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THE p-NORM JOINT SPECTRAL RADIUS FOR EVEN INTEGERS 

Ding-Xuan Zhou 

ABSTRACT. Let A be a multiset of square matrices of the same size and || • || be 
a matrix norm. For 0 < p < oo, the p-norm joint spectral radius Pp(^l) ofvA. is 
defined by 

/       ^ \1/n:p 

pP(A)-  lim J2       Pi •••^n||p • 

This concept plays an important role in the investigation of wavelets and subdi- 
vision schemes. 

The purpose of this paper is to give a formula for computing pp(A) in terms 
of the spectral radius of some finite matrix when p is an even integer: 

P2k(A) = {p(j2 (A®A)[k])\       ,        fr€Nf 
*>   \4LeX ^ J 

where A <g) A is the Kronecker product, and AW = A, A^+1l = A <S> A®. This 
formula is employed to study the uniform joint spectral radius (p = oo). Examples 
including multiple refinable Hermite interpolants will be provided to illustrate the 
general theory. 

1. Introduction 

The spectral radius of a complex matrix A is defined by 

p(A) := max{|A| : A is an eigenvalue of A}. 

Due to many practical applications, this definition has been extended in various ways 
to sets (multisets) of matrices. In this paper we consider one extension called the 
p-norm joint spectral radius. 

Let || • || be a matrix norm on CMxM, the set of all M x M complex matrices. It 
is well known that for any M x M matrix A, 

p(A) = lim \\An\\^n. (1.1) 
n—►oo 

This tells us that the p-norm joint spectral radius defined below is a natural extension 
of the spectral radius. 

Let A := {Ai,..., Ad} be a multiset of M x M complex matrices. Replacing ||-An|| 
in (1.1), we set \\An\\p as the £p norm (seminorm) of the norm sequence of all products 
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(in all orders) of n matrices from A: 

MIP := 
max{||Aei---.4eJ :ei,...,en €{l,...,d}},       ifp = oo, 

e„6{i,..,<i}ll^i---^JIP}     - if0<p<oo. 

Then the p-norm joint spectral radius Pp(A) is defined to be 

pp(A) ■■= I™ \\AX/n- (1-2) 

It is a classical fact that this limit exists and equals the infimum: 

lim\\A%'n=M\\A%'n. 

Clearly, Pp(A) is independent of the choice of the matrix norm || • ||. 
If A consists of a single matrix A, then Pp(A) = p{A). Moreover, if Ai = • • • = 

Ad = A, then pv{A<) = d1/pp(A) for 0 < p < oo. It is obvious that each /9(A/) < Poo(A) 
since />00(^4) includes the power (Aj)n, where we choose the same matrix Aj each time 
by €i = j. 

The concept of uniform joint spectral radius (p = oo) was introduced by Rota 
and Strang [22] in 1960. It was Daubechies and Lagarias [3] who rediscovered this 
concept and showed the fundamental connection to refinement equations. Their paper 
[3] initiated the application of joint spectral radius to the research of regularity and 
existence for refinement equations. The mean spectral radius (p = 1) was defined by 
Wang [25], who studied Li solutions of refinement equations. The concept of p-norm 
joint spectral radius with 1 < p < oo was introduced by Jia in [12] and was used 
implicitly by Lau and Wang [20] independently. This concept plays an important 
role in the investigation of wavelets. See the unified approaches of Jia [12] to the 
smoothness analysis in [24] and the convergence of subdivision schemes (see [5] for 
p = oo). For recent applications in finding critical smoothness of multiple wavelets and 
multivariate wavelets, we refer the reader to Han and Jia [9, 13], Jia, Riemenschneider, 
and Zhou [16, 17], and Micchelli and Sauer [21]. 

What is disappointing about the joint spectral radius is that the limit in (1.2) 
is reached very slowly. Except for some special cases such as simultaneously trian- 
gularizable matrices (see, e.g., [10, 16]), we can hardly compute Pp(A) using (1.2). 
According to the analysis in [23], the uniform joint spectral radius (p = oo) cannot be 
approximated in polynomial time. Thus, it is desirable to find fast ways to compute 
the p-norm joint spectral radius. 

In wavelet analysis, the matrices involving the p-norm joint spectral radius have 
special structures. As an example, consider a sequence a supported in [0, AT] with 
N e N. Define two matrices AQ and Ai in terms of a by 

j4o = (a(2j-0) 0<j,l<N-l 

a(0)    0 0 

A1 = (a(2j^l + 1)) 0<j,l<N-l 
0   a(N) 



THE p-NORM JOINT SPECTRAL RADIUS FOR EVEN INTEGERS 

where A is an (N - 1) x (N - 1) matrix given by 

a(l)    a(0)      0      ••• 0 

a(3)   a(2)    a(l)    ••• 0 

41 

A=(a(2j-0) I<JV<-^-I 

0 0 0 a(N)    a(N - 1) 

Then the two matrices AQ and Ai share some special properties. In particular, they 
have iV— 1 common eigenvalues. The p-norm joint spectral radius Pp(Ao, Ai) is essen- 
tial to the analysis of regularity of wavelets and convergence of subdivision schemes. 
It is well known in wavelet analysis that, because of the special structures, the 2-norm 
joint spectral radius of {AQ, AI} equals the square root of the spectral radius of a 
finite matrix: 

p2(AchA1) = ^(FJ 

where F is the (2iV + 1) x (2JV + 1) matrix given by 

N 

(1.3) 

F= [^2 a(m+•? ~ 20aM 
-N<j,l<N 

For details, see e.g., [4, 6-9, 16, 17]. 
The formula (1.3) led the author to consider the computation of the 2-norm joint 

spectral radius for general matrices. This led to the result for p2(A) in Theorem 1 
(with k = 1). 

Recently, Lau and Ma [19] showed that the critical Lp regularity of solutions of 
refinement equations with ^-coefficients can be computed in terms of the spectral 
radius of some finite matrix when p is an even integer. Their essential goal was to 
compute the 2fe-norm (k E N) joint spectral radius of two 2x2 matrices. Although 
these 2x2 matrices have special structures, the result in [19] in connection with the 
case k = 1 of Theorem 1 prompted the author to study the 2fc-norm (k G N) joint 
spectral radius for general multisets of matrices. 

The purpose of this paper is to provide a formula for the p-norm joint spectral 
radius when p is an even integer. We do not assume any special structures on the 
matrices and the result is stated in terms of the spectral radius of some finite matrix. 
Our result is new even in the well-known case p = 2. We hope that it will be useful 
to fields other than wavelet analysis. 

To state our main result, we need the concept of the Kronecker product (see, e.g., 
[18]). The Kronecker product oiAe Cmxm and B e Cnxn is the block matrix 

A<8>B:= 

CLllB       CL12B 

a2iB     a22B 

amiB   am2B 

aimB 

Q>2mB 

Set A^ = A and A^1^ := A 0 A™ for I e K 

i- 

Hence, A® G 
Note that (A 0 B)T 

:m'xm\   Denote 
AT®BT. 
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Using these notations, our main result can be stated as follows. 

Theorem 1. Let A = {Ai,..., Ad} be a multiset of M x M matrices, k e N and let 
FGCM2kxM*k ^ defined by 

F:=^(^0^)[fcl. 
1=1 

Then 

(1.4) 

(1.5) P2k(A) = (p(F))^k. 

Moreover, there is a positive constant C such that for all n e N, 

\\Anhk < C(p2k(A))n, (1.6) 

if and only if all the eigenvalues of F with modulus equal to p(F) are nondegenerate. 

Although Theorem 1 only deals with the 2fc-norm joint spectral radius, it provides 
us some information about the uniform joint spectral radius. The following nice 
equivalence is one example: 

Poo {A) = p2 {A)     <=>     PA (A) = P2 (A). 

More connections to uniform joint spectral radius and applications for multiple refin- 
able functions will be presented in Section 4. 

The proof of Theorem 1 will be given in Section 3 following some discussion and 
using lemmas from Section 2. 

2. Kronecker product and string vec-function 

In this section, we introduce the concept of string vec-function and provide its con- 
nection to the Kronecker product. 

For an m x n complex matrix A, write A = [A*i - • • A*n], where for j — 1,. 
A*j € C m stands for the jth column vector of A. Then the vector 

n, 

vecA := 

A*i 

A*2 

is called the vec-function of A. It is the vector formed by stacking the columns of A 
into one long vector. 

The following result (see, e.g., [18]) indicates a close relation between the vec- 
function and the Kronecker product. 

Lemma 1. IfAe Cmxm, B e Cnxn, X e Cmxr\ then 

Yec(AXB) = (BT 0 A) vecX. 

The relation in Lemma 1 is often employed to deal with products of noncommutative 
matrices such as solving the linear matrix equation 

AX + XB = C 
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for the unknown matrix X. For our purpose, we also have to deal with products of 
noncommutative matrices.   Hence Lemma 1 plays a crucial role in our analysis for 
k = 1.  To give the reader some clues, we first consider this case: the 2-norm joint 
spectral radius. Let ej be the jfth column of the identity matrix. 

If we choose ||yl|| as the matrix norm on ^o, then 

HAH^o =  max  ||CTA||5 <   max Af||eLl||! =  max M(eL4A*eA 
1<J<M      3 1<3<M      "  3     IIJ       l<j<M      KJ JJ 

By the definition of vec-function, ejAA*ej = vec(AA*)(j + (j - 1)M). Hence 

M 

WMl < M^2vec(AA*)U + (j - 1)M). 
i=i 

Together with Lemma 1, this implies that for A = A£l Ae2 - • • A£n, 

M 

\\AeiA£2.. • A^ll2^ < M^vec(A£lA£2 •. • A,^^ • --Atjij + (j - 1)M) 

M 

= M Y, [(^ei ® Aei) • * ' (^en ® ^») vec(/MxM)] (j + (j - 1)M). 

Applying this estimate in the definition, we obtain 

\\An\\l<MY, (^AZ®AZ     vec(7MxM) (j + (j-l)M). 

Observe that for k = 1, the matrix F in Theorem 1 equals ^f^i Ai®Ai. Therefore, 
for every n G N, 

Mn||i < M||F"vec(lMxM)||i < M2||FH|i. (2.1) 

This provides one direction of the proof for the case k = 1. 
For the other direction, let Y € CMxM. Then by Lemma 1 

F vec(y) = ^(Ae 0 Ae) vec(F) = ^ vec(Aey^*). 

Hence, 

f*vec(y) = E • • • E vec(ylei^2 • • • ^YA^A^^ ■■■A*£l). 

Let j, I € {1,..., M}. We choose Y = e.ef € CMxM. Then vec(F) = ez+y_1)Af G 
C

M2
 and AFA* = i4.e^(ilez)*. The above expression for Fn tells us that 

i?ne*+(;-i)M = X) vec([AeiAe2 • • • Aenej][Ae1Ae2 • • - A£nei]*). 
ei,...»en.e{lr..,d} 

Note that for w, VGC
M

, 

llvecCfiv^Hi^lliillilHl!. 
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Therefore, 

H^+O'-DMIII < Yl \\AeiAe2 ~'Aenej\\l 11^1^2 •'• 4^1 111 
ei,...,£»€{!,...,d} 

ei,...>en€{l,...,d} 

which implies that 

112^111 = ^mK^llF-C+O-DMlli^M2!^"!!!. 

Together with (2.1), this provides us with the inequalities 

^vwni<unh<Mvn- 
The proof of Theorem 1 with k = 1 follows then from these inequalities. 

To prove Theorem 1 for general fc, we need to generalize the vec-function and 
introduce the concept of string vec-function of a string of matrices. 

Let S := (Ei,..., Ek) be a string of M x M complex matrices. Define the string 
vec-function vec(£) = vec(^i,..., Ek) as a string of vectors (vec(£)i,..., vec(£)fc) by 

vec(£)i=vec£iECM2, 

and, for j = 2,..., fc, 

vec(£)j = vec^ec^-iCvec^)71) e CM2i. 

The following lemma is a generalization of Lemma 1, providing a relation between 
the string vec-function and the Kronecker product, and plays the same role for general 
k as Lemma 1 for k = 1. 

Lemma 2. Let (Ei, ...,Ek) be a string ofMxM complex matrices and A e CMxM. 
Then the string vec-function of the string (AEiA*,..., AEkA*) satisfies 

vec(ABii4*,..., AEkA^j = (A 0 A)W vec^,..., £*),-,        j = 1,..., k.      (2.2) 

Proof. The first component (j = 1) is clear by Lemma 1 and the definition of string 
vec-function: 

(A 0 A)[1] vec(JE?i,..., Ek)i = (A®A) vecEi = vec(ABiA*) 

= vec(AE7ij4*,..., AEfcA*)i. 

Suppose that (2.2) holds for j = s — 1. Then by the definition of string vec-function, 

(A®A)Wvec(Eu...,Ek)a 

= [(3® A) ® (3® A)^"1!] vec(vec(Ei,... ,Bfc)a-i(vecEs)
r). 

According to Lemma 1, this equals 

vec((3® A)^ vec(Eu... ,^)s_i(vecEs)
T(3® A)T). 

By our induction hypothesis, 

(A®A)^vec(E1,...,Ek)s-1 = vec(AE1A\...,AEkA*)s-u 

while Lemma 1 implies 

(vecEs)T(A® Af = ([3® A]vecE3)
T = (vec(AEsA*))T. 
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Therefore, 

(A 0 A)^ vec(£i,..., Ek)s = vec(vec(i4EiA*,..., AEkA*),-!(vec(AEsA*))T). 

By the definition of string vec-function, it equals exactly 

vec(A£iAV..,A£fcA*)s. 

Hence, (2.2) is valid for 5. This completes the induction procedure. □ 

Let k e N and {Au...,Ad} be a multiset of M x M complex matrices.   For 
£ = 1,.. .,d, define 

F£:=(A£®A£)W. 

Then Lemma 2 implies that 

F£ vec(£7i,..., JEk)fc = vec(A£EiA*,..., ^^A*)fc. 

Applying this formula n times, we have for £i,..., Sn G {1,..., d}, 

Fei • • • FeTi vec(JS7i,..., Ek)k = vec(f )fc. (2.3) 

For convenience, we have denoted 5 as the string of matrices 

S := vec(A£lA£2.. • A^Ek^Ai^ • • • A^,..., ^Ae2 • • • AenEkAinAin_l ■ • • ^J. 

Note that for n e Cm, v G Cr, 1 < j < m, 1 < I < r, 

ej+(j_1)m vec(TOT) = (ejw)(ef v). (2.4) 

Together with the definition of string vec-function, the formula (2.4) tells us that 
for 5 = 2,..., fc, 1 < j < M2^"1), 1 < I < M2, 

eJ+(z_1)M2(3-i) vec{S)s = [ejvec(£)s_i][ef vec(A£lA£2 • • • A^EsA^A^ • • • A^)]. 

Apply this formula recursively for s = fc, fc - 1,..., 2. Then in connection with (2.3), 
we obtain the following lemma. 

Lemma 3. Let (Ei,...,Ek) be a string of M x M complex matrices.    Then for 
hi'-Mk G {1,...,M} andei,...,en G {l,...,d}, we have 

ei+Y,2jLi{is-i)M*-iFzi "%Fen vec(£?i,..., Ek)k 

k 

= n{eL-1+(^s-i)M [vec^^ • • • A^E^At^ ■ ■ ■ AJJ]}. 

3. Proof of Theorem 1 

In this section, we use the preliminary results given in the last section to prove The- 
orem 1. 

Proof of Theorem 1. We apply Lemma 3 to a special string of matrices. Let ji,..., J2k 

G {!,...,M}. Define 

Then 

^^e.^e^GC^x^,        3 = 1,...,*. 

vec£s = eiaa_1+Waa._1)M, 
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and, from the definition of string vec-function, 

vec(Ei,... ,Ek)s = e1+£2,i(jt_1)Mt-i. (3.1) 

Moreover, by (2.4), 

d+fea-DM [yec(A£lA£2 • • • A£nE8A*£nA*£n^ - - • A^)] 

This, in connection with (3.1) and Lemma 3, implies 

k 

=  ii\ieh8^1^£l^£2 •••^nej2a-l] [eZ2s^el "'AeneJ2a]j- 

Now we use this formula to estimate the norms. As in the discussion for the case 
k = 1, applying Holder's inequality, we have in one direction 

\\AeiAe2 ■ ■ ■ Aen ||» = mw \\efA£lAe2 ■ ■ ■ A£n ||?* 

M 
|2fc 

3=1 

M M     k 

<EM2fc"1En{[er^1^2--^„ei][er3£1...ieneJ]} 
1=1 j=l 5=1 

M      M 

z=i i=i 

Note that F = Fi + • • • + Fa. Hence 

Mnll8:= E ll^i^-^ 
ei,.-.»en€{l,.-,d} 

MM /  d 

.     Il2fc a
enlloo 

1=1 .7=1 V=l       / 

^M^IIF71!!!. 

For the other direction, letting j ':= 1 + Es=i(js ~ l)M8-1 e {1,..., M2fc} where 
each js is from {1,..., M}, we have 

ei,...}enG{l,.-}d} 

eiv^nefl,...^} 

ei,...,en€{l,..Md} 

= M2fcM"||2t 

2fc 
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Combining the above estimates for the two directions, we obtain for n € N, 

^iinil/2fe<Mi2fc<Miinil/2fe- 

This implies the conclusion of Theorem 1, and our proof is complete. □ 

4. Uniform joint spectral radius 

Our main result, Theorem 1, tells us that the p-norm joint spectral radius can be 
computed by the spectral radius of a finite matrix F when p = 2k is an even integer. 
Hence, it can be applied to the sharp estimates of Lp-smoothness of wavelets with p 
being an even integer. 

By the definition of Pp(A), we can easily see that for k € N, 

Poo(A) < P2k(A) < dWpeoiA). (4.1) 

Hence, we may estimate the uniform joint spectral radius by the spectral radii of 
finite matrices with the error given by (4.1). However, since the order of the matrix 
F is M2/e, which increases very fast as fc tends to infinity, it is difficult to apply this 
method to compute the uniform joint spectral radius exactly. A more efficient way to 
get Poo(A) is to apply the relation 

Poo(A) = lim [max{p(A£lA£2 • • • A£n) : A£l,...9Aene A}]1/n 

n—►oo 

proved in [1] (see also [3]). However, it is difficult to give an error bound for this 
approximation process. Let us mention that the finiteness conjecture, i.e., 

Poo(A) = [max{p(Aei A£2 • • • A£n) : A£l,..., A£n e A}]1/n for some n, 

remains open. 
Observe that for k = 1, the order of F is M2, while we know (see, e.g., [8, 17]) 

that for the multiset A arising from wavelets, P2(A) equals the square root of the 
spectral radius of a finite matrix whose order is about 2M. Thus, employing the 
special structure of the matrices in ^4, arising from wavelets, it is possible to reduce 
the order of the matrix F. This needs further investigation and will be discussed 
elsewhere. 

On the other hand, in some cases, Theorem 1 can still be used to obtain some 
interesting applications for the uniform joint spectral radius. This is our purpose in 
this section. 

The first application is the computation of the uniform joint spectral radius when 
the matrices have some special forms. 

Example 1. Let 

i4i = 
Ai    0 

A2   0 
and       Ao = 

0   Mi 

0   112 

where Ai, A2, /xi, p,2 are complex numbers. 



48 ZHOU 

Si := Ai®Ai = 

Observe that 

| Ai|2 0 0   0 

A1A2 0 0   0 

A2A1 0 0   0 

IA2I2 0 0   0 

0   0 0 H2 

0   0 0 ~PiiJi2 

0   0 0 P2M1 

0   0 0 I/Z2I2 

Let k e N and Zi,..., Z^, ji,..., jfc G {1,2,3,4}.   Then by the definition of the 

B2 := A2 0 A2 = 

-■SK* 
Kronecker product, 

and 

(BI2]) =nfe) . V      /i+Ef-iCt-i)^-1, i+Ef^Wt-i)^-!     £l\    y,tjit 

Hence, (sf^j ^ 0 implies j = 1, while (B^])ij ^ 0 only if j = 4fe. Therefore, 

F := B[f] + B[2] = 

|Ai|2fe    0 

*       0 

|2fc      0 

0    |Aii|2fe 

|2fc JA2|
2fe    0   •••    0    |W| 

By Theorem 1, we obtain 

P2k({Ai,A2}) = {(lA!]2'5 + \iX2\2k + V^IAil2* - |^|2fc)2 + ^il^lAsI2^ )/2}1/2fe. 

Therefore, by (4.1), 

Poo^Ai,^}) = lim p2fc({^i)^2}) =max{|Ai|,|//2|,\/|MiA2|}. 

A special form of Example 1 with Ai = /i2 = t + 1/2, A2 = Mi = t appeared in [17, 
Example 5.2]. 

The second application is to obtain some better estimates than that in (4.1). 
As an example, forl<p<oo,g>0, from the definition of Pp(A), we have 

PooCA) > (teffiy'^W. (4.2) 
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The estimate (4.2) has two advantages: firstly, we can choose various parameters 
for p, q to optimize the bound in some region; secondly, the choice of p = q = 2 
provides a better estimate than (4.1) with k = 1 (often used for estimating uniform 
smoothness of wavelets), since p4:(A)/p2{A) > d"1/4. 

Together with Theorem 1, (4.2) can be used to check when the first inequality on 
(4.1) becomes an equality. 

Theorem 2. Let A be a multiset of M x M complex matrices. Then Poo(A) = p2(A) 
if and only if 

pA(A) = P2(A). (4.3) 

In this case, for any 2 < p < oo, 

PP(A) = PooiA). (4.4) 

Proof. Suppose that Pc^(A) = ^M^then by (4.1) and (4.2) with p = q = 2, 

PooCA) < PA{A) < \/p2(A)poo(A) = P2(A). 

Hence, 

P4(^) = P2.(^)=Poo(^). 

Conversely, suppose that (4.3) holds, then by (4.1) and (4.2), 

PooCA) < P2(A) = pt(A) < Vp2(A)poo(A). 

Hence, 

p00(A) = p2{A). 

The second statement (4.4) follows directly from (4.2). The proof of Theorem 2 is 
complete. □ 

Thus, we can determine the first equality in (4.1) for k = 1 from p2(A) and PA(A)9 

which can be easily computed by Theorem 1. The case Poo(A) = P2(A) appeared 
several times in our investigation of smoothness of multiple refinable functions and 
multiple wavelets [16, 17]. 

Finally, we provide one example to show the importance of the joint spectral radius 
in the investigation of multiple refinable functions. 

An r-vector 0 = (0i,..., (/>r)
T of functions on E is called a multiple refinable func- 

tion if it satisfies the following matrix refinement equation: 

^0*0 = £ a(a)(f)(2x - a) (4.5) 

where a := {a(a)}a€z is a sequence of r x r complex matrices called the refinement 
mask and a(a) = 0 except for finitely many a. 

In [17], we characterized the smoothness of multiple refinable functions in terms of 
p-norm joint spectral radius. As an application, we have 
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Theorem 3. Let a be a finitely supported sequence of r x r complex matrices and 
(j) = (<f>i,..., (j)r)

T be a vector of continuous functions satisfying (4.5). If </> G (Cl(R))r 

for some I G 2+ and 4> has stable shifts, i.e., for two positive constants Ci and C2, 
r r r 

i=i i=l aGZ 00 j=l 

then <j)W := (0«,..., ^Oyr € (Lip5)^ /or some 5 > 0. 

Proo/. Let (4(Z))r be the linear space of all finitely supported sequences of r x 1 
vectors. Define two linear operators Ae, e = 0,1, on (^o(Z))r by 

A£v(a) = E a{e + 2a - /3)t;(/3),        a G Z,    v G (4(Z))r. 
/3GZ 

Suppose a is supported in [JVi,^], then (^([m, j]))r, the subspace of (4(Z))r consist- 
ing of all sequences finitely supported in [mj] with m < JVi, j > N2 - 1, is invariant 
under both ^0 and Ai. Consequently, the minimal common invariant subspace of AQ 

and ill generated by a finite subset of (4(Z))r is finite dimensional. Let m G N and 
V be the minimal common invariant subspace of AQ and Ai generated by ej(Vm5), 
j = 1,..., r, where 6 is the delta sequence and Vm£ = X^o (7) (-!)**( • - «)• Then, 
[17, Theorem 3.3, (3.7)] tells us that -log2p00(Ao\v,A1\v) is bounded by a fixed 
number concerning the smoothness of 0. Hence, we can choose m G N such that 
m > -loga PooCAolv,-Ailv) and m > I. 

Iterating (4.5) n times, we obtain 

0(£) = EMa)<K2n:r-a) (4.6) 
aez 

where ai = a and 

On (a) = E an-i(/?)a(a - 2)9),        a G Z. 
/5GZ 

This expression can be found in [16]. 
It follows that (see [17]) 

V^(z) := £ (H(-imr - s/2n) = £ V"la„(a)0(2"x - a). 

By the stability assumption, for 1 < 5 < r, n G N, 
r 

^lEH^^^II-^IIV^n^lloO. 

Since 0 G (Cz(M))r is compactly supported and m > Z, we know that for s = 

^1^^^1100/(2-^=0. 

This, in connection with [17, (3.6)], implies that for j = 1,..., r, 

Ji™2^ i?^nn{ii^^---^(^m^)iioo} = o. n--»oo        ei,...,enG{u,l} 
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By the two inequalities in the proof of [9, Lemma 2.4], we have 

■ ,r, (4.7) 

where Vj is the minimal common invariant subspace of AQ and Ai generated by 

But 

P~({A0\vj,A1\Vi})=M{e ^      \\A£l\vj---AeJvj\\}1/n. 

The statement p^ ({AQ \ vd;, Ai \vj}) > 2 l would imply a contradiction to (4.7). There- 
fore, we must have 

PooiiMvuMWiY) < 2~Z,        3 = 1,• • • ,r. 

It follows that 

Pcx)({^o|v,^i|v})<2-z. 

By [17, Theorem 3.3], 

t® €(Up5)r 

for some S > 0. 
The proof of Theorem 3 is complete. □ 

Remark. Theorem 3 can also be proved by using a factorization of the refinement 
mask, see e.g., [21]. However, the new mask arising from this factorization has usually 
a larger support than the original mask. By the structure of shift-invariant spaces, we 
can show that Theorem 3 still holds without the stability assumption. Also, similar 
results can be established for Lp solutions of (4.5). 

Let us now give our example called multiple refinable Hermite interpolants. 
Set r = 2. A vector 0 = (</>i,</>2)T of compactly supported functions is said to be 

an Hermite interpolant if </>i, </>2 £ C'1(R), 

(j){a) = 5Qaeu        aeZ, (4.8) 

and 

^(a) = £oae2,        a £ Z. (4.9) 

The following example provides us with a family of multiple refinable Hermite inter- 
polants. Its refinement mask is simple: it is supported in [0,2], but it has rich contents 
and can be employed to test the power of general theories on matrix refinement equa- 
tions. We have studied this example several times to show the applicability of our 
general theories: accuracy in [15], convergence of subdivision schemes in [16], smooth- 
ness analysis in [17], and existence of compactly supported distributional solutions in 
[26]. 

Example 2. Let a be the sequence of 2 x 2 matrices supported in [0,2] given by 

1/2        s/2 10 
,    a(l) = 

0    1/2 
a(0) = 

t      1/4 + 2st 
and   a(2) = 

1/2       -s/2 

-t    1/4 + 2st 

where s, t are real parameters.  Then (4.5) has a solution 0 = (0i,</>2)T such that 
(j){x + 1) is an Hermite interpolant if and only if t = -1/8, 0 < s < 4. 
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Proof. Let us first prove the following statement: 
If -1/2 < st < 0, (j) e (C^M))2 is supported in [0,2] with 0(1) = ei and satisfies 

(4.5) with the mask a given in this example, then 

$(l) = -8t (4.10) 

To show this statement, we observe that by (4.5), </>(3/2) = a(2)<£(l) = (1/2, -£)T, 
and for n e N, 

#1/2") = atOMl/JT1-1) = • ■ • = a(O)Xl) = a(0)"e1( 

while 

0(1 + l/2n) = a(l)0(l + l^"1) + a(2)0(l/2n-1). 

Hence, 

2n02(l + l/2n) = 2n-102(l + l^71"1) + 2n[-t, 1/4 + 2s*]a(0)n-1ei 

='... = 202(3/2) + ^ 2j[-t, 1/4 + 2st]a(0y-1e1. 
3=2 

If st 7^ —1/8, the matrix a(0) has two eigenvalues 1/4, 1/2 + 2st corresponding to 
eigenvectors £ = (-25,1)T, 7] — (1,4^)T, respectively. Then e1 = (—4£€ + ri)/(l + 8st). 
Thus, in this case, 

m = lim Mi + W-MD 
^2K  ,       n->oo l/2n 

oo 

= 202 (3/2) + J2 2J H'1/4 + 25*] 

"(-m-G) ^TTS'1/2^-'") 
= -8*. 

If 5^ = —1/8, the matrix a(0) has one degenerate eigenvalue 1/4 corresponding to 
eigenvector £ = (—25,1)T. Also, 

a(0)ei = ei/4-£/(8*). 

Hence, 

oWex = aiOr-^/A- (i)" \/(8s) = ■■■= (^"d -«(!)""V(8s). 

Therefore, in this case, 

111X1     — 

n—>oo 1/2" 

2*2(3/2) ■ 
i=2 

V'"1 
ei- 

-t, 1/4 + 25t] 

-2 

= -8t. 



THE p-NORM JOINT SPECTRAL RADIUS FOR EVEN INTEGERS 53 

Combining the above two cases, we conclude that (4.10) holds, and our statement 
has been proved. 

We are in a position to verify the equivalence. Suppose that </> satisfies (4.5) and 
<l>(x+i) is an Hermite interpolant, then the shifts of ^i and 02 are linearly independent, 
that is, 

aez 
b(a)<j>i(x - a) + ^2 c(a)^2(a? - a) = 0    =>    b(a) = c(a) = 0   Va e ! 

aez 

This can easily be seen from the Hermite interpolating condition by taking values and 
derivatives at integers. Hence, the shifts of 0i and fa are stable [14]. This tells us 
by a result of Dahmen and Micchelli [2] that |1 + 4s£| < 2, i.e., -3/4 < st < 1/4. 
Therefore, we can apply the smoothness analysis from [17, Example 4.2] and conclude 
from supp<?!> c [0,2], 0 € (C^R))2 that |l/2 + 2st\ < 1/2. Moreover, Theorem 3 tells 
us that 11/2 + 2st\ < 1/2. Consequently, 

-1/2 < st < 0. 

Together with the interpolating condition and our statement (4.10), this implies that 
t = -1/8 and 0 < s < 4, which completes the proof for the necessity part. 

Conversely, suppose that t = -1/8, 0 < s < 4. Then [17, Example 4.2] shows that 
there is a solution 0 E (C,1(M))2 of (4.5) such that supp0 C [0,2] and 0(1) = ei. It 
follows from our statement (4.10) that 02 (1) = 1- 

Moreover, we take the derivatives at x = 1 on both sides of (4.5) and obtain 

<//(l) = a(l)2<//(l) = 
2   0 

0    1 
0'(1). 

Hence, 0i(l) = 0. 
We have shown that </>(# +1) is an Hermite interpolant, and the proof is complete. 

□ 
The special case s = 3/2, t = —1/8, A = —1/8, and ^ = 1/2 was discussed by Heil, 

Strang, and Strela [11]. In this case, (j) can be obtained explicitly as 

01 (x) = < 

ra;2(-2x + 3) 

(2-z)2(2a;-l) 

0 

and 

02 (X) = < 

x2(x-l) 

(2-x)2(x-l) 

0 

for 0 < x < 1, 

for 1 < x < 2, 
for a;eR\[0,2], 

for 0 < x < 1, 

for 1< x < 2, 

forx€R\[0,2]. 

It is well known that (j)(x + 1) is an Hermite interpolant. 
When |l/2 + 2st\ < 2-5/2, if we take m = 2, AQ, A1, and V as in the proof 

of Theorem 3, then the joint spectral radius of A := {^4o|y5^i|y} satisfies pcx>(A) = 
P2(A) = 1/4 corresponding to the case in Theorem 2. On the other hand, if 2~2~1/p < 
|l/2 + 2st\ < 2-5/2 for some 1 < p < 2, then pp(A) = 21^\l/2 + 2st\ > Poc(A). This 
shows that (4.4) cannot be extended to the range 1 < p < 2. 
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