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EXISTENCE AND BEHAVIOR OF SOLUTIONS FOR A WEAKLY COUPLED 

SYSTEM OF REACTION-DIFFUSION EQUATIONS 

Kiyoshi Mochizuki and Qing Huang 

ABSTRACT. We consider the weakly coupled system of reaction-diffusion equa- 
tions 

ut = Au + \x\aivP,        vt=Av+ |a:r2it9, 

where x E R^ (AT > 1), t > 0, p, q > 1 with pq > 1 and 0 < ai < N(jp - 1), 
0 < (72 < N(q - 1). Put 

2(p + l)               2(g+l)                o-2P + o-i                aiq + <72 
a=  p=  b1 =  d2 =  

pq — i pq — i pq — *- pq. — ]- 
and let Ia and Ja (a > 0) be the spaces of nonnegative, bounded continuous 
functions satisfying 

limsup |a;|0£(£) < oo    and    liminf |a:|0£(a;) > 0, 
\x\->oo |a:|->oo 

respectively. At t = 0, initial values (tto, ^o) € I51 xl62 are prescribed. It is proved 
that if max{a! + 5i,/S + ^2} > N or if UQ 6 la with a < a + 81 or VQ £. h with 
6 < /3-\-52, then every nontrivial nonnegative solution is not global in time; whereas 
ifmax{a;+di,/3+<52} < N and (UO,VQ) G Ia xlb with a > a + Si, b > /^-l-fo, then 
there exist both global solutions and nonglobal solutions. Moreover, we obtain 
the asymptotic behavior as t —* 00 of the global solutions. 

1. Introduction 

We consider nonnegative solutions of the initial value problem for a weakly coupled 
system 

ut = Au + {x^yP,       x e RN, t > 0, 

vt = Av + Ixl0"2^,        x e R^, t > 0, 
(D u(x, 0) = uo(x), x E R 

v(x, 0) = vo(x), x G R^, 

where N > 1, p, q > 1 with pq > 1, and 0 < cri < JV(p - 1), 0 < (72 < N(q - 1) (if 
p = 1 or q = 1, we choose cri = 0 or 02 = 0). The problem provides a simple example 
of a reaction-diffusion system. As a model of heat propagation in a two-component 
combustible mixture, u, v represent the temperatures of the interacting components. 

For given initial values (UQ, VQ), let T* = T* (UQ, VQ) be the maximal existence time of 
solutions. If T* = 00, the solutions are global. The global existence and nonexistence 
of solutions are studied by Escobedo and Herrero [2] in the case ai = G2 — 0. They 
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consider nonnegative, bounded solutions, and among other things, the following results 
are proved there. 

(I) If 2max{p + 1, q + 1} > N(pq - 1), then T* < oo for every nontrivial solution 
(ti(t),t;(t))af(l); 

(II) if 2max{p + 1, q + 1} < N(pq - 1), then there exist both non-global solutions 
and non-trivial global solutions of (1). 

In this paper, we shall extend these results to the case 0 < CJI < N(p — 1) and 
0 < (J2 < N(q - 1). Moreover, we shall study the behavior as t -► oo of the global 
solutions. 

Throughout the rest of this paper, we shall use the following notations. We put 

2(p +1) 2(g + l) (72P + o-i      x       criq + (T2 

pq — i pq — i pq — i pq — i 

We set BC to be the space of all bounded continuous functions in R^ and for a > 0, 

p = {£ G BC | Z(x) > 0 and limsup \x\a€(x) < oo}, 
|a;|—>-oo 

Ia = {^ € BC I £(a0 > 0 and liminf |x|a^(a;) > 0}. 
\x\—>oo 

Let L^ be the Banach space of Z^-functions in R^ such that 

llflloca =    SUP  (X)a\ax)\ < OO 
xenN 

where (x)a = (1 + |a;|2)a/2. Then Ja C L^5. The letter C denotes a positive generic 
constant which may vary from line to line. We shall use the notation S(t)£ to represent 
the solution of the heat equation with initial value £(#): 

Sm(x) = (47rt)-iV/2 /    e-l*-yf'*Z{y)dv. 

In the following, we require 

(uo(x),vo(x))eI51 xl6\ (2) 

As noted in §2 below, problem (1) has a unique, nonnegative solution (u( •, £), v( •, £)) G 
ISl x J52 at least locally in time. 

Now the results of this paper will be summarized in the following four theorems. 

Theorem 1.1. Assume max{a-|-<5i,/3 + 52} > N. Then T* < oo for every nontrivial 
solution (w(t),v(t)). 

Theorem 1.2. Assume max{a + 5i,/3 + 62} < N. Suppose also that one of the 
following two conditions holds 

(i) -MQ £ la with a < a + 5i orvoeh with b < (3 + 82; 
(ii) uo{x) or VQ{X) > Ce~Vo\x\   for some VQ > 0 and some C > 0 large enough. 

Then T* < 00 for every solution (u(t),v(t)). 

Under the condition max{a + <Ji,/? + £2} < -W, we have p > 1 + (2 + cr\)/N 
or g > 1 + (2 + 02)/AT. In the following two theorems, we only consider the case 
q > 1 + (2 + 0-2)/N. Similar results also are obtained when p > 1 + (2 -f- <Ji)/N. 



WEAKLY COUPLED REACTION-DIFFUSION EQUATIONS 111 

Theorem 1.3. Assume max{a + Si, /? + #2} < N and q > 1 + (2 + (72)/N. Let 

(UQ.VO) E Ia x Ib    with   a>a + <5i,    b>(3-\-52- (3) 

If ||^o||oo,a + lbo||oo,6 ^ small enough, then T* = oo, and we have 

u(x,t) < CS{t)(x)-",    v(x,t) < CSffiix)-1 (4) 

in IlN x (0,00) where a < a and b < b are chosen to satisfy 

a + <5i < a < min{iV, Np-2- aA, — <b<aq-2-a1. (5) 
P 

Theorem 1.4. Let (u(t),v(t)) be the above global solution of (1). 
(i) // we can choose a = a[orb = b<N] in (4) and if 

lim  |a;|auo(£) = A > 0    [or      lim   \x\hvo(x) = B > ol, (6) 

then 

ta/2\u(x,t) - AS(t)\x\-a\ -* 0 [ or   1*/2\v(x}t) - BS(t)\x\-h\ -+ o] (7) 

ast-^-oo uniformly in R^. 

(ii) // we can choose b > N in (4), then 

tW^vfat) - M(47rt)-N/2e-W2/4t\ -> 0   as   t -» oo (8) 

uniformly on the set {x G R^ | \x\ < Rt1/2} (R > 0) where 

M= /     vo(x)dx+ [     f    {xpuiXitydxdtKoo. (9) 
JiiN Jo   Jn1* 

Remark 1.5. We put A = {(a, b) | satisfying (5)}. Then since 

min{iV, Np - 2 - CJI} - a - Si = min{iV - a - 5i1p(N - (3 - 52)} > 0, 

nn        9        ^ Q + 2 + Crl (Pg-l)(a-a--gl) 
aq — 2 — (72 = > U, 

p p 

A forms a nonempty triangular domain in R^.. Moreover, since 

a + fr+2 + (71 
  = P + 02, 

P 

for any a, 6 satisfying (3), we can choose a pair a < a and 6 < b in the domain A. b 
may be larger than N. In fact, we have 

min{iV, Np-2- ai}q - 2 - <TI 

= JV + inin{iV(2 - 1) - 2 - (72, (pg - l)(iV - /? - ^a)} 

>iV. 

Remark 1.6. If both p > 1 + (2 + c7i)/iV and q > I + (2 + a2)/N are satisfied and if 
a, 6 > iV in (3), then we have not only Theorem 4 (ii) for v(x, t) but also the following 
result for u(x,t): 

tN/2\u(x,t) - L(47rt)-N/2e-W2/4t\ -> 0 as t -> oo 
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uniformly on the set {x G R^ | |x| < Rt1/2} (R > 0) where 

L=        uo(x)dx+ /     /     |a;|<7li;(a:,t)pda;dt<cx). 
JR." JO   JII

N 

In fact, in this case, we can choose a<a, iV<6<6to satisfy (5) and also N < a < a, 
b < b to satisfy 

P+.62<b< min{iV, Nq-2- a2},       +   +cr2 < a < 6p - 2 - (72. 

Then since 7° x Ib c (J5 x /^) n (I6, x J6), repeating the argument of Theorem 4 (ii) 
yields the result. 

Through these theorems, we see: (a) the pair (p, q) satisfying max{a + <5i, /3 + 52} = 
AT" gives a critical exponent of blow-up, and (b) the decay rate (a, 6) = (a + 5i, (5 + 5) 
of initial values gives another critical exponent of blow-up. The first critical exponent 
coincides with Fujita's classical one [3], p = 1 + 2/N if p = q and ai = 02 = 0. If p = q 
and cri = (T2 = 0" > 0, it is reduced to the critical exponent p = 1 + (2-\-a)/N obtained 
by Bandle and Levine [1]. The critical blow-up results for these single equations were 
obtained later (see Hayakawa [7], Kobayashi et al. [11], Weissler [16], and Hamada [6]). 
Result (a) for our problem (1) is announced in Uda [15] without proof. The critical 
blow-up result is, however, not studied there. To show the critical blow-up, we follow 
the argument of Escobedo and Herrero [2]. The point is to obtain a priori estimates 
for global solutions. However, it seems difficult to generalize their results to our case. 
Therefore, we replace them by our new necessary conditions for the global existence. 
The second critical exponent is obtained for single equations by Lee and Ni [12] and 
for a system of equations with ai = 02 — 0 by Huang et al. [8]. Theorems 3 and 4 
generalize results of [8], in which only a very special case of slow decay initial values 
is treated by a different method. Note that results similar to the above theorems have 
been obtained in Mochizuki [13] for the quasilinear equation 

ut = Au™ + \x\aup 

with m > max{0,1 — 2/iV}, p > max{l, m}, and 0 < a < iVniin{p — l,p/m — 1}. 
The rest of the paper is organized as follows: Some preliminary results, including 

the existence for (1), are gathered in §2. A necessary condition for global existence is 
summarized in Theorem 2.5. Based on this theorem, we shall prove Theorems 1 and 
2 in §3. Theorems 3 and 4 are proved in §§4 and 5, respectively. 

2. Preliminaries 

In order to show the local solvabilty of the Cauchy problem (1), we consider the 
associated integral system 

u(t) = S(jt)uo+ [ 5(t-«)|-riK«)|p"1t;(«)ds, 
Jo 

v(t) = S(t)vo+ [ S(t-s)\'p\u{s)\q-1u(s)ds. 
Jo 

do) 

Define 

*(«,«) = (S(t)uo + *i(»),S(t)«b + $a(u)) (11) 
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where 

$1 

$ 

(v)= [ ^-^i-i^K^rv^, 
./o 

(u) = / S(t - s)\ • \(T2\u(s)\q-1u(s)ds 
Jo 

and for arbitrary T > 0, consider the set 

ET = {(«,«) | [0,11 -, L^ x L^ | HKt;)!!^ < oo} 

where 

ll(«,w)||Br =   SUP {II^WIloo,*! + IIWWIUA}. 
te[o,T] 

Then Ex is a Banach space. 

Lemma 2.1. Let 7 > 0 and 0 < S < inin{iV, 7}. Then we have for any t > 0, 

.   ^.. . t)(-min{iv17}+<5)/2 whewy^N, 
iMtx-nic  '■ 

rc(i+, 
.t)(-JV+«)/2]og(2 + t),       whenj = N. 

Proof. Note that 

\x\*S{t)(z)-i 

= \X\S{ f + f }(4:irt)-N/2e-^2/4t(x - y)-idy 
VJ\V\<\X\I2     ^|»|>|x|/2j 

= 1 + 11. 

Here I < 2iS{t){x)5-i and 

II < \x\5e-^li2t f (4irt)-N/2e-M2/8t(x - y^dy 
J\y\>\x\/2 

< Ct5/2S(2t)(x)-''. 

As is easily seen (cf., [12; Lemma 2.12]), 

f C(l+t)-min{Nrt/2, when-y + N, 
||5(t){->^||oo<{      '        '  N/2l    .    '  , u ' 

[ C(l+t)-N'2\og(t + 2),       whenj = N. 

Thus, the desired inequality holds true. □ 

Lemma 2.2. (i) Let (u0, VQ) e I51 x I*2. Then (5( • )uo, S( ■ )vo) G Er for any T>0, 
and we have 

||(5(-H,5(.H)l|£T<c{|Klloo,5l + IKIIcol52}. 

(ii) Let (u,v) 6 ET- Then ($i(v),$2(^)) € ET, and we have 

ll^iCt;),^^))!!^ < CT{||(0,t;)||^. + ||(«,0)||^}. 

Proof, (i) is obvious from Lemma 2.1 with 7 = 5 = 5k (k = l, 2). 
(ii) Note that 

rt pt 

[ S(t-s)|.|"1t;(s)p<fe< / 5(t-5)(.)(7l-52Pd5 sup |K 
./O Jo s€[0,t] 

8WPoot62- 
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By a simple calculation, — ai + 62P = Si < N. Then it follows from Lemma 2.1 with 
7 = S = 81 that 

iis(t-«)<-r-'apiiooA<c- 
Thus we have 

rt 
I S{t-s)\'\(Jlv{sYds 

Similarly, we have 
rt 

\f Sit-sy-ftuWds 
\Jo 

<Ct sup |KS)||^2. 
cx),5i a€[0,t] 

<c< sup M*)!!^. 
00^2 s€[0,tj 

These inequalities conclude the assertion (ii). □ 

Now we can prove 

Theorem 2.3. Assume that (UQ^VQ) e I51 x I62. Then there exists 0 < T < 00 and 
a unique pair (u(t),v(t)) € PT = {(^v) ^ ET \ u > 0,v > 0} which solves (1) in 
RN x(0,T). 

Proof, (cf. [2; Theorem 2.1]) Let BR = {(u, v) G ET | ||(M, WJIIJE^ < i2}. If i2 is large 
enough and T > 0 is small enough, then using Lemmas 2.2, one easily sees that ^ is a 
strict contraction of BR n PT into itself. Thus there exists a unique fixed point which 
solves (1). Here we have used the fact that PT is a closed subset of ET> □ 

Next, we shall obtain a necessary condition for the global existence of solutions. 
Let p€(x) = (e/7r)N/2e-eW\ e > 0. For a solution {u{t),v(t)) e ET of (1), we put 

Fe(t)= I    u(x,t)p€(x)dx1    Ge(t) = /     v(x,t)p€(x)dx. 
JiiN JnN 

Since —Ap€(x) < 2Nep€(x), the pair {2Ne,p€(x)} is regarded as an approximate 
principal eigensolution of —A in R^ (see e.g., Imai and Mochizuki [9]). With this fact 
and the Holder inequality we easily have 

F&t) > -2NeFe(t) + Cpe-^/2Ge(ty, 

G'e(t) > -2NeGe(t) + Cqe-°*/2Fe(t)i, 

where for cr/(p — 1) = cri/(p — 1) or a/(p — 1) = 0-2/(4 ~ 1)? 

Cp = (*-N/2JN Ixl-'/tf-^e-l'I'dr)"^1. 

Let us consider the system of ordinary differential equations 

f'(t) = -2Nem + Cpe-^/2g(ty, 

g'{t) = -2Neg{t) + Cqe-^
2f(ty, (13) 

m = Fe(0),    9(0) = GM- 
We say that (f(t),g(t)) is not global or blows up in finite time if there exists T > 0 
such that 

limsupmax{/(£), <7(t)} = oo. 

As an application of the standard theory of ODE, we have: 

(12) 
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Lemma 2.4. (i) Let 

Q = { (f,g) € 11% | (C-^iVe1^/2/)1^ < g < C^Ne1^'2)-1^ }. 

J/(/,ff) solves (13) on (0,T) and (/(0)^(0)) G Q, ^ften (f(t),g(t)) e Q on (0,T). 
(ii) Let (/(O),^^)) € Q. T/ien (/(t),5f(t)) 6/0^5 ^p m a finite time. 

Proof. See e.g., Qi and Levine [14; §3] or Galaktionov et al. [4, 5]. □ 

Note that there is only one equilibrium of system (13) in R/j_, say, 

P = (de^+W2, C2£(/5+<52)/2)        (Ci, C2 > 0). 

P is a saddle point. One of the separatrices starts from 0 and runs to 00. Another 
one intersects the /- and g-axes at Ae and Be, respectively. By a scaling argument, 
we see that 

A€ = Aic'0**)/2,    Be = Bi€<"+«3)/2. 

Every solution (f(t)^g(t)) of (13) with the initial value (/(0),^(0)) lying above this 
separatrix runs into Q and hence blows up in finite time. 

As a result of these arguments and a comparison principle, we have the following: 

Theorem 2.5. Let (F€(t),G€(t)) satisfy differential inequalities (12). If 

F€(0) > Aie^+^/2    or   G€(0) > B^6^2 

for some e > 0, then (Fe(t),G€(t)) blows up in finite time. 

3. Proof of Theorems 1 and 2 

Throughout this section, we assume /3 + 62 > OL + <5i for definiteness. We shall require 
the following auxiliary tools. 

Lemma 3.1. Let (^0,^0) 7^ (0,0), and Ze£ (^(t), ?;(£)) be a solution of (1). Then there 
exist r = r(tfco? ^o) > 0 and constants C > 0, v > 0 s^cfe tftatf 

ti(r) > Ce"^'2    and   t;(r) > Ce-^x\2. 

Proof. Obvious (see [2; Lemma 2.4]). □ 

Lemma 3.2. For a > 0 and v > 0, we have 

S(t)\xfe-^2 > C(T(2ty/2(2vt^l)-^N+^/2e-^^2t 

where 

Ca = (27r)-N^ f    We-M'dx. 

Proof. We have 

SitWe-W > (4:Trt)-N/2e-M2/2t f    \y\ae-^+2vt^2/2tdy 
Jn.N 

This proves the lemma. □ 

Theorem 1 in the noncritical case (3+52 > N and Theorem 2 are direct consequences 
of Theorem 2.5. 
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Proof of Theorem 1 (noncritical case). By means of a comparison principle and Lem- 
ma 3.1, we can assume ^o € I/1(RN) and 

/     vo{x)d: lx>0. 

The Lebesgue dominated convergence theorem then shows the existence of eo > 0 such 
that 

Ge(0) = (e/7r)N/2 [    Vo(x)e-eW2dx > ^(e/Tr)^2 f    v0{x)dx 
JiiN * JiiN 

for any 0 < e < eo-  Since (3 + 62 > JV, this implies that the condition of Theorem 
2.5 is satisfied if e < €0 is chosen sufficiently small. Thus, (F€(t), Ge(t)) blows up in a 
finite time. □ 

Proof of Theorem 2. First consider the case (i). If ^0 £ -fa with a < a + 5i < AT, then 
we have 

Fe(0) = (e/Tr)^2 /    tio(aOe-€l*la£fc = TT"^
2
 /    ^(e-^c-I^I'dx. 

Then it follows that 

€-(a+6i)/2Fe(0) > Qz-fr+Si-ai^-N/*  f     ^-ae-\x\*dx > Ai 

for sufficiently small e > 0. If ^o G h with 6 < yS 4- £2 < N, we similarly have 

e-(^2)/2Ge(0) > Bi 

for sufficiently small e > 0. Thus, (JF^OOJ Ge(^)) blows up in finite time by Theorem 2.5. 
Next consider the case (ii). We then have 

Fe(0)    or    Ge(0) > C(e/n)N^ f    e'^^^dx = c(—— )N/2. 

Thus, if we choose e = 1 and C > max-jyli, Bi}(l + vo)N/2, the condition of Theorem 
2.5 also is satisfied in this case. □ 

In the rest of this section, we consider the critical case (3 + 52 = N (cf. [2; §4]). 
Let (u(i),v(i)) £ ET be a nontrivial solution of (1). By Lemma 3.1, we can assume 

vo(x) > Ce-^l2 

for some C > 0 and fj, > 0. Then by a semigroup property of S(£), we have 

v(x,t) > S(t)vo(x) > C(4/xt + i)-^/2e-l^2/(4t+i//,)< (^ 

Lemma 3.3.  We have 

u{x,t) > Ct1+^!2{t + i)-^p/2e-l*la/*. 

Proof It follows from (10) and (14) that 

u{x,t)> f S{t-s)\x\<Tlv{x,s)pds 
Jo 

>CP I (45 + l/^)-^/25(t-5)|a;rie-^l2/(4s+1^)ds. 
Jo 
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By Lemma 3.2 with v = p/(4s + 1///), we then have 

«(*,t) > C J\AS + 1/M)-^(* - ^1/2{|^ + iJ^^VW/X*-) ds 

> C(2t + lliJL)-N*l2{tl2y*l2e-W I* \     ds. 
Jt/A 

Thus, the inequality of the lemma holds. □ 

Lemma 3.4.  We have 

v{x, t) > Ct-x^e-W2!1 \og(t/2a)       fort>a 

where a > 0 is a small constant 

Proof. It follows from Lemmas 3.2 and 3.3 that 

v{x,t)> [ Sit-s^xpufasyds 
Jo 

> C f s^+^M^s + l)-"w/2(t - sY*'2 

0    x{2^-g)
+l}"(iV+")/2e-NV2(^)ds 

> C{t/2Y2/H~^NJrC72)/2e~^ /* /     gi-^^-^+^+^i)^^}^^ 

for small a > 0. Since 

iV(pg-l)-(2 + c7i)g-c72 = (pg-l)(iV-/3-52) + 2 = -2, 

this proves the inequality of the lemma. □ 

Proof of Theorem 1 (critical case). Let {u(t),v{t)) E ET be a nontrivial solution of 
(1). Then it follows from Lemma 3.4 that 

[S(t)v( •, t)](0) > Ct'N log(t/2a) f    e-^2'Atdx > Cr™'2 log(t/2o) (15) 

for a < t < T. 
Contrary to the conclusion, assume that (^(t), ?;(£)) is global.   Then, by Theo- 

rem 2.5, 

Ge(t) = (e/Tr)^2 /    v{x, t)e-€W2dx < B^ 
Jn" 

(0+S2)/2 

for any t > 0 and e > 0. Thus, choosing e = l/4t, we obtain 

GW*) = [S(*)t;( •, *)](0) < B(4t)-^+^)/2 = JB1(4t)-JV/2. 

This and (15) contradict each other if T = oo, and the proof of Theorem 1 is complete. 
□ 
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4. Proof of Theorem 3 

First note that condition (3) can be replaced by (^o,^) € Ia x Ib since we have 
Ia x Ib C Ia x Ib. Then, to establish Theorem 3, we have only to consider the special 
case a = a and b = b. 

Here we repeat condition (5): 

a + <*! < a < minliV, Np-2- CTI},     — — < b < aq - 2 - (72.       (16) 
P 

As is easily seen, this condition is equivalent to 

a < N,    min{Ar, b}p - a - <j\ > 2,    aq-b-a2>2. (17) 

For the sake of simplicity, we set for 7 > 0, 

^(x.t) = S(t)(x)-^ 

Lemma 4.1.  We have 

Va&t)-1 < Cmax{(z)a,(l + *r/2}. 

Proof. First assume that t < 1. As is well known, rja(x,t) —> (a:)~a as t —> 0 locally 
uniformly in a: G R^. If |a;| > 2, 

%(»,*) > (^t)-N/2 I      e-\y\2'u{x - y)-ady 
J\y\<i 

> C(x}-a f      e-\y\2'Hy > C{x)-a. 
J\y\<i 

Next, let t > 1. Then we have 

ffa(*, t) > (47r)-iV/2t-a/2 /    e-W^xIt1'2 - y)-ady. 

If l^l/t1/2 < 1, this shows 

ria(x,t) > Cr^2 f    e-M2/4(y}-ady > Ct"^2. 

On the other hand, if [xl/t1/2 > 1, then rjaix^t) > 0, and 

Maf7a(s, t) > C I e-W*l\\x\l#'2)*(\x\l&l2 - y)-ady 
J\y\<V2 

-+ C f e-^'^dy > 0    as f -^ 00. 
■/|y|<l/2 

Summarizing these results, we obtain the inequality in the lemma. □ 

Lemma 4.2.  We have in R^ x (0,00), 

isr^x tv< / ^1+f)(ffl+a-minW6}p)/2^(^*)' tfM*     (18) 

|a!p^(a:,*)« < C(l + tf^^-^'^x,t). (19) 
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Proof. We only consider the case b > o. A similar argument can be applied also to 
the case b < a. We have by Lemma 4.1: 

\x\airib(x,t)p = Ixf'ribix^yriaix^y^aix.t) 

< C\x\^ max{(x)a, (1 + t)o/2}ffo(a, ty^x, t). 

Since (a + (J\)/p < minliV", b} by (17), we can use Lemma 2.1 to obtain (18). 
Next, by use of the Jensen inequality, we have 

where r = b/a. Since (J2 < a(q — r) = aq — bby (17), Lemmas 4.1 and 2.1 also give 
(19). □ 

We define the Banach space E^ of pairs (u(t), v(t)) such that 

IIMK = IH^alHoo + Il|t0fcllloo < ^ 
where 

IIHIIoo= SUP \w(x,t)l 
(a;,t)6R^x(0,oo) 

and consider again the integral equation (10) in E^. 

Lemma 4.3. (i) Let (UO.VQ) satisfy (3). Then we have (S(')uo,S(-)vo) G E^ and 

||(5( • )|lo, S( • )vo)\\Ev < {||tlo||oofa + Moo,*}- 

(ii) Let (u,v) e Ev. Then we have ($i(v),$2fa0) G ^ and 

IKSiCt;),^^))^ < c{\\{Q,v)fEri + ||(«,0)||^}. 

Proof, (i) is obvious from the definition of E^. 
(ii) We have from (18): 

l*i(«)I < { S{t-s)\-\^\v{s)\pds 
Jo 

< f s(t- sM^n^sydsWivM^ 
Jo 

[   /„*(! + 8)('i-H»-Arp)/2 log(2 + s)Pds, 

and from (19): 

|*2(ti)| < Clfc^t)   Al + 5)^+6-^/2dS|||^a|||L- 

Thus, noting (17), we obtain 

which imply the desired conclusion. □ 

Proof of Theorem 3 (the case p > 1). We consider the map \I> defined by (11) in E^. 
Let ||uo||oo,a + Hvolloct = m > 0 and set Bm = {(u,v) E E^ \ 11(^,^)11^ < 2m} and 
P-n = {(^5 ^) G E^ | u > 0, v > 0}. Then since p, g > 1, by means of the above lemma, 
we easily see that * is a strict contraction of Bm fl P^ into itself provided m is small 
enough, whence the result. □ 
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Next, we consider the case p = 1. In this case, (10) is reduced to 

u(t)=T(t)(uo,vo) + T(u) (20) 

where 

T(t)(u(hvo) = S(t)uo+ f 5(t-s)|.|ai5(3>od5, 
Jo 

T(u) = f S(t - s)\ • r1 T S(s - r^tf^uiT^u^drda. 
Jo Jo 

We shall consider equation (20) in the Banach space X with norm Mw/^alHoo. 

Lemma 4.4. (i) Let (UQ^VQ) satisfy (3). ThenT(')(uo,vo) €X and 

imOK^oVr/allloo < C{||^o||oo,a + Moo,*}. 

(ii) F maps X into itself and 

llirMllloo^ciMl^     for u ex. 

Proof, (i) As in the proof of Lemma 4.2 (ii), noting (17), we have from (18): 

\T(t)(uo,Vo)\ <77a(M)|M|oo,a+  /   S(t - s)\ • ^ ^ • , s)ds\\v0\\OOib 
Jo 

<%(a?,*){||tlo||(X)la + C,||t;o||oof6}. 

This implies assertion (i). 
(ii) Similarly as above, it follows from (17) and (19) that 

Vallloo- |r(fi)| < C [ S(t - s)\. rVb(s)ds\\\u/Va 
Jo 

Moreover, it follows from (17) and (18) that 

irM < Cik(M)lll«/^||IL. 
Thus, assertion (ii) is concluded. □ 

Proof of Theorem 3 (the case p = 1). We consider the map v -> T( • )(uo, VQ) + r(^) 
in X. Let |KI|oo,a + 011^01100,6 = rn > 0 and set Bm = {u € X \ Wlu/rjalW^ < 2m} and 
P = {u e X | u > 0}. Then since q > 1, by means of the above lemma, we easily see 
that this map is a strict contraction of Bm fl P into itself provided m is small enough. 
Hence, there exists a unique fixed point u G X which solves (20). We substitute this u 
in the second equality of (10). Then the pair (u^v) solves (10). Note that by Lemma 
4.3, 

Kt)| < Vb(x,t){\\vo\Ub + CHIti/l/alll^}. 

Thus, we conclude (u, v) G E^ and the proof of Theorem 3 is complete. □ 
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5. Proof of Theorem 4 

In this section, we follow the argument of Kamin and Peletier [10], who studied the 
asymptotic behavior of the heat equation with nonlinear absorption. 

We put 

Uk(x,t) = kau(kx, kH),    Vk(x,t) = kb v(kxJ k
2i) 

for k > 0 where b' = min{iV,6}. Then (uk(t),Vk{t)) solves 

ukt = Auk + ka+2^'b/p\xrvl 

vkt = Avk + kb'+2+°*-aqul (21) 

uk(x, 0) = kauo(kx),    vk(x, 0) = kb vo(kx). 

Note that we have assumed a < N and b ^ N. Then it follows from (4) that 

IkWIU < kac(k2t)-a/2 = ct-a/\ 
\\vk{t)\\<x><kh,C{kH)-h'l2 = Ct-h'l\ 

Thus, {uk(x,t)} and {vk{x,t)} are uniformly bounded in R^ x [5,oo) for any 5 > 0. 
As is easily seen from the integral equation (10), the uniform boundedness implies the 
equicontinuity of {uk(x, t)} and {vk(x^ t)} in any bounded set of R^ x [5, oo). Then, 
using the Ascoli-Arzela theorem and a diagonal sequence method in 5, we see that for 
any sequence {kj} —> oo, there exists a subsequence {kj} and continuous functions 
Wi (#,£), W2 (x,t) such that 

Uh'.(x, t) —> wi(x,£),    vkt.(rr, t) -> W2(x, t)    as kj —> oo 

locally uniformly in R^ x (0, oo). 

Proof of Theorem 4. (i) We shall first show 

w1(x,t) = S(t)\x\-a. (22) 

It follows from the first equation of (21) that 

/     u^x^^x^dx— I     Wfc(x,0)C(^,0)da; 

= (1    KCt + UfcAC + fca+2+CTl-^| • \°H{(;}dxdt (23) 
Jo Jn" 

for any t > 0 and nonnegative test function ((x,t) € Co0(RiV x [0, oo)). By assump- 
tion (6) on the initial value UQ, 

/    uk(x,0)C(x,0)dx= /    kauo(kx)C(x,0)dx 
JnN Jn" 

A\x\~aC(x,0)dx   as    k = fcj —»> oo. 1 
On the other hand, 

= f     f   ka+(yi\x\aiv(kxiT)pC(x,k''2T)dxdT. 
Jo      JllN 
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Here, 

ka+^\x\^v(kx,T)p = [(fc|a;|)6,t;(&x,r)](a+<7lW6, 

x vP-(a+ai)p/b/kfa+nKi-p)\x\<Ti-~(*+<ri)p 

for p > 1. As is easily seen from (7) and Lemma 2.1, (fc|x|)6 v(kx^r) is bounded in 
R^ x (0, oo) and 

v(kx9Ty-(a+<riWb' < c(i + t)(-b,p+a+aiV2. 

By assumption (17), there exists a p > 1 such that 

ap + <Ti(p- 1) < N   and    6'p - (a + cri)p > 2. 

Then, since (a + cr1)(l — p) < 0, these imply 

pk t    p 

/       /     ka+ai Ixf1 v(kx, T)
P
((X, k-2T)dxdT -> 0   as    k = & -+ oo. 

Thus, letting fe = fc^- —>• oo in (23), we obtain 

/     wi(a:,*)C(M)<fc- /     A|a7|~aC(^J0)rfa7= /    /    {^iCt + twiACJcfad*. 
JR^ JII

N Jo Jn1* 

The uniqueness of solutions of 

ut = Au,        u(x, 0) = A|a;|~a, 

then gives (22). 
The uniqueness result asserts more: 

uk(xyt) -> AS{t)\x\-a   as   k^oo (24) 

uniformly in compact sets of R^ x (0, oo). 
Note again (4), that is, 

uk(x,t) < CkaS{k2t)\kx\-a. 

Let t = 1 in this inequality. Then, by the self-similarity of S(t)\x\~a, we have 

^(^l)<C5(l)|x|-a. 

This inequality implies that for any e > 0, there exists an R > 0 independent of k > 1 
such that {uk(x, 1)} are uniformly less than e in \x\ > R. Therefore, it follows from 
(24) that 

uk(x,l)-AS(l)\x\a ->0   as   fc-»oo 

uniformly in R^. We let y = kx and s = k2 in this relation. Then noting again the 
self-similarity of S(t)\x\~a, we conclude that 

sa/2\u(y,s)-AS(s)\y\-a\-^0   as   s -> oo 

uniformly in R^. 
Relation (7) now is proved for u(x,t). The same argument can be applied also to 

v(x,t) if b < N and (6) is satisfied by vo(x). 
Proof of Theorem 4 (i) is now complete. □ 
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Proof of Theorem 4. (ii) As in the above case, we shall show 

uk(x,t) -► vbfat) = M(47rt)e-|a:|2/4t    as   k -> oo (25) 

locally uniformly in R^ x (0,oo) where M is as given in (11).  It follows from the 
second equation of (20) that 

/    Vk(x,t)((x,t)dx - /    Vk{X)0)((x,0)dx 
Jit" JiiN 

= I   f    {vktt + vkA{ + fc"+2+"a-««| . \^ulC}dxdt (26) 

for any t > 0 and nonnegative £(#, t) € Cg^R^ x [0J 
00))- 

Since b > AT, condition (3) implies that vo(ic) € L1. Then we have 

/    Vk(x,0)t(x,0)dx= /    voCxJCCfc-^Ojda;-* /    vo(^)^C(0,0) 
^R^ ^R^ JllN 

as fc = kj -+ oo. On the other hand, 

/   /    kN-{-2+cr*-aq\-puq
k<;dxdt= [      [    Ixpuix.ryCik^x.k-^dxdr. 

Jo JiiN Jo     JTI
N 

Here (4) and Lemma 2.1 lead to 

la^tifoT)q < C(l + r)(-a^-r)+CT2)/2n(a;, r)r 

for some r satisfying (72 < a(g - r). We put r = ATp/a. Then, by assumption (17), we 
can choose p > 1 to satisfy 

a(q -r) -a2 = aq- Np - 02 > 2. 

Then, since 

u(z,T)r < C [S(t)(z)-a]r < CS{t){x)-Np, 

it follows that 

/     /     \x\a2u{x, rYdxdr < 00, 
Jo   Jn" 

and we have 
rkH 
/       /     |xr2t6(x, rYCik^x, k-2r)dxdT -> /     Ixl^^a?, r)9dxdrC(0,0) < 00 

Jo     JR^ JO   JII
N 

as fc = fc^- —> 00. Thus, letting k = fc^. —> 00 in (26), we obtain 

/    ^(a;,t)C(x,t)da?-MC(0,0)= /    /    {i^Ct + W2AC}dadt. 
JR^ JO JR^ 

The uniqueness of solutions of 

ut = Au,        u(x, 0) = M6(x) 

where S(x) is the Dirac 5-function, then implies (25). 
We put t = 1 in (25). Then letting y = kx and s = A:2, we conclude 

W2|w(2/,5)-M(47r5)-iV/2e-l2/l2/4s|^0   as    8-> 00 

uniformly in {y € RN \ \y\ < fis1/2} for any R > 0. 
Theorem 4 (ii) thus is proved. □ 
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