
Methods and Applications of Analysis © 1998 International Press 
5 (1) 1998, pp. 55-80 ISSN 1073-2772 

TRANSFORMATION OF POLYNOMIALS 
ORTHOGONAL ON THE UNIT CIRCLE 

Franz Peherstorfer and Robert Steinbauer 

ABSTRACT. Let {an} be an arbitrary sequence of real numbers with \an\ < 1 
for n G No, and let 6i,... ,6^-1, fyv-j = —bj be an arbitrary symmetric se- 
quence of N — 1 complex numbers with |6j| < 1. In this paper, we give a full 
and explicit description of the orthogonal polynomials, the measures, and the 
Caratheodory functions which are associated with reflection coefficients of the 
form {fa,..., bN-i, ao, 6i,..., &JV-I, oi,...}. More precisely, we show that the 
orthogonal polynomials generated by such a sequence of reflection coefficients can 
be obtained by a transformation of polynomials orthogonal on the unit circle. 
Further, they are orthogonal with respect to a measure of the form (w((p)/y/p(ip) 
#'(¥?)) cfo7o(#(v?)) where <TQ is the orthogonality measure associated with {an} and 
where the trigonometric polynomials w, p and the function $ can be constructed 
explicitly with the help of the 6/s. In particular, tf is a function which maps iV 
subintervals of [0,27r] onto the whole interval [0,2ir]. On the other hand, it is 
demonstrated that polynomials, which are orthogonal with respect to a measure 
(w(ip)/y/p((p)'d-((p)) dcro('d((p)) where cro is an arbitrary symmetric measure on 
[0,27r] and i? is a function of the type just given, have reflection coefficients of the 
above form. 

1. Introduction and notation 

Let croiv) be a positive Borel measure on the interval [0,27rj with an infinite sup- 
port. Then for every n € No, there exists a uniquely determined monic orthogonal 
polynomial Pn(z, ao) = zn H of degree n which satisfies 

r27r 

e-^Pn(e^, ao) daoiv) = 0       for j = 0,..., n - 1. 
/o 

It is well known that these monic orthogonal polynomials can be generated by the 
recurrence formula 

Jo 

Pn+i(z,<To) = zPn(z,ao) -an(<Jo)P*(z,ao),        n G No, (1.1) 

where P*(z,(To) := znPn(l/z,cro) is the reversed polynomial of Pn(z,cro). Here, the 
complex numbers an(<Jo) = —Pn+i(0,cro) satisfy 

|an(^o)| < 1»        n € No, 

and are called reflection coefficients or Schur parameters. 
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56 PEHERSTORFER AND STEINBAUER 

There is a one-toone correlation between the measure ao and the Caratheodory 
function (abbreviated in the following by C-function) F(z, CTQ), which is defined by 

F(z,*o) = JQ    jT^tooiv),       \z\<l. 

F(z,ao) is analytic on \z\ < 1 and pseudopositive there, i.e., ReF(z,ao) > 0 for 
\z\ < 1. The distribution function CTQ can be reconstructed from F(z, ao) by means of 
the inversion formula 

M<P + 0) + M<P-0) = cmstmt + M   1   T Re F(se^, ao) #. (1.2) 

Next, let us give the definition of the (not necessarily monic) polynomials of the 
second kind fJn(z, CFQ) with respect to CTQ: 

tonfaeo) 
/     -j-^- (Pn(e^,ao) - Pn(zt a0)) dvoif)       if n > 1, 

= <   Jo     e    "~ z 

K F(09ao) ifn = 0. 

It is not difficult to see that all the nn's are of exact degree n with leading coefficient 
F(0,cro). Furthermore, the polynomials of the second kind satisfy the recurrence 
relation similar to (1.1), namely, 

fin+i(z,<7o) = zQn(z,ao) + an(ao)Qn(^^o)i    n £ No. (1.3) 

Another known and useful relation between the orthogonal polynomials and the poly- 
nomials of the second kind is 

P*foao)0»(s,<ro) + pn(*,<To)fi;;(*,*o) = 2JF(0,<7o)drl(<7o)sn (1.4) 

(see e.g., [8, formula (5.6)]), where dn(^o) := Il^o^1 ~ Wj^o)?) if n > 0 and 
do(^o) := 1. 

With the help of the C-function and the polynomials of the second kind, the or- 
thogonal polynomials can be characterized in the following way. 

Theorem 1 (Peherstorfer and Steinbauer [17]). Let CTQ be a distribution function. 
Then a polynomial A of degree n is orthogonal with respect to ao, i.e., A = cPn(-, ao), 
c e C \ {0}, if and only if there exists a polynomial B of degree n such that 

A{z)F{z,ao) + B{z) = 0{zn), 

A*{z)F{z,ao) - B*(z) = 0(zn+1). 

In such a case, B is the polynomial of the second kind with respect to ao, i.e., B = 
cftn(-,<To). 

It is well known (compare the above considerations) that to each sequence of re- 
flection coefficients {an(cro)}, there corresponds an orthogonality measure CTQ and to 
the measure CTQ, a C-function F(z,ao) in a unique way. Thus, we have the following 
correspondence : 

{an(ao)}    <—►    <To{ip)    <—►    F(Z,<TO). (1.5) 

One of the main problems now is to find the corresponding measure ao (respectively, 
the C-function F(z,ao)) for a given sequence of reflection coefficients {an(ao)} and 
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conversely. Cases where solutions can be found explicitly (i.e., the orthogonality mea- 
sure as well as the reflection coefficients can be given explicitly), are very rare: only 
the Jacobi weight functions (1 — cos(p)a(l + cos^)^| sin^| are studied (see e.g., [15, 
p.234]) and — from the point of the reflection coefficients — the case of periodic re- 
flection coefficients (e.g., see [7, 19]). If one knows the solution for the sequence {an}, 
then also one can handle a finite perturbation of the reflection coefficients [16] and 
the case when the reflection coefficients are of the form {0,..., 0, ao, 0,..., 0, ai,...} 
where there always appear N successive zeros. For instance, by [1, 11,14, 17], we have 
the following correspondence: 

{0,...,0,aoM,0,...,0,ai((To),0,...}    <—>    ao{N(p)     <—>    iWo),   M 

N times iV times 

assuming (1.5) holds. Moreover, the orthogonal polynomials with respect to ao(N(p) 
where Nip is taken modolo 27r, are explicitly given by ziPn(z

N, CTQ), j = 0,..., N — 1. 
Hence, it is natural to ask (see [21, pp. 142-145] and [11]), whether such a correspon- 
dence also can be given for reflection coefficients of the form 

{6i,..., 6JV-I, ao(cro), &i,..., &j\r-i, ai((7o), • • •} 

where the 6j, j = 1,..., N — 1 are complex numbers with |6j| < 1. For many of the 
specialists in this field, a correspondence with a C-function of the form F(TN(Z), CTQ), 

TJY a polynomial, was expected. But this does not hold in general. It will turn out 
that it is more natural to study a functional transformation which maps N arcs of the 
unit circle onto the whole unit circle, instead of a polynomial transformation. Under 
the additional assumptions that the starting-reflection coefficients arl(cro) are real and 
that the inserted reflection coefficients bj are symmetric in the sense that 

Fj^-bN-j,        j = l,...,JV-l, 

we shall demonstrate a correspondence of the following form: 

{bi,...,biv-i, ao(cro),*>i,...,&jv-;u ai(cro), &i,...}     <—► 
iV times JV times 

W{eiV)     dj.M-V    —      W{Z) F(
T(z)-VW)     \     h7, 

^BW)n^o{m)       7mF{T(Z)+vwyav (L7) 

Here the polynomials #, T, and W only depend on the values of &i,..., &JV-I, and 
the function # is given by 

i%) = Arg I 

for detailed description, see the next section. 
This paper is organized as follows: In Section 2, we will state some additional pre- 

liminary notations and definitions, and in Section 3, we give a full explicit description 
of the correspondence in (1.7). We also will show how the resulting orthogonal poly- 
nomials are related to the original orthogonal polynomials Pn(z,ao). Making use of 
the well-known relationship between orthogonal polynomials on the unit circle and on 
the real line, our results reprove some known results of Geronimo and Van Assche [9] 
but also give some new insights to the reflection coefficients of orthogonal polynomials 
on the real line; see Section 4. In Section 5 ,we give the proofs of our results. 
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2. Preliminaries 

In this section, and for the rest of the paper, we suppose that CTQ is a symmetric 
probability measure, i.e., 

/»27r 

and 
dcro((p) + d(To(27r — </?) = 0,    or equivalently, 

ReF(e^,ao) = ReJF(ei(27r-^,ao)    a.e. on [0,2*]. 

/     da0(ip) = l (2.1) 
Jo 

(2.2) 

Here, F(ei(p,cro) is considered to be the boundary value lim^!- F(sel(p
1ao), which 

exists a.e. on the unit circle. The symmetry property implies that all the orthogonal 
polynomials Pniz, CTQ) have real coefficients, in particular, the reflection coefficients 
O'n(o'o) are real as well. Furthermore, F(x,ao) takes real values for x G (—1,1). 

We start our investigations on (1.7) from the point of view of measures, respec- 
tively, C-functions. We will introduce a transformation which leads, as it will turn 
out, exactly to the reflection coefficients of the form given in (1.7) satisfying the prop- 
erties under consideration. This transformation reproduces the measure CTQ on several 
subintervals of [0,27r], similar to the transformation if —► Nip mod 27r from (1.6). In 
fact, we will arrive at an extension of this function. 

For the exact description of our transformation, some auxiliaries are needed: Let 
AT be a positive integer and let T(z) = T*(z) = azN H , |a| = 1, be a self-reversed 
polynomial of degree AT, whose zeros are all simple and located on the unit circle. 
Further, let L > 0 be a real number such that the function |T(eZ¥>)| — L has exactly 
2iV zeros (counted according to their multiplicity) on [0,27r)1. 

Finally, we define the polynomial R by 

R(z) := T2(z) - L2zN = a2z2N + • • • . (2.3) 

By construction, all the zeros of R lie on the unit circle and are, at most, double. 
To the polynomial T (respectively, i?), we associate the set EN, defined by 

N 

EN := {|T(c^)| < L}    mod 2* =: (J[^_1, tp2j]. 
3=1 

Note that the e1^ 's (again counted according to their multiplicity) are exactly the 
zeros of R. 

Remark. Let us note that for convenience of the reader that we use a slightly different 
notation from that in [20]. Here, in contrast to [20], R may have double zeros, i.e., we 
have 

<Pl<<P2<<P3<<P4<<P5<--< V2N- (2.4) 

Assuming that exactly iV — / of the ^'s coincide, R can be written in the form 

i 

R{z) = R^Ul^z)     and    EN = Ei = (J [v^M-i, ^2J(I/)] (2.5) 

1In fact, there exists a Lo > 0 such that all L E (0, Lo] have the assumed property. 
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where UN-I{Z) = pzN~ljr' • • is a self-reversed polynomial, and the e^w 's are exactly 
the simple zeros of R, i.e., the zeros of R. Now R, Ei, and UN-I from (2.5) correspond 
to i?, Ei, and UN-I from [20]. 

Now we are ready to define the function 0, which is essential in what follows, by 

u    r(z) + V^) 
Here, the squaxe-root y/R is analytic on CVTs^, TEN ~ {ei'fi : <p € SJV}, and satisfies 

T(Q) = y/m = a, (2.7) 

and 

y/Rfetv) = < ,  
W-lJi+iciWaJvyi^??)!,     V€[w«,ww+i],    j = l,...,N-l. 

(2.8) 

The next proposition gives some important properties of the function 6. 

Proposition 1. Let the function Q(z) be defined as in (2.6) and suppose that C\TEN 

is connected, i.e., that TEN is a strict subset of the unit circle. Then the following 
holds. 

(a) 6 is analytic onC\ F^ and its only zero is at z = 0. Further, 

G(z) 
zN =o "U 

(b) 0 maps C \ TEN onto the interior of the unit disk. 
(c) The function 

zN/2     _T(z).+ y/R(zj 

VW) L 

maps C \ Fj^^ onto the exterior of the unit disk. 
(d) |e(e^)| = lfor<peEN and e(c^) € (-1,1) for <p £ EN. 
(e) The mapping © is continuous and bijective on [<P2j-ii^Zj)) 3' — 1? • • • )N, with 

0(6*^-1) = e(e^i) = l 

and 

©(r[^ai-i,v>2i]) = r[o,27r] = {\A = 1} 

where we used the notation TM := {^ '• ip G M} for M C [0,27r]. 
(f) Le^ ^Ae (multivalued) function Y be given by 

Y{x)-= yW)= V L • 
Then In 13^(^)1 is the Green's function ofC\TEN with pole at infinity (for the definition 
of Green's function, e.g., see [24]). 

(g) The function 

tifa) := Arge(eiip) 
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is strictly monotone increasing from 0 to 27r on each interval [(p2j-i,(p2j]' Here, the 
argument Argz of a complex number z is always considered to be between 0 and 27r. 

(h) The following relations hold: 

Lcos^=r(^)    and   Lsin^ = (-1)'VIPMI, 

V ^ [^P23-i^2j\j where the real trigonometric polynomials T((p) and p{(p) are given by 

T(<p) := e-'WQvTiet*)    and   p(ip) := e-iNipR(e^). (2.9) 

Remark. If TEN coincides with the unit circle, then T(z) = zN +1, R(z) = (zN — I)2, 
and L = 2. Hence, Q(z) = zN, and one immediately sees that the parts (a), (d), (e), 
(g), and (h) of Proposition 1 remain valid for this case. 

Given the measure CTQ, respectively, the C-function F(z,cro)i we can construct a 
new measure a and C-function F(z,cr), respectively, via the transformation 9 in the 
following way. 

Proposition 2. Let W = — W* be an antiself-reversed polynomial of degree N van- 
ishing only at zeros of R, which has the same sign as ^/R(ei^) on the arcs of TEN 

and which is normalized by \W(0)/y/R(0)\ = 1. Then the function 

F(z, a) := -SL F(Q(z), a0) -iJmj, (2.10) 
VR(Z) 

7 := W(0)/\/i?(0), is a C-function where a denotes the associated measure. Farther- 
more, supp (<T) C EN and the measure a is given explicitly by 

for every continuous function h. 

Remark. A class of neat looking weight functions obtained by a transformation fi of 
the above form can be described in the following way: Let g : K —> R be symmetric 
with respect to TT, i.e., g{(p) = g(2ir — (p), 27r-periodic, nonnegative, and L1-integrable. 
Further, let r(^) be a real trigonometric polynomial of degree N/2 with iV simple 
zeros in (0,27r), and let L G R+ be defined by 

L<inin{|r(^)|:r/(^) = 0}. 

Suppose that R and W are given as in Proposition 2. Then the weight function is 
given by 

'»«*     oe*"- (,i2) 
0, <p(=[0,2w}\EN, 

where r((p) := (7r/L)r(^), fits into the class of measures treated in this paper. In fact, 
define the new weight function as 

/o(p):=0(7rcos|),    tpe[0,2ir]. 
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Then for v? € EN, 

where the last identity follows by Proposition 1(h). 

For some further illustrative applications for constructing new orthogonality mea- 
sures by using the transformation 6(2), see Section 4. 

3. Main results 

In the previous section, we introduced a transformation of measures, respectively, 
C-functions. In this section, we will see that these transformations, given as in (2.6), 
lead exactly to all the reflection coefflcients considered in (1.7). 

The following theorem shows how the monic orthogonal polynomials Pn{z, CTQ) and 
PnN(Zi&) are related to each other. 

Theorem 2. Let {Pn(z, CTQ)} be a sequence of orthogonal polynomials with respect to 
the symmetric measure CTQ, and let the function 0 be of the form (2.6). Under the 
assumptions of Proposition 2, the following relations hold for every n G No: 

P«NM = «„(^)n/2{p„(e(,),CTo)(7 + ^f 

+ iS(e(*w(7-^)}f. 
and the polynomials of the second kind can be represented in the form 

ftnivM^n^)"   {ftn(e(*),ao)(l + 7-^i) 

+n;(e(*), <J0) (1 - 7-^||) } + i ^7 • Ps^, °). 

Jjn 
Here, the constant Kn is given by K>n = —rr . 

The formulas in Theorem 2 can be used to derive asymptotics for the polynomials 
{Pn(z,a)} from the asymptotic behavior of the original polynomials {Pn(z,ao)}. To 
illustrate this in the following corollary, we consider a measure CTQ in the Szego-class, 
i.e., d(To(<p) = pi^dip + dcro,s(^) where ao,s is the singular part in the Lebesgue 
decomposition and where p((p) is a positive integrable function which satisfies Szego's 
condition 

/»27r 

/     lnp((p) dip > -00. 
Jo 

Then it is known, e.g.   [23, Thm.12.1.1] and [8, Thm.21.1], that the orthonormal 
polynomials {$n(z, CTQ) = kn(^o)zn -\ }, normalized such that 

nZTT 

I Jo 
|*n(eiv,<7o)|2daoH = 1,    kn(ao) > 0, 
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satisfy 

lim $n(2,0-o) = 0, 

lim*;(z,ao) = 75^-rr (3.1) 

uniformly on compact subsets on {\z\ < 1} and 

1 
lim kn(ao) 

Here, D(z, CQ) is the so-called Szego-function defined by 

f 1    f27r ei(p + z 1 
D(Z,(TO) = exp j— /     e.cp_z \np(<p) d^j,    |s| < 1. 

Corollary 1. Let the assumptions of Theorem 2 be fulfilled and suppose that TEN 

is a strict subset of the unit circle. Further, let {$n(^,cr)} and {<I>n(z,<7o)} be the 
orthonormal polynomials with respect to the measures a and CJQ, respectively. If the 
measure CTQ belongs to the Szego-class, then the asymptotic result 

Jim 21^a»(®^.y/\nNM = DiSizUo)-1^-^-^ 

holds uniformly in compact subsets onC\ TEN - 

Remark. Similar investigations as for Szego measures CTQ also can be made for orthog- 
onal polynomials with asymptotically periodic reflection coefficients, cf. [2, 3, 10, 20]. 

If we combine the asymptotic relation in the above corollary with formula (4.2) 

below, taking into consideration that the polynomials Pu ' and Civ * in (4.2) are 
dependent on n in a known way (compare Theorem 3 below), then we immediately 
get asymptotics not only for the subsequence {<l>njv(z,0")} but for the whole sequence 
of orthogonal polynomials {^n(^j &)}• 

The next theorem gives the announced effects of the transformation 0 on the re- 
flection coefficients of the orthogonal polynomials Pn(z,cr). 

Theorem 3. Let Pn(z,(j) be the orthogonal polynomials with respect to the measure 
a, defined as in Proposition 2, and let a, \a\ = 1 be the leading coefficient of the 
polynomial T. Then there holds: 

(a) The reflection coefficients ao(<7),... ,ajv_2(cr) only depend on the polynomials 
R, T, and W {and not on the measure CTQ; for calculation, compare the lines after 
Theorem 5). 

(b) For all n € No, we have 

anN+j(a) = a2naj(<T),        j = 0,1,..., N - 2, 

and 
0,2(71+1) 

fl(n+i)JV-iW = —5—M<7o)(72 + 1) +72 - 1]. 2 

The statements of Theorem 3 simplify if we additionally suppose that T is a monic 
polynomial, i.e., that a = 1. Let us point out that a = 1 does not imply that T is 
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a real polynomial in general. Then, Theorem 3 says that the sequence of reflection 
coeflicients {an(a)} is "nearly" periodic, i.e., we have 

..., oo(cr),...,aN-2(cr), anjv_i(c7), ao(cr),..., ajv-2(0")> a(n+i)iV-i(^)? 
> v / % ^ ' 

ao(o,),...,ajv_2(o,)>--- 
% v ' 

where only the anjv-iWs depend on n. In the simplest case, when a = 1 and 

7 = W(0)/y/R(0) = 1, we further have 

tt(n+l)iV-l(^) = ^(cro), 

i.e., the new orthogonal polynomials arise from the old ones by plugging in the fixed se- 
quence ao(cr),..., aN-2(<j) between each pair of successive reflection coeflicients an(cro) 
and an+i(cro). 

If a = 7 = 1, one can say even more about the values of the reflection coefficients 
ao(^),...,aiv-2(cr). 

Corollary 2. Suppose that a = 1, and 7 = W(0)/yjR(0) = 1. Then, under the 
assumptions of Theorem 3, there holds: 

aN-2-j((r) = -ajfr)       for j = 0,1,..., N - 2. (3.2) 

Finally, let us show that also the converse of Corollary 2 holds. This will complete 
the correspondence in (1.7). 

Theorem 4. Let {an(a)} be a sequence of complex numbers with the following prop- 
erties: 

(1)        |an(cr)|<l   forallneN, 

(2) aiv-2-iW = -^(CT),    j = 0,1,... ,iV - 2, 

(3) an((j) = an+Nia)   for all n G No \ {fciV - 1 : k G N}, 

(4) anAr-i(<7) G (-1,1)    /or all n € N, 

AT G N /ixed. Further, let <7o 6e #ie measure associated with the reflection coefficients 
{«n(^"o)} w^ere a^ao) := ^(n+^Ar-iO7) Z0?^ a^ n G NQ. Then there holds: 

(i) T/ie orthogonal polynomials {Pn(^, cr)}, generated by the reflection coefficients 
{an((j)}, and the orthogonal polynomials {Pn(2;, CTQ)}, generated by the reflection coef- 
ficients {an(<7o)}, are related as in Theorem 2. Furthermore, the measure a is of the 
form (2.11). 

(ii) The transformation Q, respectively the polynomials R, W, and T, are given by 

■R(z)={Pb-1(z,a)-zPN-1(z,v)).W(z), 

W(z)=£l*N_1(z,<j)-z£lN-1(z,Cr), 

T(z) = ZPN-^Z,*) +P£_1(*,C7), 

where CLN-I{Z,O) denotes the monic polynomial of the second kind with respect to a. 

4. Examples and some further associated results 

Let us give some illustrative applications for constructing new orthogonal polynomials, 
respectively, measures by using the transformation Q(z): 
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Example, (a) The special setting 

T(z) = zN + l9    R(z) = (zN-l)2,    W(z) = y/R(z) = l-zN 

gives Q(z) = z^, and the new polynomials Pniv(^) cr) are of the simple form 

PnN(z,cr)=Pn(zN,(To). 

Further, 

and, by applying Theorem 1, it is easy to see that the remaining polynomials are given 
by 

PnN+ji*'*) = ZJPn(zN,Cro),      3 = 1, • • • , N - 1. 

Hence, the new sequence of reflection coefficients {an(a)} results from the original one 
by inserting N - 1 zeros between each pair of successive reflection coefficients afc(<7o) 
and afc+i(cro), i-e., 

{an(cr)} = {..., 0,...,0 ,afc(<7o), 0,...,0 ,ak+i((To), 0,...,0 ,...}. 

N—1 times N—1 times AT—1 times 

(b) Let ^o be a positive Borel measure on the real interval [—1,1] and let {pn(#j Mo)} 
be the corresponding orthogonal polynomials. Suppose that T is a real polynomial of 
degree N such that 

N 

E := {x e R : \T(x)\ < 1} = U[a2j_i,a2j], 
.7=1 

ai = — 1 and a2iv = 1, is a set of iV intervals. Then Geronimo and Van Assche [9] 
have shown that the polynomials pn(T(x)) are orthogonal with respect to the measure 

a:€[-l,l]\£7 

where V is a real polynomial of degree N — 1 which has exactly one zero in each 
gap [o^jjO^j+i], j = 1,...,W — 1. Let us consider the additional conditions that 
dfjiofa) = u;o(x) dx where LOQ is of the form UJO{%) = &Q((IX

2
 + 6), a, b G R, a ^ 0 and 

that V" has only zeros which lie at the boundary points of the gaps. Then it follows 
with the help of the well-known relationship a{<^) = //(cos tp) between orthogonality 
measures of polynomials orthogonal on [—1,1] and on [0,27r], respectively (see e.g. 
[6, 8, 23]), that /io(cos^)|sin<^| is of the form (2.12) where T(V?) = T(cos^) and 
W(eiip) = eiNip simp V(cos (p). Thus the polynomials orthogonal with respect to //Q 

can be represented with the help of the polynomials orthogonal on the unit circle 
treated in this paper. 

(c) Let us now consider the case that the original polynomials Pn(^,cro) have pe- 
riodic reflection coefficients, say with period M, i.e., an+M(^o) = ^n(^o)- Then it is 
known, cf. [7] or [19], that CTQ essentially lives on M arcs 

M 

TEoM:={e^:ipeE0
M}   where   E0

M := [Jl^^dj] 
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and(£? <^2 <••* <^2M- 
If we transform the periodic measure CTQ in the way as given in Proposition 2, then 

the new sequence of orthogonal polynomials {Pn(z,a)} has again periodic reflection 
coefficients, now with period iVM, and 

{e* : <p E (supp (a))'} = e"1^) =: rENM 

consists of NM arcs. 
By Theorem 2, we know an exact representation of the subsequence {PnN(z,cr)} 

of the new orthogonal polynomials in terms of the original orthogonal polynomials 
Pn(^^o)- 

For the description of the orthogonal polynomials Pk(z,a), where k is not neces- 
sarily a multiple of N, we will need the so-called associated polynomials. 

Definition. Given a sequence {Pn(z, //)} of orthogonal polynomials on the unit circle, 

then the ra-th, m e No, monic associated polynomials, denoted by PJfn\z,fi) and 

ftfc^(z,^), respectively, introduced and studied by the first author [16], are given by 

P0
(mW) = ^m)M = land 

ftftl^M) = ^lmW) +^MClt>(z^) (4.1) 

k E No. Note that P^M = ft(*,/*) and ^ = nfc(^,//)/P(0,//). 

To obtain expressions for the polynomials PnN+u(z,a), v G {0,..., iV - 1}, we 
consider the identity (cf. [16, Cor.3.1]) 

2fttf+l,(s><7) = (PnsM + PlNM)P(?N\z,o) 

+ (Pniv^,^) - P*nNM)fl^\z,o).    (4.2) 

By Theorem 2, the expressions PnN{z, a) ± P^iV(^, cr) can be written in terms of the 
original orthogonal polynomials Pn := Pn(.,c7o), i.e., 

P^M±KNM = \{^ 
LzNl2 

2y/W) 

+ 

(a-±a-)(Pn + Pn*)(e(z)) 

%^(an7 T an7)(ft - i^)(e(z)) 

Hence, in order to make use of (4.2) for the explicit calculation of the orthogonal 
polynomials PnN+v(z, a), we need information on P^nN\z, a) and (^^(z, cr), which 
are determined by the reflection coefficients anN(<j),... ,anAr+^i(cr). What we are 
going to do is the following: Theorem 5 below gives an explicit representation of 
P

N (z,(j). If one knows P^^iz^a), one easily can calculate the reflection coef- 
ficients anN((r)>-",a(n+i)N-i(<r) by using a method introduced by Geronimus [8, 
Thm.9.2]: One has 

a^DN-iia) = -P^(0,(7) (4.3) 
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and by (4.1) 

/JV_1(^,<JJ = TZ—j rTi2\ • v4-4; N ^(l-lafn+i^-iWI2) 

Iterating this procedure gives the desired polynomials for their respective reflection 
coefflcients. 

Before we give an explicit representation of P^1 (2,0"), we prove the following 
relationship between the reflection coefficients {an(a)} and {an(cro)}, which is also 
used in the proof of Theorem 5. 

Corollary 3. The following relation holds: 

n     (1 - M<7)|2) = fi-(l - a2 (ao))       for all n G NQ. 
jz=nN 

Now we can state 

Theorem 5. For every n e No, there holds 

p£N\z,a) = pnT(z)+6nW(z) + \n§£) 

where the constants *yn, 5n, and Xn only depend on the reflection coefficient an(cro) 
and are given by 

_ tIni{an}(on((To) + l) -7Re{an7}(an(^o)-l) 
Pn 2a*+17Re7 

_ iIm{an}(an((Jo)-i) 

~Re{an7}KM + l) 
2a"+17Re7 

Here, a and 7 are defined as in (2.7) and (2.10), respectively. 

For the calculation of the reflection coefficients ao(cr),..., a/v-2(^)5 we consider two 
cases: 

• Special case: For Q(z) = zN, we have 0,0(0) = ai(a) = • • • = 0^-2(0") = 0, and 
hence, PnN+j(z,cr) = zjPn(z

N^ao), n G No, 3 = 0,..., AT — 1; compare Example (a) 
at the beginning of this section. 

• General case: By Theorem 3, the reflection coefficients ao(cr),..., ax-2(0) only 
depend on T, i?, and W^ i.e., only on the transformation 0. In particular, they do 
not depend on the measure 00. Or, in other words, for arbitrary CTQ and CTQ, we have 

zP^{z,a) = zP^{z,a) 

= prwj-prw^r^)   (recalI (4 4)) l-IPr^P (recall (4.4)) 

where a is the distribution function associated with (To by (2.10). Hence, let us take 
the simplest distribution (?$(<£) = </?, i.e., an(cro) — 0 for all n G NQ. Then Theorem 5 
yields 

R{z) 
PN(z,a)=l30T(z) + \0 

W(z) 
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with 

A) = TT       and       AQ = --—. 
2a 20:7 

Using relation (4.4) with n = 0 successively, we obtain the desired reflection coefficients 
ao(<7),...,ajv_2(0'). 

Remark. (Compare Example (b) at the beginning of this section). Let /io be a mea- 
sure on the real interval [—1,1],'and'let the polynomials T, V and the set E be 
such as in Example (b). There we have shown that (under certain additional as- 
sumptions) the polynomials pn{x\ii) orthogonal with respect to the measure dn(x) = 
(y(x)/Tr(x)) dfxo(T(x)) can be represented with the help of the polynomials stud- 
ied in this paper. Let {an(/i)} and {Xn(fi)} denote the recurrence coefficients of the 
orthogonal polynomials {pn(#, //)}, i.e., 

Pnfan) = (a - an(/x))pn_i(x,/x) - An(//)pn_2(rr,/i). 

It has been shown by Geronimo and Van Assche [9, Thm.6, formula (3.7)] that the 
antf+iCAO's, n € No are independent of jUo and that anN+i(jjL) = a(ri+1)jV+1(/z). But, 
in fact, under the additional conditions posed in Example (b), much more holds. 
Indeed, by the well-known connection of the recurrence coefficients of real orthogonal 
polynomials and those of the corresponding orthogonal polynomials on the unit circle, 
cf. [8, Thm.31.1,p.67], we even obtain, by applying Theorem 3, that 

• for N > 2: anAr+2(/^)j • • •, a(n+i)N(A0> ^ € N are independent of //Q and satisfy 

OinN+j (M) = Qf(n+l)JV+i (A*),      j = 2,...,N, 

• for JV > 3: XnN+sb*),- • - > ^(n+i)iv(M)> n G N are independent of //Q and satisfy 

^nN+jiv) = X(n+l)N+j(^)i     3 = 3, . . . , N. 

5. Proofs 

Proof of Proposition 1. The analyticity of &(z) follows immediately from definition 
(2.6). Furthermore, by (2.3), we can write 

Q(z) = L2 

zN ~ (nz)+vw))2' 
and (2.7) gives the assertion in (a). Part (b), (c), and (d) can be derived from [20, 
Lemma 2.1], where one has to take into consideration that the notation in [20] is 
slightly different from the one used here; see Remark before (2.6). Parts (e) and (g) 
follow from the definition of the polynomials T and R and from (2.8). Choosing a 
fixed branch of the iV-root, the function Y(z) is analytic on C \ P^. By the already 
proven parts, we know that Y has no zeros on C \ P^, that it maps C \ P^ onto 
{\z\ > 1}, and that \Y(z)\ = 1 on P^. Now recall that \Y(z)/z\ = 0(1) for z -► oo. 
Altogether this proves part (f). In order to get part (h), let" us recall that on the one 
hand we have 

V§W = e**M = cos ^ + ism ^M 

and on the other hand 

V     K       > T.MNmu> Lei{N/2)<p 
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Hence, the assertion follows from (2.8) and (2.9). □ 

Proof of Proposition 2. Let us abbreviate 

y/R{z) 

By the assumptions on W, R, and 6, the function Q(z) is analytic on C \ F^. In 
order to see that g(z) — ilmy is a C-function, it remains to show that 

^(0)-2lm7GE+ 

and 

Re{g(z)-ilmi} >0       on \z\ < 1. 

Indeed, we will prove the representation 
n2TT    tip   , 

g{z)-ilm1 = ^    j^dafr) (5.1) 

where a is given as in the statement of our Proposition. Then 
/.27r 

Re7 = 0(0) -ilmj= /     da((p) > 0 (5.2) 
Jo 

(this will be needed later in the proof of Corollary 3) and for z = sem, s G [0,1), 

r2*              1-s2 

Re\g(z)-ilmi} = /     -— 7 7,da((p)>0, 

since a is nonnegative and does not vanish identically. 
In order to prove (5.1), let us consider the functions 

Ta(z):=^j^F(ae(z)9ao)-iJmy9    se[0,l),    zeC\TEN. 

For every fixed 5 G [0,1), the boundary values ^(e2^) := limt^i- ^(te1^) exist for 
all (p € [0,27r], except of the poles of W(eiip)/y/R(ei{P) and Fs £ Hp = Hp({\z\ < 1}), 
p G [1,2) where Hp denotes the Hardy space (see, e.g., [5, Theorem 3.2]). Hence, by 
a strong version of Schwarz' formula, we can write, cf. [13, Chapter I.D and V.B] or 
[16, Lemma 2.1], 

^^^L w^Be*'mdv> (5-3) 
r27r eicp _|_ z 

i.e., the family {VS}S€[Q,I) is defined by 

OsW-^J   Re^(e^)^,    ^€[0,2*]. 

For all ip G ((pzj-ii ^j), j = 1,..., JV, there holds 

Re^(e^) =  ^f^ ReJ-^Ce^),^) > 0, 

^0 
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since F(z,ao) is a C-function and W{ei{(>)Iy/W^) > 0 on {(p2j-u<P2j)- If <P £ EN, 
we have 

Re^(e^) = i^^ImF(Se(e^),c7o) = 0 

because sQ(eilp) G [0,5] by Proposition 1(d) and F(x, CTQ) G R for all z € [0,1). Hence, 
for ^ G [^2i-ij ^j]? we can write 

1    f*       W(ei(p) 

1    /*(»)  ^(e^1^))   ReFC^^ap) , 

where ^^i?!^.,^^,]. 
Next we claim that for all 77 € EN, the expression 

WV)        1 
JW*) viv) 

w(v) 
V-P(V) &{ri) 

(5.5) 

where ^(77) := ie 'l^N/2)^W{e1''T))^ is bounded on EN- For that, we write explicitly 

*'(,)= (arctanV^)' 

T
2
(??) - M 2L2vCp(^) 

This means that the term \/—p{ii) cancels out in (5.5). Now we distinguish two cases 
for (p € EN, namely, if 77 is a double zero of p{ip) or not: 

(i) In the first case, i.e., 77 ^ (p2j = V2j+i; there holds: 

p,(7/)r(77)^2p(77)r
,(77). (5.6) 

Recall that either r^rj) > 0 or Tf(rj) < 0 for all rj G (<P2j-i,(P2j)- Hence, if 77 G 
(<P2j-u<P2j) and ^(77) > 0, then 2p(rj)Tf{r]) < 0 and p'^Mry) > 0, respectively, 
2p(7])Tf(r)) > 0 and p'{rj)T{rj) < 0 if r'fa) < 0 on (^-i,^). If 77 = ^i-i or 
77 = ^2j 7^ ^2j+ij then the left-hand side in (5.6) is unequal to zero and the right- 
hand side is zero. 

(ii) In the second case, i.e., 77 = <£>2j = V^j+i, it is easy to see that 77 is a simple 
zero of p'r — 2pT'. However, then 77 is also a zero of w{ip). 

Combining both cases gives the desired boundedness of the expression in (5.5). 
According to (1.2), we now can apply Kelly's theorem which gives the existence of 

a subsequence aSk, k G N, with Sk —► 1 as k —► 00 such that 

<7sk —► CTQC =: a   pointwise on [0,27r] 

and 
/»27r /»27r 

lim   /     h((p)d<7Sk(v) = /     h((p)da((p) 
fc-*00 Jo Jo 

for any continuous function h on [0,27r]. 
Together with (5.3), (5.4), and (1.2), this proves the proposition. □ 
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For the proof of Theorem 2, we will need the following. 

Lemma 1. Let Q be a real self-reversed polynomial, i.e., Q = ±Q*, of degree n, 
neNo. Then, 

• ifQ = Q*, 

Q(z):= e(z) 
)n/z 

Q{@(z)) 

is a polynomial of degree nN and Q = Q* 
•ifQ = -Q*, 

yN   \n/2 
Qiz):=(iiz})    ^/WQ(e(^)) 

is a polynomial of degree (n + 1)N, Q = Q* and Q/R is a polynomial of degree 
(n - l)iV. 

Proof. Let us first consider the case Q = Q*. We can write Q in the form 
=   /zN/2 

Q(z) 
\V®(zJ 

jQiVW)) and   Q(z):=Q(z2), 

(5.7) 

where we take the "positive" branch of y/®(z), i.e., 

^-r       T{z)-y/R@) 
Ve(z)-        LzW • 

Then Q is again a self-reversed polynomial and contains only even powers of z, i.e., 
Q(z) ^ ]Cj=o ^2n-j(z2n^ +z:i)+bnz

n where all the 6^'s with odd v vanish. According 
to (2.3), we have 

and thus 

CM = bnz^ + E b^ (m±JM^ 

zN/2     ^T(z) + y/Wz) 

-[( 
T(z)-Vm\2n-J , fT(z)-^R(r)\J 

LzW       ) 
+ 

V       LzN/*       ) . 
n—l i 3N/2 V /  \ n~3        / \ n—j 

n~l 

£-~i        Ln-3 
j=0 

E     (   J^-i-^izW^z). 

Recall that bv = 0 if v is odd and note that, for even j, the expression 

L(»-i)/2J 
3^/2 E  ( ^^^-^w^w 

is a polynomial of exact degree niV — jN/2. Thus, Q is a polynomial of exact degree 
nN. In addition, from the last representation, we get that Q = Q*. 
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If Q = ^Q*, then Q{z) := Q(^2) = E^Q fen-j^^ - ^) where again K = 0 if 
z/ is odd. Similarly, as above, we can write 

n—1 , jN/2 L   ~2     J   / -x 

from which the desired assertions follow. □ 

Proof Theorem 2. To abbreviate notation, let us write Pn{z) := Pn(2,cro). Then by 
Lemma 1, the expression 

AnN(z) ~(- 
-N/2 

V^/ew 7(Pn* +Pn)(@(z)) - ^-(Pn - Pn)mz)) 

\/Q(z) in the sense of (5.7), is a polynomial of degree < nN. Moreover, we claim 
that An]sr is of exact degree nN. Therefore, we have to show that the value -4*^(0) = 
znNAnN(l/z)\zz=0, which is the same as the complex conjugation of the coefficient of 

znN in AnN, is unequal from zero. Note that 

e(i) = e(z),  z nN i/zw 
^/e(I7i)J 

VWN) 
. W(l/z) W{z) ' 

and that Pn, P* have real coefficients (because CTQ is a symmetric measure). Thus, the 
polynomial .4* N is of the form 

AnN\Z) = (- 
rN/2 

)■ 

which yields by Proposition 1 and (1.1) that 

7(Pn* + Pn) (Q(Z)) + ^S (p* _ pn) (0(2)) 
W(z) 

KN(0)= (^■)nb(1-an-^o))+j(l + an-i(ao))) =27(^)%0. 

Hence, 

PnNM ■■=^(-t)nAnN(z) = ZnN + --- 

is a monic polynomial of degree nN. 
In an analogous way, one can show that Q,nN(z, cr), given as in the theorem, is also 

a polynomial of degree nN with leading coefficient F(0, a) = Re7 ^ 0. 
Next, we will apply Theorem 1 to show the desired orthogonality property of 

PnN{z^ cr), i.e., we have to verify 

PnN(z, (j)F(z, a) + £lnN(z, a) = 0{znN), 

PZN(z,a)F(z,a) -^(z,*) = 0(znN^ 
as   z —► 0. (5.8) 
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In a first step, let us denote as above 

AnN{z) := (J^)" [7(PB + P*){®{z)) + ^{Pn - iSXeW) 

BnN(z) '•= 

G(z) := 

N/2   \ n r 

W(«) 

(a,+n;) (0(0))+7-Si (a, - n*n) (e^) 

(5.9) 

(5.10) 

AW) 
F(e(z),ao), 

where, again for abbreviation, Pn := Pn(-,cro) and fin := f2n(-,cro). Then we have 

{^^y[AnN(z)g(z) + BnN(z)] 

1 

+ F 
«e<«»('-^)^^->+fl«^(1-^) 

7^|=) (p„(e(z))F(e(z),<7o)+n„(e(«))) 

- (1 - y^=) (p*(e(z))F(@(z), ao) - n;(e(*))) 

= C>(2nJV) + ©(z^1)7^) = 0(znN)   asz-+0. 

For the last identity, we made use of 0(z) = 0(zN) as z —»• 0 and of the fact that Pn 

is orthogonal with respect to .F(z, <To); compare Theorem 1. 
In an analogous way, one gets 

VW)\\A* 
zN/2 )   [A*nN(z)g(z)-B*nN(z)} 

= (7-S=| " l) (Pn(@(z))F(e(z), ao) + Cln(e(z)) 

+ (1+7;^^) (p*n{o{z))F(Q{z),oo) - n:(e(z))) 

= 0{z)0{znN) + 0{z^+1)N) = 0(znN+1)   asz^O. 

Note that jW(z)/^/R(z) is analjd;ic at z = 0 and 7^(0)/ ^^(0) = 1, hence we have 
;yW(z)/y/R(z) - 1 = O(z). Summing up, according to @{z)/zN = 0(1), we have 
shown that 

AnN(z)g(z) + BnN(z) = 0(znN), 

A*nN(z)g(z)-B*nN(z) = 0(znN^), 
as z —>• 0. (5.11) 



TRANSFORMATION OF ORTHOGONAL POLYNOMIALS 73 

Now recall that 

1 / L \n 

1 / L \n 

tinN (z, cr) = — f 2J ) -.{Bns (z) + ilm iAnN {£)), 

F(z,(7) = 0(«)-ilm7. 

By (5.11), 

PnN{z,a)F{z,(T) + SlnNM = ^(^)  (AnN(z)G{z) + BnN(z)) = 0(znNl 

P^MFM - tt^frc) = ^ (^ {AlN{z)G{z) - B*nN(z)) = 0(znN^ 

which is (5.8). □ 

For the proofs of Corollary 1, Theorem 3, Corollary 2, and Theorem 4, we will need 
Corollary 3 and Theorem 5. Hence, we prove them first. 

Proof of Corollary 3. By (1.4), the polynomials Pniv(^j^) and finjv(z,cr) satisfy a 
relation of the form 

P^(z,a)finiv(z,(7) + PnN(z,<T)nnN(z,(T) = 2RejdnN(a)znN (5.12) 

where dnN(cr) := fljU)"1^ ~ K'C*7)!2)- Let the polynomials AnN and .Bnjv be defined 
as in (5.9) and (5.10), respectively. Then we have 

471+1 
-jj^T PZN(Z, vWnNiz, cr) = A*nN(z)BnN(z) + iImjA*nN(z)AnN(z), 

4*1+1 
^T pnN(z, (T)n^N(z, a) = AnN(z)B^N(z) - tIm7i4nArWi4^rW, 

i.e., by straightforward calculation (again Pn := Pn(-,cro), fin •= ^('JCTQ)) 

471+1 
■pT (PnN(^^niv(^CT) + Pniv(^cr)fi;iV(^,(7)) 

= A;iV(^)Bniv(^) + AnN(^)B:iV(2;) 

/      N/2   \2n 
^SReTdn^oJ^-^J    en(z)       (by(i.4)) 

= 8Re7dri(ao)«niv. 

Comparing this identity with (5.12) and taking into consideration that by (5.2), 
Re 7 > 0, we obtain 

/L\2n 

dnN{<y) = f j J    dnM, (5.13) 

and the assertion follows by an induction argument. D 
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Proof of Theorem 5. Prom (4.2) we obtain (cf. [16, Thm.3.1]), 

Pfr^M = „ „l)znN[P(n+i)N(z,a)(ClnN& 
2dnN(or)z 

- fyn+l)AT (Z, O) (PnN (z, a) - P*N (z, a)) 

Let the polynomials AnN, BnN and ^4(n+i)iv, B(n+i)JV be defined as in (5.9) and 
(5.10), respectively, and then we have, by Theorem 2, 

p(niV) 
• N (Z'(7)=92^ 

£2n+l 

22n+*dnN((j)an+1jRe>yznN 

- B{n+1)N(z)(aniAnN(z) - aniA*nN(z)) 

1 
2dnN(a)z"N 

zlm7 

Ain+1)N(z){aniBnN(z) + a^B^fiz)) 

+ 

Re 7 ^(n+l)Ar(*i <T){PnN(z, <?) - KN(Z> ") 

The second term in the sum on the right-hand side vanishes and a tedious but straight- 
forward calculation gives 

,(nN) PT'M- 
KzN/2 

[e(.r+1/2 

Re {a'MJT^n+i + i^-i)^ + ^) - ("n+i - ^i)(Pn - PZJ) (e(z)) 

+ ^M ((p„+1 - p:+1)(nn + n;) - (nn+1 + n;+1)(pB - P,:)) (e(^))| 

- iim{a"}| ((pn+1 - p^+1)(n„ - n*n) - (nn+1 + ^+1)(P„ + p*))(e(z)) 

+ ffl| ((pn+1 + P^)^ - £i*n) - (JWi - ^+i)(^ + P*)) (ew)} 

where the constant iiT is given by 
£2n+l 

~ 22n+3dnN{cr)an+1'yRe7 

and where P,/ := P^C-.cro), ^I, := ni/(-,cTo) with z/ G {n,n + 1}. Using the identities 
[16, Cor.3.1], 

2Pn+1 = (pn + p*)pin) + (Pn - p*)nin), 

2fiB+i = («« - K)P{n) + (^ + n;)nin), 

pin) = pi(n)(.j CTo) and n(n) = ^(n)^ ^^ we ^ 

(Pn+1 ± Pn*+1)(fi„ + fi^) - (IWi T fi;+i)(Pn - P:) = 2dn(ao)zn(P^ ± P^*), 

(pn+1 ± p^i)^ - n;) - (fin+i T fi;+i)(Pn + K) = -2dn(*o)zn{nf} T fiin)*). 
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Now the above representation simplifies to 

^W) = 2Kd^N/2 [7Re{a"7}(P1
(n)(e(.)) + P1

(")*(e(z))) 

+Re K7}^ (pfB)(e(»j) - Hn)*(e(z)j) 

i Im {an} (rffi (@(z)) + fli** (0(z))) 

^im{a"}-^|=(^)(e(,))-^)*(e(^))) 

75 

+ ' 

+ i 

Further, from 

P^W ± P[B),(«) = (1 T ^(ao))^ ± 1), 

fi^Cz) ± fi^z) = (1 ± OnCffo))^ ± 1), 

and 

we get, with the aid of (5.13), 

o(nN) 
N (Z,<T) = k^{Re{an 7} 7(1 - an(ao))T(z) - (l + an(a0)) 

R(z) 
W(z)_ 2an+17Re 

+ ilm{an} I (1 + an(ao))T(z) - 7(1 - an(ao))W(z) 

This is the desired result. □ 

Now we are ready to prove the remaining results of Section 3. 

Proof of Corollary 1. The leading coefficient of an orthonormal polynomial ®n(z, M) = 
kn(ij)z

n + ••■ can be expressed in terms of the corresponding reflection coefficients 
{an(/x)} by the formula 

/ "-1 \-V2 />27r 
kn{ij)=[cQ{IJ,)'[[(l-\aj(IJ,)\2)J       ,    co(fi) = Jo    dn(<P) = nO,n), 

e.g., [8, (2.7) and (4.2)]. Using Corollary 3 and the fact that F(0, a) = Re 7, we obtain 
from Theorem 2 

+-.(«w-)(-'-^)}. 
and the assertion follows by (3.1). □ 

Proof of Theorem 3. (a) Since Q(z) = 0(zN) as z -> 0 and F(0,ao) = 1, the first N 
coefficients co(cr),..., cjv_i(cr) in the power series expansion, 

W(z) 
F(z,a) 

VW) F(e(z),a0)-iIm^=:co(a) + 2j2cM)zj,    \z\ < 1, 
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are independent of do. But then, by [8, formula (3.2)], the reflection coefficients 
ao(cr),..., aiv-2(c) are independent of CTQ as well. 

(b) We first consider the case that a = 1, i.e., we have to show that 

anN+j{a) = ajicr)       for   j = 0,1,..., N - 2 (5.14) 

and 

a(n+i)i\r-i(<r) = 2 * ^      ' 

In order to see (5.14), it suffices to prove that all the polynomials, PJv-i (zi (T)'> ^ ^ No, 
coincide, cf. [8, Thm.9.2]. Here, the nAT-th associated polynomials P^^z^o) are 
given as in (4.1). Prom the recurrence relation (1.1), one derives that these polynomials 
are explicitly given by 

r1**)(r ', _ PttN)(z,a)-PJ?N\0,a)PttN>(z,*) 
N-1 {,)"      i-ipr^o-^p      • 

Furthermore, by Theorem 5, the polynomials Pj^ ' are of the form 

PfrN\z, a) = (3nT{z) + Xn^ (5.16) 

where 

^=l-^M    md   An==_l±a^o)> (517) 

In order to avoid excessive notation, let us abbreviate 

en := -acn+Djr-i = PfrV(0,a) = pn + ^. (5.18) 

Then the identity P^(z,cr) = P^1)N)(z,a) holds if and only if 

(1 - Ic^l2) [PttN\z,a) - CnPfr^M] 

= (1 - M2) [P^N\z,a) - Cn+rP^+^M]. 

Taking into consideration that 

P^>(z,a) = /3nT(z)-Xn^y 

the above equality also can be written as 

(1 - Icn+xl2) (/?„(! - cJTiz) + (An + cn\n)^) 

= (1 - |Cn|2) (AH-l(l - Cn+OrCs) + (An+1 + Cn+iAn+i) J^) . 

Hence, for all n € No, the following relations remain to be shown : 

Pn (1 - \Cn+l |2) (1 - Cn) = ^n+1 (1 - ICnl2) (1 - Cn+i), 

(l-|cn+i|2)(An + cnAn) = (l-\cn\2)(Xn+1+cn+1Xn+1). (5.19) 
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Substituting the corresponding expressions from (5.17) and (5.18), the first identity 
in (5.19) turns out to be 

(l-a2
n+1(ao))(^- 7(1 - On ((To)) - 

l-\-an(ao) 

7 ) 

= (1 - a^o)) (4 - [7(1 - an+1M) - 1 + Qn
7
+l((70) I ) • 

Now note that the function 

Ma:)y):=(l-a:2)(4-|7(l-y)-i±^|2),    |7| = 1, 

from R2 to R is symmetric in the sense that /i(:r, y) = h(y, x). This can be seen easily 
by writing 

h(x,y) = (l-x2)U- 7(1 - y) - 1 + ; 1-: 
-7(1 + 2/) 

= (1 - x2) (4 - [2(1 + y2) - (1 - y2) (72 + ^)] ) 

= (l-x2)(l-j/
2)(2 + 7

2 + l). 

The setting x = an_j_i(c7o) and 2/ = an(ao) gives the first identity in (5.19). The second 
one can be shown in a similar way. This proves (5.14). 

The desired representation (5.15) of the reflection coefficients, a^n+i)N-i(a), n e 
NQ, follows from 

a(n+l)JV-l(*) = -^^(O, <7) = -(/3n + 7An) 

= 5 [KM - 1) + 72Mc7o) + 1)] 

= Qn((T0)(l+72)+72-l 
2 

Let us now consider the general situation that T(z) = azN H , |a| = 1. Then 
the polynomials 

f(^):=diV/2T(f) = ^ + ...    and   R(z) = dNR(^) = z2N + • • • 

where d := a2/^, are monic polynomials and the transformation 

_f(z)-yfliz) 
t(z) + JI(z) 

is of the form (2.6). Now the mapping 0 acts on the set 

e(z) 

N 

EN~Y[[<P2j-l,<P2j] 
3=1 

where ^ = (pu + argd. This means that the arcs r^  , generated by the polynomials 
R and T, result from the arcs F^ by a simple rotation of the angle arg d. 
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Further, it is not difficult to show that the polynomials PnN(z,<j) and 

zN/2   yi       , /       JI(z)\ 
W(z) J 

where W(z) := dN/2W(z/d) and «„ = Ln/2n+17 are related by 

PnN(z,CT) = dnNPnN^). 

Here, the measure a is given as in (2.11) by using the transformation G instead of 
6. Hence, as pointed out in [19, Remark 4.2], the reflection coefficients {on(a) = 
—Pn+i(0, a)} can be expressed in terms of {an(a)} by 

an(a) = d-(n+1)an(a),    n G N. (5.20) 

By the proved above part for a = 1, the reflection coefficients an(a) satisfy (5.14) and 
(5.15). Together with (5.20), this proves the theorem. □ 

Proof of Corollary 2. By Theorem 3, the reflection coefficients ao(t7),.-.., 0^-2(0") 
do not depend on the measure 00. Hence, if we are interested only in the first 
N — 1 reflection coefficients of <7, we can consider the simplest case F(z,(Jo) = 1, 
i.e., dao((p) = d<£, which gives 

Fiz'a)-7m-inz) 
(recall that 7 = 1) where R = VW. The assertion follows from [22, Ex.6.5, pp. 494- 
496]. □ 

Proof of Theorem 4. We first show that the polynomials i?, T, and W from the the- 
orem fulfill the assumptions from Section 2. By [12, Thm.6.2], all the zeros of the 
polynomials 

zPN-i(z, <J) ± PN-I(Z,cr)    and    Z(IN-I(Z, a) - Cl%_1 (2, cr) 

are simple and located on the unit circle. Furthermore, the zeros of zP^-iiz^a) — 
-Pjv-_i(£,0") and zQlN-i(z1a) — Q^^z^a) separate each other as it follows from [22, 
Beispiel 6.6,p.496]. Finally, by [22, Lemma 6.13, p.489], we have 

zPN-i (z, a) + PN-I(Z, a) = zClN-i (z, a) + (l^^ (z, a). 

Using this identity and relation (1.4), it is not difficult to see that 

T2(z)-R(z) = 4dN(a). 

All these facts together show that our theory works with the triple (i2, T, W). 
In order to prove the theorem, it suffices to show that the C-functions F(z1 a) and 

F(z, CTQ) are related to each other by 

F(z,a) = ^=F{e(z),ao), (5.21) 
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since 7 = W{0)/y/R(0) = 1. Or, to use different words, we have to demonstrate that 
the reflection coefficients corresponding to the C-function at the right-hand side in 
(5.21) satisfy (l)-(4). By Proposition 2, the right-hand side in (5.21) indeed gives a 
C-function, which we will denote now by G and its associated reflection coefficients by 
{bn}. Let us show that bn = an(a). Since bo,..., 6JV-2 are independent of CTQ, recall 
Theorem 3, we may choose F(z, CTQ) = 1. Then the first N - 1 identities 

bn = an(a),    n = 0,...,iV -2, 

can be derived from [22, Beispiel 6.5 and 6.6, p.494]. Moreover, Theorem 3 gives 
the properties (3) and (4), while (1) is obvious. Summing up, we have shown that 
{5n} = {an(cr)} which proves (5.21). □ 
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