;g)oo (qn/bq)^   9       (a + b)   Tq(x + y)   (-qxb/a;g)^ (-gWo/6;g)o 
(1.8) 

where there are no zero factors in the denominator of the integral. 
Askey [6] conjectured a number of Selberg g-integrals which featured the function 

l<z<i<n V **      J2k 

Observe that the 2k on the left side of (1.9) is only formally an exponent. Askey 
observed that (1.9) is a g-analogue of A^fc(£i,... ,tn) which "vanishes when U = tj 
and on k lines on one side of this line and on k — 1 lines on the other side." 
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Habsieger [14] and Kadell [16] independently proved Askey's first conjectured Sel- 
berg g-integral, which is based on (1.6), and an equivalent constant term identity 
conjectured by Morris [26], which is based on (1.7). Habsieger used Selberg's proof 
[28] together with a clever asymptotic argument in place of the symmetry in x and y 
while Kadell used a telescoping sum in place of the fundamental theorem of calculus 
to extend Aomoto's argument [5] to the g-case. 

Evans [10] used the proof technique developed by Anderson [1, 2] to prove Askey's 
last conjectured [6] Selberg g-integral, which is based on (1.8); see [19] for a proof 
using our techniques. 

Let a, 6, c, and d be nonnegative integers. The Askey-Wilson integral [7] is given 
by 

- ( — 2m Jc (at; 
(t2]q)oc(t-2'1q)00 db_ 

t 

(1.10) 

q)oo(a/t\ q)oo (bt; q)oo(b/t] q)oo (cb; q)oo(c/t; q)^ (dt; q)oo(d/t; q)^  t 
2 (abed; q)^ 

0?; q)oc (ab; q)^ (ac; q)^ (ad; q)^ (be; q)^ (bd; q)^ (cd; q)^ 

where the contour C is the unit circle traversed in the positive direction, but with 
suitable deformations to separate the sequences of poles converging to zero from the 
sequences of poles diverging to infinity. 

Gustafson [12] independently developed a proof technique which is very similar to 
that of Anderson [1, 2]. He evaluated several Selberg-type integrals which extend 
certain beta integrals including the Askey-Wilson integral (1.10). He observed [13] 
that while results such as (1.6)-(1.8) are related to the root system An_i, certain 
well poised summation formulas and the Askey-Wilson integral are related to the root 
system BCn. Some readers may wish to read the review of the basic algebraic and 
geometric properties of root systems in Section 2 before continuing. 

We give a simple proof of an Aomoto-type extension of a constant term formulation 
of Gustafson's Askey-Wilson Selberg g-integral. We require an elementary algebraic 
result which we call the ^-transportation theory for the root system BCn. This result 
emerges as the core of a more complex proof modeled on Aomoto's argument. The 
importance of our simple proof is that it reflects the algebraic and geometric properties 
of simple roots and reflections and the manner in which BCn is built up from An-i. 

Let a be a root in the root system R. Let k(a) > 0 be an integer which depends 
only on the length of the root a. Let ea denote a formal exponential defined on a 
root system R. Without loss of generality, we denote the standard orthonormal basis 
of n-dimensional Euclidean space by {ei,..., en} and take eei = U. 

The basic object of study in the q-case is the constant term in the Laurent expansion 
of the function 

l[(ea;q)Ha)(q/ea;q)k(a). (1.11) 

Interpreting the empty product as one, we see that (1.11) associates the functions 

l<2<j<n      J 
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and 

l<2<j<n *' J 

with the root systems An-i and Dn, respectively. 
Using the well-known identity 

(a!;9)„ = (-a:r«(5)(^;g) (1.14) 

for reversing a finite g-product, we have 

•"(•,-'?«)»-'(«"?«).''(«ii«). 

Setting s = ti,t = tj in (1.15), we have 

A-(il,..,o= n (-^)v(*)(f;«)>H 
l<i<j<n •/ 

= (-i)*(5)g-(»(5) n*f(B"1)^-i(*i..".tw). (1.16) 

Thus the functions gA^fc(ti,..., tn) and 9^-1(^1? • • •»*n) have the same zeros except 
for ti = 0,..., tn = 0. 

We require the constant term formulation 

[i] (*; q)a (f; ?)a H; 9)5 (-f; «)6 (v^; 9)c (^; ?)c (-V5*; ^ (-x; ^1 

=  (-g; g)a+b (Vg; g)a+c) (-y/q\ <l)a+d) (-y/Q', Q)b+c (y/q\ q)b+d (-g; 9)c+d    ^ j^ 

of the Askey-Wilson integral (1.10). 
We refer to a function whose constant term is being extracted as the extractee. 

Observe that the integrand of (1.10) is invariant under the substitution t —> 1/t while 
the extractee of (1.17) does not have a corresponding invariance. 

Following Gustafson [12], we set 
n 

qaW^m(cL, 6, C, d; ti, . . ., tn) = gd* ($1,. . . , tn)   JJfe; g)a+x(n-i+l<m) ^—; gj 
2=1 

x (-^^^(-^^(^^^^(^^^(-v^ise)^-^^)^        (1.18) 
n 

(a,b,cid;ti,...,tn) = qdn(ti,...,tn) T\(ti]q)a+i[—;q)      t^   x 

2=1 

x (-^^^(-J;?)^^;?^^;?)^-^;?)^-^;^        (i.w) 

gaw„ 
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and we use capital letters to denote the constant terms 

qAW^m(a,b,c,d) = [l]qa'ufc9m(a,b9c9d;tu...,tn), (1.20) 

qAW^ia, b, c, d) = [l]ga5;*fm(a, 6, c, d; ti,..., tn). (1.21) 

Gustafson's theorem is the m = 0 case of the first part of the following theorem, 
which is our main result. 

Theorem 2 (Gustafson [12]). 

qAW*tm(a,b,c,d) 

— TT (~^ ^)a+b-\-(n-i)k (y/Q'i g)a+c+x(^<^)+(Ti-2)fc (—y^ g)a+d+x(^<r^)+(n-z)fc 

r^       (-9;9)(n-i)ib (>/9;9)(n-i)fc (-"y/9\Q)(n-i)k 

(—Vg; g)b+c+(n-i)fc (Vgj g)b+d+(n-i)fc (""gl g)c+d+(n-i)fc 

(-v^; q)(n-i)k      (v/5; 0)(n-t)*      (-g; Q)(n-i)k 

„  1 fa' g)2(n-t)fc (g; qQifc 

(g; g)a+6+c+d+x(i<m)4-(2n-t-l)fc   (g; g)(n_i)ib   fa; g)fc ' 
(1.22) 

— TT (~^^ g)a+b+x(^-^+l<TM)+(n-z)fc (>/g> g)a+c+l+(n-2)fc (~\/g? g)a+d+l+(n~2)fc 

^i (-9;9)(n-t)jb (\/g;g)(n-i)fc (-\/g;g)(Ti-i)fc 

(-\/g; g)b+c+(n-z)fc (y/g; g)&+rf+(n-i)fc (—g; gjc+d-Kn-^fc 

(~v/g; g)(n-t)fc (>/g; g)(n-i)ib (""g; g)(n-t)fc 

x __ ^__ -V:7f-^^\ (1.23) fa» g)2(n--ofc (g; g)2fc 

(g; g)a+6+c+d+l+(2n-i-l)fc   (gl g)(n_i)fc   fa; g)fc 

Comparing (1.18) and (1.19), we see that 

go^fa, 6, c, d; ti,..., tn) = qati;*>n(a, 6, c,d; ti,..., tn) (1.24) 

and 

ga^(a + l,6,c,d;ti,...,tn) = gmU^n(a,6,c,d;ti,...,tn). (1.25) 

Taking the constant terms in (1.24) and (1.25), we have 

.AW^a, 6, c, d) = gAW* n(a, 6, c, d) (1.26) 

and 

gAW£(a + 1,6, c, d) = qAWk
n,n(a, 6, c, d), (1.27) 

respectively. 
In Section 2, we review the basic algebraic and geometric properties of root sys- 

tems: positive, simple roots and reflections, the Weyl group, and the crystallographic 
condition. 

In Section 3, we give the g-transportation theories for the root systems An-i and 
BCn) which we explicitly express in terms of the function qaw^(a, 6, c, d; ti,..., tn). 

In Section 4, we establish the dependence of the constant term g^4W^m(a, 6, c,d) 
on the parameter m. 
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In Section 5, we establish the dependence of the constant term qAWn m(a, 6, c, d) 
on the parameter m. 

In Section 6, we combine our results to establish the dependence of the constant 
term qAW£(a, 6, c, d) on the parameter a. 

In Section 7, we complete the proof of Theorem 2 by using certain symmetries of 
qAWn(a, 6, c, d) and the g-Macdonald-Morris conjecture for Dn, proven by Kadell [17] 
and subsequently by Gustafson [12]. 

2. Root systems 

In this section, we review the basic algebraic and geometric properties of root sys- 
tems: positive, simple roots and reflections, the Weyl group, and the crystallographic 
condition. 

Let V be a finite dimensional vector space over the reals with zero vector (0), 
dimension ^, an inner product ( , ), and let a, v e V. The reflection of v along a, 
which is given by 

aa(v) = v-2^a, (2.1) 
(a, a) 

is obtained by reflecting v in the hyperplane perpendicular to a. Observe that CTQ, is 
a linear mapping. 

A root system is a finite set R C V — {(0)} of nonzero vectors, which are called 
roots, such that R is a basis for V and a^iv) G .R whenever a, v E R. We say that R 
has rank £. The group (<Ta | a E R) generated by the reflections along the roots of R 
is a finite group W, called the Weyl group, which acts on the root system R. 

Since R is finite, we may choose a hyperplane H with (0) E H and H fl R = 0. 
Choosing p £ H, we have the system of positive roots 

R+ = {aER\ (a,/9)>0}. (2.2) 

We generally take 

a:>0 

(2.3) 

and letting R   = {—a \ a E R+} = {a E R \ (a, p) < 0}, we have 

R = R+UR-. (2.4) 

We may write a > 0 or a < 0 for a E i?+ or a E i?~, respectively. 
Observe from (2.1) that 

&a(o>) = —a. (2.5) 

We may find a system {ai,...,a^} C R+ of positive, simple roots such that for 
1 < i < £, we have a > 0 and a ^ c^ =4> cr;(a) > 0 where cr^ = a^ denotes the 
simple reflection along the simple root o^. Thus cr* sends a^ to — a; and, since the 
Weyl group W acts on i?, permutes the other positive roots. Hence we have the basic 
property 

difai) = — oti and v > 0, v ^ ai => ^(i?) > 0,        1 < i < £, (2.6) 

of the positive, simple roots. 
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A system of positive roots for the root system An-i is given by 

i4+-.i = {e«-ei|l<t<j<n}. (2.7) 

Fix i and j with 1 < i < j < n. Then (2.1) gives 

^ei-ej (e*) = ej,    aei-.Q. (e^) = e^ (2.8) 

and h ^ z, j implies that o-^-e..^) = e^. Thus, (Tei-Q. interchanges e^ and e^-. Hence, 
we see that the Weyl group W of An_i is isomorphic to the symmetric group Sn. 

A system of positive, simple roots for An-i is given by 

oti = Qi — ei+i,        1 < i < n — 1. (2.9) 

Observe that the simple reflections of An-i are the adjacent transpositions. 
A system of positive roots for the root system Dn is given by 

JD+=A+_1U{ei + ej \l<i<j<n}. (2.10) 

Fix i and j with 1 < i < j < n. Then (2.1) gives 

^ei+e^ei) = -ej,  OTe^+e^ej) = -€», (2.11) 

and h ^ i, j implies that ae.+ej(eh) = e^. Thus, crei+ej interchanges e^ and Bj and 
multiplies by minus one. Hence, we see that the Weyl group W of Dn is isomorphic 
to the semi-direct product of the symmetric group Sn and the group of sign changes 
in an even number of the first n coordinates. 

A system of positive, simple roots for Dn is given by those (2.9) for An-i together 
with 

OLn = 61+62. (2.12) 

Observe that the simple reflection an of Dn sends ei to —62 and 62 to — ei. 
Systems of positive roots for the root systems Sn, Cn, and 2?Cn are given by 

B+ = I7+U{ei,...>en}, (2.13) 

C+ = D+U{2e1,...,2en}, (2.14) 

and 

BC+ = £>+ U {ei,..., en} U {2ei,..., 2eri}, (2.15) 

respectively. 
Fix i with 1 < i < n. Then by (2.1), we see that CFQ. and c^e* are equal as mappings, 

that they send e^ to —e^, and that h^i implies that ^(e/O = ^2ei{^h) = ^h- Hence, 
we see that the Weyl groups W of Bn, Cn, and BCn are isomorphic to the semi- 
direct product of the symmetric group Sn and the group of sign changes in the first n 
coordinates. 

Systems of positive, simple roots for Bn and Cn are given by those (2.9) for An-i 
together with 

an = ei for Bn (2.16) 

and 

an = 2ei for Cn. (2.17) 

Observe that in either case the simple reflection crn represents the change of sign in 
the first coordinate. 
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Let the dual root system be given by 

Rv = {av | a e R} (2.18) 

where the co-roots are given by 

av = 7^T. (2.19) 
(a, a) 

Then we have 

B^ = C„>    C^ = Bn. (2.20) 

Thus, the root systems Bn and Cn are dual to each other. They enjoy a compatibility 
which allows us to form the self dual root system 

BCn = BnUCn. (2.21) 

We say that the root system i? is reduced if a, Aa G R implies that A = ±1. 
Observe that -An_i, Dn, Bni and Cn are reduced root systems while jBCn, which 
contains ei,..., en and their doubles 2ei,..., 26^, is not a reduced root system. 

Observe that the product 

(a, a) 

is linear only in the first coordinate. We have the crystallographic condition 

a, (3 e R => (/?, a) is an integer, (2.23) 

which allows the nonreduced root system BCn. 
The interested reader may consult Grove and Benson [11] or Carter [8] for further 

information about root systems and related topics. 

3. The ^-transportation theories for the root systems An-i and BCn 

In this section, we give the ^-transportation theories for the root systems An-i and 
BCn, which we explicitly express in terms of the function qaw^(a, 6, c, d; ti,..., tn). 

The following lemma recalls [17, Lemma 10; 18, Lemma 2] the local g-transportation 
theory for the root system -An-i* 

Lemma 3 ([17, Lemma 10; 18, Lemma 2]). Let 

Y(t,8) = Y(8,t) (3.1) 

be symmetric in s and t and have a Laurent expansion at s = t = 0. Then we have 

[l)t(l-^(l-Qi)Y(s,t) = Q[l]s(l-^(l-Ql)Y(S,t).        (3.2) 

We saw in [18] that (3.2) follows easily from the fact that the difference between 
the two sides of (3.2) is the constant term of an antisymmetric function and hence 
must be zero. 

Observe that for TT G 5n, we have 

X-A,,,...,•*,)- n (H(*H n (»H(H- 
l<i<j<n        ■' l<i<j<n J 

ir-^iXTr-1^) ff"1(<)>7r-10) 
(3.3) 
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Let 2 < v < n. We see from (3.3) that the function ga*.^*!,..., tn) is symmetric 
under the adjacent transposition tv <—> tv-i except for the factor 

(3.4) 

Taking s = ^_i, t = tv in Lemma 3 (3.2) and incorporating the function 
(qtv-i/tv; q)k-i(qtv/tv-i;q)k-i into Y(M), which we rename 0(ti,... ,tn), we ob- 
tain the ^-transportation theory for An-i 

[l]^^i,...,tn)X-i(^i---U = ^[1]^-i^i---Ug4-i(^i5---)U    (3.5) 
where 

0(ti,..., tn) = 9{ti,..., ^-2, tv, tv_i, tv+i,..., tn) (3.6) 

is symmetric in £v_i and tv; see [17, Lemma 11; 18, Lemma 3]. 
The following lemma explicitly expresses the ^-transportation theory for An-i 

(Lemma 3, (3.2) and (3.5)) in terms of the function ga^(a, 6, c, d; ti,..., tn). 

Lemma 4. Let 2 < v < n, and let 0(ti,...)tn) be symmetric in tv-i and tv; see 
(3.6). Then we have 

[1] tv 0(tu • • • , tn) qaWnfa &, C, d; ti, . . . , tn) 

= g* [1] tv_i l9(ti,..., tn) gCHi;*(a, 6, c, d; ti,..., tn), (3.7) 

[1] ^;^ 5(ti, •.., tn) qaw^(arb, c, d; ti,..., tn) 

= 9* [1] 7- 0(tu,..rtn) ga^(a,6,c,d;ti,...,tn). (3.8) 

Proof. Observe that 
n 

,oto*(o, 6, Cjd;«!,..., tn) = X(ti,...J*I,)JI(*i;«)o(^;g)o(-*i;«)5(-J;?)t 
2=1 

x (V5^;g)c(^;9)c(-^,;^(- ^;^.     (3.9) 

Observe from (1.13) and (3.9) that ga^(a, 6, c, d; ti,...,£n) equals ga^-i^i? • • •»tn) 
times a function which is symmetric in £i,..., tn. Incorporating the symmetric func- 
tion into 0(£i,... ,tn), we see that (3.5) gives the result (3.7). 

Observe that tv(l/tv-\bv) = l/^-i and tv-i(l/tv-itv) = !/*„. Incorporating the 
function l/tv-itv into 0(ti,... ,£n), we see that (3.5) gives the result (3.8). □ 

The proof reflects the fact that when we extend An-i to J9n, jBn, or Cn, the simple 
roots of An-i remain simple roots. 

The following lemma recalls the local ^-transportation theory [17, Lemma 12] for 

Lemma 5 (17, Lemma 12). Let T(t) be invariant under the substitution t <—> l/t, 

T(t) = T(i), (3.10) 
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and have a Laurent expansion att = 0. Then we have 

[1] (l - f) (l + i) (1 - *) T(t) = Q [1] t (l - |) (l + i) (1 -1) T(t).      (3.11) 

Proo/. Observe that the left-hand side of (3.11) minus the right-hand side of (3.11) 
equals 

[1] (1 - Qt) (l - f) (l + \) (1 - *) T(*), (3.12) 

which is zero since the function 

(l + I)(l-t) = i-t (3.13) 

is antisymmetric under the substitution t <—> 1/t. The result (3.11) then follows.    D 

Setting Q = -qb in (3.11) gives 

[1] (l + £) (l + i) (1 -1) T(t) = V [1] t (l + ^) (l + i) (1 -1) T(t).    (3.14) 

Observe that 

qawi(a,b,c,dit) = (*;g)a(|;g)  (~t;^6(~f;V6 

x (VQ^Q)c(^q)c(-Vqt;q)d(-^q)d^ (3.15) 

Hence, we obtain 

i (1 - ?
at) jattfxCa, 6, c, d; *) = (!- *) («*; ?)a (f 5 ?)a | (1+ *) (1 + y) 

X (-gt;g)^!(-|;^^V?*;^(^q^ (-^5*59)d( - ^59^.        (3-16) 

Incorporating the function (qt;q)a(q/t;q)a(-qt;q)b-i(-q/t;q)b-i(y/qt;q)c(^/q/t;q)c 
x{—y/qt;q)d(-y/q/t;q)d into T(t), we see that (3.14) gives 

[1] i (1 - qat) T(t) gou;i(o, 6, c, d;«) = -qb [1] (1 - gai) T(t) ,0^1(0, b, c, d; t).    (3.17) 

Observe that 

*>>*)=(*Mii>9\(rA(9v*\ (3-18) 

satisfies the symmetries 

V(s,t) = V(-s,-t) = V^,^) =D(J,t) =D(S,i). (3.19) 

Since 

X(*i» ••-.*»)=     H    ^'^J)' (3-20) 
l<2<j<n 
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we have the symmetries 

qdn(ti,... ,tn) = gdn(-£i,..., -tn) (3.21) 

= qd
k

n(±t2,...,tn) (3.23) 

= qd
k

n(tu...,tn-1±). (3.24) 
in 

The following lemma explicitly expresses Lemma 5, (3.11), in terms of the function 

gaw*(a,6,c,d;ti,...,tn). 

Lemma 6. If f3(ti,... ,£n) is invariant under the substitution tn <—► l/tn, ie., 

i9(ti>...>tn-1,i)=i9(*i,...>tn), (3.25) 

^/ien iye Aave 

[1] — (1 - gatn) ^(ti,..., tn) 9aiu*(a, 6, c, d; ti,..., tn) 

= -qb [1] (1 - qatn) (3(tu ..., tn) qaw*(a, 6, c, d; ti,..., tn). (3.26) 

Proof. Observe from (3.9) and (3.24) that qaw!^(a, 6,c, d;£i,... jtn) is equal to 
qawi{a,b, c,d;tn) times a function which is invariant under the substitution tn <—> 
l/tn. Setting t = tn and incorporating the invariant function into /?(ti,... ,tn), we 
see that (3.17) gives the result (3.26). □ 

Observe by (3.9), (3.21), and (3.22) that we have the symmetries 

qawi (a, 6, c, d; t) = qawi (6, a, d, c; —t) (3.27) 

= gawi(c,d,a,&;^). (3.28) 

Combining (3.21) and (3.22) with (3.27) and (3.28), respectively, we have the symme- 
tries 

aw*(a, 6, c, d; ti,... , tn) = qaw*(b, a, d, c; -tu ... , -tn) (3.29) 

a^(c,d,a,6;^,...,^). (3.30) 

gu'u/nVu'> u, o, u,, ox, . . .  , unj — y 

— q 

The following lemma uses the symmetry (3.30) to translate Lemma 6. 

Lemma 7. //7(£i,... ,£n) is invariant under the substitution ti <—> q/h, i.e., 

7(^i*2,... ,*n) =7(*1>-.- ,*n), (3.31) 

[l]ti (^1 —J7(ti,... ,tn)qaii;*(a,6,c,d;ti,... ,tn) 

= -qd+1/2 [1] (l - L_J 7^!,... , tn) qaw*(a, 6, c, d; ti,... , tn).       (3.32) 
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Proof. Observe that if the function 7(^1,... ,£n) satisfies the invariance (3.31), then 
the function 

/3(t1,...,tn)=7(^,...,^) (3.33) 

satisfies the invariance (3.25). Observe that if we make the substitutions 

(ti,...^)*-^,...,^) (3.34) 

and 

(a, 6, c, d) <—> (c, d, a, 6) (3.35) 

in Lemma 6 (3.26), then we obtain the result (3.32) divided by ^/q. □ 

4. The dependence of gAW*m(a,&,c,d) on the parameter m 

In this section, we establish the dependence of the constant term 9-AW*m(a,6,c,d) 
on the parameter m. 

Let 1 < m < n. Taking /?(ti,... Iitn) = Tl^n-m+iO- ~ Q^i)^ wl^ch is independent 
of tnj in Lemma 6 (3.26), we obtain 

n 

qAW^m(a, b, c, d) = [1]      JJ    (1 - qHi) qaw^{a, b, c, d; ti,... , tn) 
i=n—m+l 

1 n 

= -q-b [1] -      H     (1 - qHi) qaw*(a, 6, c, d; tx,... , tn).    (4.1) 
i=n—m+l 

Using the ^-transportation theory for -An_i, Lemma 4 (3.8), m—1 times with t; running 
from n to n — m + 2, we obtain 

gAW£m(a,&,c,d) 

= _g-Mm-i)*[1]      1_      JJ    (1-^)^^,6,0^;^,...,^).   (4.2) 
Tn-m+l  i=n_m+1 

We have 
1      (l-^tn_m+1) = -^ + -^-. (4.3) 

tn—m+1 ^n—m+l 

Substituting (4.3) into (4.2) and using the ^-transportation theory, Lemma 4 (3.8), 
for ^4n_i n — m times with w running from n — m + 1 to 2, we obtain 

n 

,AW*m(a, 6,c,d) = g-'-C™-!)* [1]      JJ    (1 - g^) ,ot«*(a,6,c, d; ti,... ,tn) 
i=n—m+2 

n 

- g-
6-(m-1)fc [1] —L_      H    (1 - g0**) ,otfl*(o, 6, c, d; *i,... , tn) 

tn-m+l  i=n_m+2 

= ^-6-(—D" gAW^ia, b, c, d) 

_rM»-i)fc[i]I      JJ    (l-g-ti),o«;*(a>6>cd;t1,...,tB). (4.4) 
i—n—m+2 
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Observe that 

c+1/2, ± = -a-c-l/2(1_?^lj+q-c-1/2 

Substituting (4.5) into (4.4) gives 

h=-q "~{i-^r)+q"'~^- (4-5) 

qAWlm(a, b, c, d) = q^-(m-i)k gi4W-*m_l(aj 6> C) d) 

0+1 

-rb-<-^-^[i]   n  (1 -4%) **<(*,b,^,...,tn) 
i~n—m+2 

=^<"-«'-,-»-«-w-.>»),^m.1(0A<,i) 

i=n—m+2 

7c+l/2 ri 

i=n—m+2 
+ «-b-C-1/2-^kll)(l-q~)     fl    d-^^Ca,^,^,,...,^). 

(4.6) 

^ 7(tl *-) = -r6-^"1-^-1)" niLn-ro+2(l -«•*), which is independent 
ot *! since m < n in Lennna 7 (3.32), and using ^(1 - oc+1/2/t1) = u - o^Va  WP 
obtain '    ' ^        ' 

^<«(a, 6, C, d) = ^(m-l)* _ g-6-c-1/2-(„-1)^ ^<m_i(a) 6> C) d) 

-q-»-c-d-l-(n-l)k[1]{ti_qC+1/2)       ^      (1_^) 

2=n—m+2 

x ga«;*(a,6,c,d;*!,... ,in) 

= ^-^-(m-l)* _ q-b-c-l/2-(n-l)k + q-b-d-l/2-(n-l)k\ 

-<l-b-c-d-^-Vkm      ft    (l-^),^^ 6,0, **!,...,*„).    (4.7) 
2=n—m+2 

We may change the factor ^ to in_m+1 by using the ^-transportation theory, Lemma 4 
(6.(), tor ^n_1 n-m times with v running from 2 to n - m + 1. This gives 

<[AWn,m{a, b, C, d) = ^g»-*-(m-l)fc _ g-6-c-l/2-(n-l)fe + g-6-d-l/2-(n-l)fcN 

X^^n;m-l(a^,C,d) 

_ n-b-c-d-l-(2n—m-l)k m . TT      /, „    ^ 
« ll]*n-m+i      ||     0--qati) 

i=n—m+2 

Xgaw^a.^cd;*!,...,^). (4 8) 
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Observe that 

tn-m+1 = -q-a (1 - gX-m+i) + q"1. (4.9) 

Substituting (4.9) into (4.8), we obtain 

qAWlm(a,b,c,d) 

= (g-*-^-!)* - q-b-c-l/2-(n-l)k + g-6-d-l/2-(n-l)^ ^W^.^a, b, C, d) 

+ g_0_5_c_d_1_(2ri_m_1)fc[1]      ^     (l-g»ti),a«;*(o,6,c)d;*1>... ,«„) 

2=n—771+1 

_ g-a-i-c-d-Man-n,-!)* [jj        JJ      (1 _ ga^) qaw*{a, 6, c, d; *!,... , tn) 
i=n—771+2 

__ f a-b-(m-l)k _    -6-c-l/2-(n-l)fe 

+ g-6-d-l/2-(n-l)fc _ (Z-a-6-c-d-l-(2n-m-l)^ ^W^.^a, &, C, d) 

+ ra_6-c-d-l-(2n-m-l)fc ^^m(a? ft, c, d; *!,... , tn). (4.10) 

Multiplying (4.10) by _qa+b+c+d+i+(2n-m-i)k and rearranging gives 

(1 _ ga+6+c+d+l+(2n-m-l)fc) ^^^(a, 6, C, d) 

— (l — a
a+c+1/2+(n-m)fe _]_ aa+d+l/2+(n-m)fc _    2a+c+d+l+2(n-ra)AA 

X^^m-lfe^C,^) 

= (1 - ^+l/2+(n-m)fc) (1 + ga+cH-l/2+(n-m)fcj ^W^^.^a, 6, C, d).       (4.11) 

We then obtain 

(1 _ ^a+c+l/2+(n-m)fc\ Q _|_ ^a+d+l/2+(n-m)fc^ 

qAWn,m(a^ bi ci d) = Q _ 9a+6+c+d+l+(2n-m-l)fc) 

x^W*^.! (0,6,0,(0, (4.12) 

which gives the dependence of the constant term gAW^m(a, 6, c, d) on the parameter 
m. 

5. The dependence of qAWnim(a, b,c,d) on the parameter m 

In this section, we establish the dependence of the constant term qAWnm(a, 6, c,d) 
on the parameter m. 
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Let 1 < m < n. We have 

2=1 

q^Vntm{a,b,c,d) = [1] TTl1--?-) «3«^(o»b»c.d;*i.-.- >*n) 

= [1] Tit1""!-) 95«^(o.bic,d;ti,... ,*„) 

-    m—1 a+1 

- <?0+1 [1] r- 11 f1 - V") ?MZJ-(a' b. c, d; ti,... , in) 

= s^n.m-iM.M) - ga+1 [1] — ga5^im_1(a,6,c,d;ti,... ,tn). 

(5.1) 

Using the ^-transportation theory, Lemma 4 (3.8), for An-\ n—m times with v running 
from m + 1 to n, we obtain 

qAWn)m(a, 6, c, d) = g^^n^-iCa, 6, c, d) 

-^1+(n-m)Ml]r ^.m-l^6^**!.'-- »*»)•        (5-2) 

Taking 0(ti, ...,««) = IlJll^1 -1a+1/ti) Ui^ii1 -Qati), which is independent of tn 
since m < n, in Lenuna 6 (3.26), we obtain 

qAWntm(a, b, c, d) = ,AWn)m_1(a, 6, c, d) 

+ g^+i+C1—)fc [1] ^^iCo, 6, c, d; ti,... ,*„) 

= (l + «a+6+1+("-'")ft)gAw")m_1(a)6,c)d), (5.3) 

which gives the dependence of the constant term qAWnm(a, 6, c, d) on the parameter 
m. 

6. The dependence of qAW^ia, 6,c,d) on the parameter a 

In this section, we combine our results to establish the dependence of the constant 
term qAW^{a^ 6, c, d) on the parameter a. 

Repeated use of the recurrence relation (4.12) gives 

JL (1 _ ^a+c+l/2+(n-i)fc\ /i   ,   ^a+d+l/2+(n-2)/c\ 

qAWln{a, b, c, d) = n ^      9   (1_g0+6+c+,;i+(2L-i)fe) " iMfa 6'c'd)- 
(6.1) 

Repeated use of the recurrence relation (5.3) gives 

lAW^a, b, c, d) = H (1 + gO+^+O-*)*) ^AW^a, 6, c, d). (6.2) 
2=1 
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Combining our results (1.26), (1.27), (6.1), and (6.2), we obtain 

qAWjt(a + 1,6, c, d) = qAWZ(a, 6, c, d) 

X 17(1 + ga+6+1+(n-2)fc) ^ ? n±±l I (6 o\ 
iiV H } (1 _ ga+6+c+d+l+(27i-i-l)fc) '       V0*^ 

which gives the dependence of the constant term qAW*{a, b, c, d) on the parameter a. 

7. A proof of Theorem 2 

In this section, we complete the proof of Theorem 2 by using certain symmetries of 
qAWn(a, 6, c, d) and the g-Macdonald-Morris conjecture for Dn, proven by Kadell [17] 
and subsequently by Gustafson [12]. 

Taking the constant terms in (3.29) and (3.30), we see that 

qAW*(a, 6, c, d) = qAW*(b9 a, d, c) (7.1) 

= ^n
fcM,a,&). (7.2) 

Combining (7.1) and (7.2), we have 

qAW]t(a9 6, c, d) = gj4W£(d, c, 6, a). (7.3) 

Using the symmetries (7.1)-(7.3) of qAWji(a, 6, c, d), we see that (6.3) gives 

qAWZ(a, b +1, c, d) = ^W^(a, 6, c, d) 

X TTa + aO+Hl+Cn-OJbN (1 + gHcH-l^-Kn-Qfc) (1 _ ^+l/2+(n-i)fc) 

11^        ^ ' (1 _ 5a+6+c+d+H-(2n-i-l)fc) ' 

,i4W*(o, b,c+l,d) = qAW^a, b, c, d) 

X TT(1 + ge+*H+(n-i)k) if 1 Mi+i ^ (7 4x 
11v        ^ ^ (1 _ ga+&+c+d+l+(2n-i-l)fc) '       v-^/ 

and 

« AW^(a, 6, c, d + 1) = gAW^(a, 6, c, d) 

gilW* 

X TTa + e^f l+(»-l)^ (1 + g-H* W^*) (1 - g6+d+l/2+(n-i)fc) 

which give the dependence of the constant term qAW%(a, b, c, d) on the parameters 6, 
c, and d, respectively. 

The case a = 6 = c = d = m = 0of Theorem 2 (1.22) is given by 

rn'(o,o,o,o, = [1]   A  ("^'(^(H^H 
l<i<3<n J J * 

_TT 1 (g'g)2(n-j)fc(g;g)ifc ,76v 

ii(?;9)(2n-i-i)* (?;?)(„_*)*. (Kg)*' 

which is the g-Macdonald-Morris conjecture for Dn, proven by Kadell [17] and subse- 
quently by Gustafson [12]. 

Observe that the functions on the right-hand sides of (1.22) and (1.23) satisfy the 
recurrence relations (1.26), (1.27), (4.12), (5.3), (6.3), and (7.4)-(7.6).  Using (6.3), 
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and (7.4)-(7.6), we may establish the case m = 0 of (1.22) by induction on a+b+c+d. 
Using (4.12), (1.26), and (5.3), we may establish (1.22) and (1.23) by induction on m. 
This completes the proof of Theorem 2. 

We note that the verification of (7.7) masks the fact that our proof requires the 
analytic continuation of the constant term qAW%(a, 0,0,0) at a = —1 — (n — l)k. The 
details of how to do this are given in [17, Section 10]. 
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