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BASIC ANALOG OF FOURIER SERIES ON A ^-QUADRATIC GRID 

Joaquin Bustoz and Sergei K. Suslov 

ABSTRACT. We prove orthogonality relations for some analogs of trigonometric 
functions on a g-quadratic grid and introduce the corresponding g-Fourier series. 
We also discuss several other properties of this basic trigonometric system and 
the g-Fourier series. 

1. Introduction 

A periodic function with period 2Z, 

f(x + 2l) = f(x), (1.1) 

can be represented as the Fourier series, 
oo 

f{x) = ao + 2^, ( an cos —X + on sm —X 1 (1.2) 
n=l 

where 

ao = jlJ_f{x)dx, (1.3) 

an = j       f(x) cos —x dx, (1.4) 

bn = y /   f{x) sin — x dx. (1.5) 

For convergence conditions of (1.2), see, for example, [1], [6], [29], [31], and [33]. The 
formulas (1.3)-(1.5) for the coefficients of the Fourier series are consequences of the 
orthogonality relations for trigonometric functions 

/i mrx        mnx  , . _   . 
cos —— cos —j— dx = 0,        m^n, (1.6) 

/l   .   nirx    .   rriTrx   . . ,     . 
sm —— sm —-— dx = 0, m ^ n, (1.7) 

/l       nnx    .   rriTrx  , , , 
cos —r— sm —r— ax = 0, m^n. (1.8) 

In the present paper, we discuss a ^-version of the Fourier series (1.2) with the aid of 
basic or ^-analogs of trigonometric functions introduced recently in [18] (see also [5] 
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and [26]). Our first main objective will be to establish analogs of the orthogonality 
relations (1.6)-(1.8) for g-trigonometric functions on a ^-quadratic grid. 

There are several ways to prove the orthogonality relations (1.6)-(1.8) for trigono- 
metric functions. The method based on the second order differential equation 

u" + u2u = Q (1.9) 

can be extended to the case of basic trigonometric functions. Consider, for example, 
two functions cos aw and coso/x, which satisfy (1.9) with different eigenvalues uo and 
u/. Then, 

(u2 — u/2) /   coswx cosw'x dx = W (cosaw, coso/x) \l_i (1-10) 

COSCJX cos u x 

-i 

The right side of (1.10) vanishes when 

sina;Z = sinu/Z = 0, 

which gives 

TT 
U)  = y m, 

(1.11) 

(1.12) 

where n,m = 0, ±1, ±2, ±3,.... In the same manner, one can prove (1.7). The last 
equation (1.8) is valid by symmetry. We shall extend this consideration to the case of 
the basic trigonometric functions in the present paper. 

This paper is organized as follows. In Section 2, we introduce the ^-trigonometric 
functions. In the next section, we derive a continuous orthogonality property of these 
functions, and then, in Section 4, we formally discuss the limit q —> 1 of these new 
orthogonality relations. Section 5 is devoted to the investigation of some properties of 
zeros of the basic trigonometric functions and in Section 6 we evaluate the normaliza- 
tion constants in the orthogonality relations for these functions. In Section 7, we state 
the orthogonality relation for the corresponding ^-exponential functions. Finally, we 
introduce basic analogs of Fourier series in Section 8, and in Sections 9-11, we give a 
proof of the completeness of the g-trigonometric system and establish some elementary 
facts about convergence of our g-Fourier series. Examples of these series are considered 
in Sections 12 and 14; we prove some useful basic trigonometric identities in Section 
13. Some miscellaneous results concerning g-trigonometric functions are discussed in 
Section 15. We close the paper in an Appendix, estimating the number of zeros of the 
basic sine function on the basis of Jensen's theorem. 

2. Analogs of trigonometric functions on a ^-quadratic grid 

The following functions C(x) and S{x) given by 

C(x) = Cq(x;u) (2.1) 

{-qu2\q2){ 
2iPl 

( 
-qe aie -qe ,-219 

; g2, -u;2) 
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and 

S(x) = Sq(x;u>) (2.2) 

(-quj^q2)^   l-q \ Q ) 

were discussed recently [5], [18] and [26] as g-analogs of coswx and sinwx on a bi- 
quadratic lattice x = cos 9. 

These functions are special cases, y = 0, of more general basic trigonometric func- 
tions 

C(x,y) = Cg(a;,2/;tj) 

(-gu;2;?2)^ 
/ _0l/2eW+iv -«Wd»-*P -qW&P-* _fll/2e-i6l-iv \ 

(2.3) 

and 

Sr(a;52/) = 5g(a;,i/;a;) 

(cos 0 + COS if) 
(-qu)2'^2)^    l-q 

x 4^3 ( j^   ^   _g3/2 ; 8. -^ J .    (2-4) 

which are g-analogs of cosa;(x + y) and sina;(x + y), respectively (see [26]). Here 
x = cos0 and y = cosy?. Usually we will drop q from the symbols Cq(x;u), Sq(x]uj), 
Cq{x,y\u)), and Sq(x,y\uS) because the same base is used throughout the paper. 

The symbols 2^1 and 4^3 in (2.1)-(2.4) are, of course, special cases of basic hyper- 
geometric functions, 

E°°     (01, a2,---,  Or;  g^      /'/_1Nnn„(n-l)/2V+8"r  +n 

n=0(g, 61, *»,..., 6.; 9)n ^   } 9 ^ 

The standard notations for the ^-shifted factorial are 

n-l 

(o;«)0:=l,        (a;g)n:=n(l-^fc), (2-6) 
A;=0 

(ai, a2,..., am;?)„:=n(a';9)n' (2-7) 
Z=l 

where n = 1,2,..., or oo, when \q\ < 1. See [8] for an excellent account of the theory 
of basic hypergeometric functions. 
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Functions (2.1)-(2.4) are defined here for M < 1 only. For an analytic continuation 
of these functions in a larger domain, see [13], [18], and [26]. For example, 

and 

C(x) =       fe-^;*),       ^ I ^>.  ^> ; ^ ' 9J       (2-8) 

/     _a;2 -ao;2 \ 
X 2^2 (, g2a;2e2^,   ^c"2^ ; ^^ qS) ' (2,9) 

One can see from (2.8) and (2.9) that the basic trigonometric functions (2.1) and 
(2.2) are entire functions in z when e10 = qz. Analytic continuation of g-trigonometric 
functions (2.3) and (2.4) can be obtained on the basis of the "addition" theorems, 

C(x,y) = C(x)C(y)-S(x)S(y), 

S(x,y) = S(x)C(y) + C(x)S(y), 

found in [26]. 
The basic trigonometric functions (2.1)-(2.4) are solutions of a difference analog of 

equation (1.9) on a g-quadratic lattice, 

(T^_f^4>\+Au(,) = 0 (2.10) 

where x(z) = | (q* + q-z), qz = eie, xi(z) = x(z +1/2), X/a = Aq1'2^2/^ - q)2, and 
Af(z) = Vf(z + 1) = f(z + l)-f(z). See [5], [18], [23], [25], and [26] for more details. 
Equation (2.10) can also be rewritten in a more symmetric form, 

where 5f(z) = f(z + 1/2) - f(z - 1/2). 
The g-trigonometric functions (2.1)-(2.4) satisfy the difference-differentiation for- 

mulas 
S 201/4 

-C(x,v) = -f-^u,S{x,v) (2.12) 

and 
5 2a1/4 

teS(x>v) = TZju''c(x>v)' (2-13) 
See [18] and [26]. Applying the operator S/5x to the both sides of (2.12) or (2.13), we 
obtain equation (2.11) again. 

Equation (2.10) is a very special case of a general difference equation of hyperge- 
ometric type on nonuniform lattices (cf. [5], [23], [25], and [26]). The Askey-Wilson 
polynomials and their special and limiting cases [4], [19], and [23] are well known as 
the simplest and the most important orthogonal solutions of this difference equation of 
hypergeometric type. Recently, Ismail, Masson, and Suslov [13], [14], [27], [28] found 
another type of orthogonal solutions of this difference equation. In the present paper, 
we shall discuss this new orthogonality property at the level of basic trigonometric 
functions. 
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3. Continuous orthogonality property for g-trigonometric functions 

Our main objective in this paper is to find the orthogonality relations for g-trigono- 
metric functions (2.1)-(2.2) similar to the orthogonality relations (1.6)-(1.8). Consider 
difference equations for the functions u(z) = Cq(x(z)](jj) and v(z) = Cq(x(z)]u) in 
self-adjoint form, 

^g ("<" ^)+*-<*«*)-o M 
and 

^r)('^W))+yp{zH')"' (3'2) 

where the function p(z) satisfies the "Pearson equation" [23], [25], 

P(z + 1) _   *(-*)    _ -i _ /,-4*-2   fn2\^^ ,o Q>> 
p{z)  "(j{z + i)~l-q      w;    > V'6) 

and 

A-(r^)2w'    A-(r^)2" • (3-4) 
One can easily check that 

£2(£_ti)=g--2     for Po{z) = (^X!!ijk (3.5) 
Po(^) qz -q-z y     J 

and 

Pot\z) "^ 
(3.6) 

(cf. [13], [27], and [28]). Therefore, we can choose the following solution of (3.3): 

ry*)      (q2oL+2z^ q2ot-2z^ q2-2a+2z   q2-2oL-2z. q2\ V0-'; 

where a is an arbitrary additional parameter. We shall see later that this solution 
satisfies the correct boundary conditions for our second-order divided-difference Askey- 
Wilson operator (2.10) for certain values of this parameter a. 

Let us multiply (3.1) by v(z), (3.2) by u{z), and subtract the second equality from 
the first one. As a result we get 

(A - A') u(z) v(z) pWVxxiz) = &[(jp{z) W(u(z),v{z))] (3.8) 

where 

W(u(z),v{z)) = 
u(z)        v(z) 

Vu(z)     Vv(z) 
Vx(z)    Vx(z) 

(3.9) 

U[Z)Vx(z)     V{z)Vx(z) 
is the analog of the Wronskian [23]. 
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FIGURE 1 

Integrating (3.8) over the contour C indicated in Figure 1, where z is such that 
z = ie/logq'1 and -7r/2 < 6 < 37r/2, gives 

(A - A')   / u(z) v(z) ptyVx^z) dz= f A[CTP(Z) W(u(z),v(z))] dz.       (3.10) 

As a function in z, the integrand in the right-hand side of (3.10) has the natural purely 
imaginary period T = 27ri/logg""1 when 0 < q < 1, so this integral is equal to 

/. 
o-p(z) W(u(z),v(z)) dz (3.11) 

where D is the boundary of the rectangle in Figure 1 oriented counterclockwise. 
The basic trigonometric functions C(x) and S(x) are entire functions in the complex 

2-plane due to (2.8)-(2.9). Therefore, the poles of the integrand in (3.11) inside 
the rectangle in Figure 1 are the simple poles of p(z) at z = a, z = 1 — a and at 
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z = a - iir/logq, z = 1 - a - in/logq when 0 < Re a < 1/2. Hence, by Cauchy's 
theorem, 

—.[ P W{%v) dz = Res f{z)\z=« +Res f{z)\z=i-a (3.12) 
27Ti JD 

+ ReS /(^)U=a-z7r/logg +ReS /(^l^i-a-^/logg 

where 

/(z) = p(«)W («(«), t;(2)) (3-13) 

- (g2a+2z)  g2a-2z)  q2-2a:+2J;)  g2-2a-2*.   ^2)^ • 

Evaluation of the residues at these simple poles gives 

Res /(z)U=a = Jim (z - a) f(z) (3.14) 

q-a(q2a, Q1-201; g)oc ^(ti^.t;^))!^ 
21og<r1(g2, q2, qia, q2-Aa; q2)oo     ' 

Res /(*)|,=i_„ =   lim  (z-l + a) f{z) (3.15) 

q-a(q2a, q1-2"; g)oo Ty(ti(^)>t;(^)l,=i-a 

21ogg-1(92, g2, 94a, <Z2-4*; 92)oo       ' 

Res/(z)|z=a-iOT/iog<!=        lim,,     (z - a + iw/logq) f(z) (3.16) 

_ q-a(q2a, g1"2"; g)oc W^^.t;^))!,^-^/^, 

2logg-1(g2, g2, g4a, g2-4a; g2)oo 

and 

Res /(*)|_i_a-<ir/log« = t^LtS
Z -1 + a + i7r/logg) f(Z) (3-17) 

_ g~Q(g2a,  g1"2";  g)oo W(u{z),v(*))\*=l-a-i*/U>gq 

21ogg-1(92, g2, g4Q, g2"4"; g2)oo 

However, 

w(u(z)Mz))=v{z)u{z-1)-;iz),:ir1)        (3.i8) x(z) — x(z — 1) 

by (3.9) and, therefore, 

W(u(z)Mz))\z=a = W(u(z),v(z))\z=i-Q (3.19) 

.= -W(u(z),v(z))\z=a-iv/loeq = -W(u(*),w(s))|z=l-a-xir/log<z 

due to the symmetries C(x) = C7(-x), x(z) = x(-z), and a;(2;) = -x(z — m/logq). 
Thus, the residues are equal and as a result we get 

qV2 
r(a;2-u/2)   f u{z) v(z) p^Vx^z) dz (3.20) 

(l-g)2' 
mq-a{q2a, g1"2"; q)^ W(u(a),t;(a)) 

logg-^g2, g2» g4a, g2"4"; g2)oo 
where 0 < Re a < 1/2. 
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We have established our main equation (3.20) for the case u(z) = C(x(z)]u;) and 
v(z) = C(x(z)]ujf). The same line of consideration shows that this equation is also 
true when u(z) = S(X(Z)]UJ) and v(z) = S(x(z)]u;'). The corresponding analogs of 
the Wronskians in (3.20) can be written as 

W(C(x(z); u>), C{x(z); a/)) (3.21) 

-i ^— [u C(x(z); UJ')S{X{Z - 1/2); a;) - a/ C{x{z)\ u)S(x(z - 1/2); u/)] 

and 

W(S(x(z);u>), S(x(z); u/)) (3.22) 

2a1/4 

= Y^ [u/ S(x(z)\«>)C(x(z- 1/2);wO -a; 5(a;(^);a;,)C(a;(^ - 1/2);a;)] 

by (2.12)-(2.13), respectively. One can see from (3.21) and (3.22) that the right- 
hand side of (3.20) vanishes in both cases when eigenvalues u and u/ are roots of the 
following equation: 

5g(a?(l/4);ci;) = Sg(x(l/4);u/) = 0. (3.23) 

This is a direct analog of (1.11) for basic trigonometric functions. 

In the last case, u(z) = C(X(Z);LJ) and v(z) = S(X(Z)I<JJ'), the left side of (3.20) 
vanishes by symmetry. It is interesting to verify that by using our method as well. 
Equations (3.1) to (3.18) are valid again. But now 

W(u(z),v(z))\z=a = W(u{z), v(z))\zssl-a (3.24) 

= W(u(z),v{z))\z=a_i7r/iogq = W(u(z),  v(*))U=l-a-t,r/logg 

due to the symmetries C(x) = C(-x), S(x) = -S(-z), x(z) = x(-z), and x(z) = 
—x(z — mj log q). Therefore, 

(l-g)2^2 " ^   Jc ^ VW PW^lW dZ (3-25) 
TTi q-«(q2«, q1-2*; q)^ [W(u(a),v(<x)) - W(u(a)9 v(a))] __ 

2lQg9-i(9a
J q2, q*<*, q2^ q^ 

when 0 < Re a < 1/2. 

Combining all the above cases, we finally arrive at the continuous orthogonality 
relations for basic trigonometric functions, 

/'C(cos^)C(cos^-) J£-£rtz^ * (3.26) 

if UJ ^ a/, 
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(e™, e-™; q)c 
I  S(cos^) SicosO^X^ij^Jt^ * (3-27) 

{0 ifcj^o/, 

and 

I  C(cos^) S(coS<W) (gl/le2i; gl/2eL^g)oo * = 0. (3.28) 

Here rj := #(1/4) = (g1/4 + g"1/4)/2 and the eigenvalues u and a;' satisfy the "bound- 
ary" condition (3.23). 

For arbitrary u ^ a/, one gets from (3.20)-(3.22): 

jTcCcoBftuO ^(cos^O (ql/a^: gTe-^ * (3-29) 

and 

jf «-*=») s<cosi,;"'» ^ ^Td. *       <3-30) 

Also, in the limit u; —> a/, 

p2t^    ^-2td. /•TT / 2t»    p-2t0.  ^ 

^ ^r'r^'^6 "^^ <3'31) 

and 

O220    ^-2i0. 

We remind the reader that ry is defined by rj = #(1/4) = (g1/4 + g~1/4)/2.   This 
notation will be used throughout this work. 
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4. Formal limit q —> 1~ 

In this section, we formally obtain orthogonality of the trigonometric functions as 
limiting cases of our orthogonality relations (3.26)-(3.28) for basic trigonometric func- 
tions. According to [26], 

lim Cq(x,y\ -^(l-g)) = cosa;(a: + y), (4.1) 
q—fl- \ Z / 

lim Sq(x,y; -u(l-q)) = smuj(x + y). (4.2) 
q—*l~ \ Z / 

If UJ ^ u', we can rewrite (3.26) as 

["C(cos0;u) C(cose;uj') (e2ie,e-2ie;q)1/2 d6 = 0 (4.3) 

where 

(ara;r)oo 

Using the limiting relation [8] 

lim (a; 7% = (1-a)*, (4.5) 
g->l- 

one can see that 

(e2ie,e-2id;q)1/2^2Sm6 (4.6) 

as q —► 1~. Therefore, changing a; to (1 — g)a;/2 in (4.3), with the help of (4.1) when 
y = 0, we obtain the orthogonality relation (1.6) with I = 1. The boundary condition 
(1.11) follows from (3.23) in the same limit. 

When u = a/, we can rewrite (3.26) as 

£c2(coS0;u) (e2ie,e-™;q)1/2 dO = ^^ Cfaa^Stau;) (4.7) 

where 

(g*;g)c 

is a g-analog of Euler's gamma function T(z) (see, for example, [8]). Changing UJ to 
(1 - q)u)/2 in (4.7), with the aid of 

lim Tq{z) = IX*), (4.9) 
q^l- 

Tq{z) = {l-qy-*£^- (4.8) 

we get 

cos2 Trnrc da? =   2(   . .   cos2 7rn = 2 (4.10) 
-i *  (V2; 

where n = ±1, ±2,..., in the limit q —► 1~. 
In a similar manner, one can obtain (1.7) and (1.8) from (3.27) and (3.28), respec- 

tively. 
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5. Some properties of zeros 

In Section 3 we have established the orthogonality relations for the basic trigonometric 
functions (3.26)-(3.28) under the boundary condition (3.23). Here we would like to 
discuss some properties of a;-zeros of the corresponding basic sine function, 

Sirr,u) = ±4%       "       ^ (    -f*'    -f    ; f, -A (5.1) 
(qV2u>2; 9)00 u (   -a;2,       -qu2   .    ,     3^ 

= to-flw3;*8),*, T^T2 ^ V fl8^,   95/^2 ' q ' q ) ' 
and the basic cosine function, 

(-(?a;2;g2)oo        \ Q ) 

(q,^2; q^ 21P2 \ <11/2"2,   f'2"2 '9,q)-      ■ 
One can see that these functions have almost the same structure as the g-Bessel 
function discussed in [13], [14].  So we can apply a similar method to establish the 
main properties of zeros of the functions (5.1)-(5.2). 

The first property is that the g-sine function 5(77; v) has an infinity of real a;-zeros. 
To prove this, we again can consider the large u;-asymptotics of the function (5.1). 
The 2^1 here can be transformed by (III.1) of [8], which gives 

5(77; O;) =  T-= o—or  TTo  2^1 t a/2, ,2 »   0  >   -0 '     I • 
(fl3* -^ ; 92)oo    1 - ql/2      \      <rf w j 

(5.3) 

For large values of w, such that a;2 ^ g-3/2.-2n ^ere n == 0,1,2,..., 

/    _gi/2     ^2 \ /       1/2 \       (-g3/2;?2)^ 

(5.4) 

by the g-binomial theorem, Therefore, as a; —»• 00, 

8{mU) = tf!^ u f
2^°° [l + o(l)], (5.5) 

(9;92)lo (-9w2;g2)0o  L J 

by (5.3) and (5.4). But the function 

oscillates and has an infinity of real zeros as u approaches infinity. Indeed, consider 
the points u = 7n, such that 

l2=P2q-2n (5-6) 

where n = 0,1,2,... and g1/2 < /32 < g~3/2, as test points. Then, by using (1.9) of 
[8], 

^.7n)=      ^^^       /5(_^2.g2)oo    ("I)     « -R7^?)7[l + 0(1)]' 
(5.7) 
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as n —> oo, and one can see that the right-hand side of (5.7) changes sign infinitely 
many times at the test points UJ = 7n as w approaches infinity. 

In a similar manner, one can prove that the g-cosine function Cfa oo) has an infinity 
of real u;-zeros also. Thus we have established the following theorem. 

Theorem 1. The basic sine S(rj]u) and basic cosine C(rj](j) functions have an in- 
finity of real u-zeros when 0 < q < 1. 

Now we can prove our next result. 

Theorem 2. The basic sine £(77; v) and basic cosine C(rj] uS) functions have only real 
u)-zeros when 0 < q < 1. 

Proof. Suppose that UQ is a zero of the basic sine function (5.1) which is not real. It 
follows from (5.1) and (IIL4) of [8] that 

«*"> - rar T^ - (-f: X* ■• «■. ^) • <«> 
Now we can see that LJQ is not purely imaginary, because otherwise our function would 
be a multiple of a positive function. 

Let UJI be the complex number conjugate to LUQ, SO that ui is also a zero of (5.1) 
because this function is a real function of UJ. Since UJQ ^ ui\ the integral in the 
orthogonality relation (3.26) equals zero, but the integrand on the left is positive, and 
so we have obtained a contradiction. Hence a complex zero a;o cannot exist. One can 
consider the case of the basic cosine function in a similar fashion. □ 

Theorem 3. If 0 < q < I, then the real u-zeros of the basic sine Sfaw) and basic 
cosine C{r}\ UJ) functions are simple. 

Proof. This follows directly from the relations (3.31) and (3.32). Consider, for exam- 
ple, the case of the basic sine function. If u) = u/, then the integral in the left side 
of (3.31) is positive, which means that -^Sfau) ^ 0 when 5(7?; a;) = 0. The same is 
true for the zeros of the basic cosine function. □ 

Our next property is that the positive zeros of the basic sine function 5(77; u) are 
interlaced with those of the basic cosine function Cfa UJ). 

Theorem 4. Ifuti,^,^,..* are the positive zeros of S(r);uj) arranged in ascending 
order of magnitude, and tui, ZU2,073,... are those of C(r)\ UJ), then 

0 = UJQ < wi < UJI < w^ < UJS < ws < - • • , (5.9) 

ifO<q<l. 

Proof. Suppose that LJk and Uk+i are two successive zeros of S(rj;uj). Then the deriv- 
ative ifcSfauj) has different signs at UJ = Uk and UJ = Wk+i- This means, in view of 
(3.32), that C(rj;uj) changes its sign between ujk and ujk+i and, therefore, has at least 
one zero on each interval (ujk,ujk+i)- 

To complete the proof of the theorem, we should show that C(r}] UJ) changes its sign 
on each interval {ujk)UJk+i) only once. Suppose that C{r}\Wk) = C{rr,mk+i) = 0 and 
ujk < mk < tuib+i < k>jfe+i. Then, by (3.32), the function S(r);uj) has different signs 
at LJ = Wk and UJ = mk+i and, therefore, this function has at least one more zero 
on (ujk,ujk+i). So, we have obtained a contradiction, and, therefore, the basic cosine 
function C(rj] u) has exactly one zero between any two successive zeros of the basic 
sine function 5(77;a;). □ 
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The proof of Theorem 1 has strongly indicated that asymptotically the large w-zeros 
of the basic sine function S(rf] UJ) are 

a;n = ±xn9"n,        <?1/4 < "n < q-3/A (5.10) 

as n —> oo. The same consideration as in [12] and [14] shows that £(77; a;) changes sign 
only once between any two successive test points UJ = 7n and u = Jn+i determined 
by (5.6) for large values of n. We include details of this proof in Appendix A to make 
this work as self-contained as possible. 

Our next theorem provides a more accurate estimate for the distribution of the 
large zeros of this function. 

Theorem 5. Ifwi^wziWs,... are the positive zeros of Sfaw) arranged in ascending 
order of magnitude, then 

Wn = <71/4-n + 0(l), (5.11) 

as n —* 00. 

Proof. In view of (5.1) and (111.32) of [8], 

S{J,,U) " WT* («,«»,-flwW/o^eo (5-12) 

/      _gl/2       _g3/2 

+ 
1 _ gi/2 (qr-1, g3, -go;2, -g2/a;2; g2)^ 

/     _g3/2       _   5/2 g\ 

2  / » 

which gives the large u;-asymptotic of 8(7]; u). When w = q1/4'71 and n = 1,2,3,..., 
the first term in (5.12) vanishes, and we get 

s(m q^) = (-i)v*-v* i±^ |zgi!k (5^) 

xm(   -<i3/\3-
q5/2   ;*,-*»»*) 

with the help of (1.9) of [8]. Thus, 

lim S(ri;q1/4-n) = 0, (5.14) 
n—►oo 

which proves our theorem. □ 

In a similar fashion, one can establish the following theorem. 

Theorem 6. Ifmi, wi, VJ^ ... are the positive zeros ofC(r); OJ) arranged in ascending 
order of magnitude, then 

wn = <?!*-"+ o{l), (5.15) 

as n —> oo. 
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The asymptotic formulas (5.11) and (5.15) for large a;-zeros of the basic sine S(rj;uj) 
and basic cosine C(r]; u) functions confirm the interlacing property (5.9) from Theo- 
rem 4. 

Let us also discuss the large u;-asymptotics of the basic sine 5(x; u) and basic cosine 
C(x; w) functions when x = cos0 belongs to the interval of orthogonality — 1 < x < 1. 
Prom (2.1) and (2.2) one gets 

—e 2i8 —e -219 
; q2, -qu2 C(cos0;a;) = 2^1 ( 

__ (-e-2ie,-qe-2i9, qu2e2ie, e'^/u;2'^^ 

(5.16) 

(?, e-*ie,-qu;2,-q/u;2iq2)c 

—e 2i0 

q2eAie 
-qe 219 

+ 

X2V^1 f 

{-e2i6,-qe2ie, quj2e-2ie, e2ie/u2;q2) 

a2   -*- q '     a;2 

(   -e-2ie,    -qe-2id        2       ^
2\ 

and 

5(cos0;a;) = 
2g1/4l !a; 

1-8 
2g1/4w 

COS 6 2(Pl ( 

(-qe-2ie 

qe2ie)    -qe-2i6 
2 2 

9 , -9^ (5.17) 

1-q 
cos 6 

-q2e-2iB, q2u2e2ie, e-™/a;2; g2)^ 
(g3, e-W,-qu)2,-qlu2;q2\ 

o2i0 -ge 249 

g2e4W 
2   -q-\ '  w2; 

+ (-ge2ifl,-g
2e2ig, q2uj2e-2ie, e2i6/oj2;q2)c 

(g3, e^,-ga;2,-g/a;2;g2)c 

X2V1 r 
-e-2ie,    -ge"2^ 

g2e-4ie 

by (III.3) and (111.32) of [8]. For |x| < 1, |g| < 1 and large w, it is clear from (5.16) 
and (5.17) that the leading terms in the asymptotic expansions of C(cos#;a>) and 
«!?(cos#;u;) are given by 

C(cos0;a;) 
(-e-^igjco    (gtSeMrfU  L   (-e^iqU    (ga;2e-2ie;g2) 

+ ■ 
(g, e-^^2)^    (-ga;2;g2)TO       (g, e^g2)^     (-ga;2;g2) 

(5.18) 

and 

2^1/4,. 
5(cos 0; u)) ~ —  cos 0 

l-g 
(-qe-™;q)oo    (g2a>2e^;g2) 

(q3, e-m\q2)<»     {-q^q2)c 

{-qe2ie;qU    (q2u,2e-2id;q2)c 

(g3, e^^g2)^      (-ga;2;g2)c 
(5.19) 
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respectively.  In particular, when w = ujn are large zeros of the basic sine function 
5(77; a;), we can estimate 

C(cos 6; un) - ^(cos 9; g1/4"71), (5.20) 

S(cos0]ujn) - S(cos0;q1/A-n), (5.21) 

due to (5.11) as n -^ 00. Relations (5.18)-(5.21) lead to the following theorem. 

Theorem 7. For —1<X = COS0<1 and \q\ < 1, the leading term in the asymptotic 
expansion ofC(cos6]UJn) as n —► 00 is given by 

C(coS0; g1/*-") ^ 2(f^2;
2^

00 \A{eie)\ cos((2e + ir)n - x) (5.22) 

where 

and 

(n3/2fi-2ie  n5/2e2i0.n2\ 
A(eiS) = (1 - qV>e™) {q    e    J* J    >q)°°, (5.23) 

\A(e%e)\     = (qi/2e2ie\ qifte-Mq)^ (5-24) 

X = aigA(eie). (5.25) 

For —l<x = cos 6 < 1 and \q\ < 1, ffte leading term in the asymptotic expansion 
of S(cos 9; u>n) as n —> oo is given by 

S(coB9;^*-n) ~ 2(f Z^00 |B(e^)| cos((20 + 7r)(n- 1) -^) (5.26) 

where 
(nl/2p-2i0 n3/2p2i0.n2\ 

W) = ^ " (e^.q);    '^""^ (5-27) 
tZiO    ,,-219.' __2 /e2z0   e'^'q)^ 

\B(et T  = (,1/2^; 9i/2el2^g)oo. (5-28) 

and 

V> = argB(eie). (5.29) 

Prom (5.23) and (5.27), 

^=eie V"")- B{e~i6)- (5-30) 
It is worth mentioning also that the factor |A(e^)|~2 = |jB(e^)|""2 coincides with the 
weight function in our orthogonality relations (3.26)-(3.28) for the basic trigonometric 
functions. 

In a similar fashion, one can use the first lines in (5.16), (5.17), and Exercise 3.8 
of [8] (see also the same line of reasoning in [9]) to establish complete asymptotic 
expansions of the basic sine and cosine functions for the large values of u. 
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Theorem 8. For —1<X = COS9<1 and \q\ < 1, complete asymptotic expansions of 
C(COS6]UJ) and S(COS6]UJ) as \u;\ —> oo are given by 

C(cos0;uO = (g^e    .g )«x> y  2n    (-e    ,g)2n      (    2e^    2)"! 
V        ''      (e-™; q^iq, -qw2; g2)^ ^    (q2,q2e^;q2)n  ^ Jn 

i W*7 e ig ^oo V^ J2n     V~e ) g/Zn      /      2_-2ie. J2\-l 
+ (e™;q)oo(q,-qu2;q2U j^9    (q2,q2e-™;q2)n ^ '9 ^ 

(5.31) 

and 

5(cos 0; a;) 

(e-^^JooC?,-^;?2)^ „en
9        (g2,g2e^;g2)n W '9 ;" n=0 

,   r-ifl W ^ c »g ;oo V^ n2n+l/4    V"^ »g;2n       /      2p-2z0.   ^X"1 
+ (e^;g)oo(g,-^;g2)oo   JL? {q2^q2e-4i9.q2)n   W »? in    ' 

(5.32) 

The asymptotic expansions (5.31)-(5.32) are not in terms of the usual asymptotic 
sequence {(#^)~n}n:=0> but are sums of two complete asymptotic expansions in terms 
of the "inverse generalized powers" (g2u;2e:t2**;g2)^1 (cf. [9]). 

Remark 1. Mourad Ismail brought to our attention the following quadratic trans- 
formation formula [16]: 

,„   f    -<r,-^     -q"+2     . n2 a, A teg)oc (2/r)y (2) 

(5.33) 

where |r| < 2, relating the 2^1 of a given structure with Jackson's basic Bessel func- 
tions Jc, (r;g). A similar relation was earlier found by Rahman [24]. This transfor- 
mation shows that our basic sine 5(77; a;) and basic cosine C(r)\ u) functions are just 
multiples of j[V2(2uj; q) and J_l,2{2uj\q), namely, 

^"^(^fcR^k^^')-        (5'35) 

The main properties of zeros of the g-Bessel functions J{, ' (r; q) were established in 
Ismail's papers [10] and [11] by a different method. This gives independent proofs of 
our Theorems 1-4. Some monotonicity properties of zeros of Jv   (r; q) were discussed 
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in [15]. Chen et al. [9] have found a complete asymptotic expansion of Jt \r;q) for 
the large argument, 

^^-^©"[('i'^^^L        (5-36) 

+ (_^^+l/2)/2;gl/2^ 

This follows also from Exercises 3.15 and 3.8 of [8]. Equations (5.34)-(5.36) result in 
(5.11) and (5.15). Ismail and Stanton have found that both 2<£i-series in (5.1)-(5.2) 
can be summed as a consequence of the g-binomial theorem. Their observation gives 
the following simple "infinite product" representations for S(rj;(j) and C(r); a;), 

s^ W-^rfu  (5-37) 

and 

6. Evaluation of some constants 

In this section we shall find explicitly the values of the normalization constants in 
the right sides of the orthogonality relations (3.26)-(3.27) for the basic sine and basic 
cosine functions. First, we evaluate the integral 

/•*■ (p2i9    p-2i0.  n\ 

-£c^t.-mMj£-_££riU*       (6.i) 
where we have used the identity (4.14) of [26], 

C(x, -a; a;) = C2{x; LJ) + S2{x; v). (6.2) 

In view of (2.3), for |cc;| < 1 one can write 

2 H^ff- *(«,,) = f^)"       iql/2>?;2   . (6.3) 

xi (^ (e21*, e-2^; 9)e 
rl+l/2e2ie)   gn+l/2e-2ie.   ^  ""'• 

The integral in the right side is a special case of the Askey-Wilson integral [4], 

I loo 
'0    (gn+1/2 e2J9)   gn+l/2 e-2<e.   9) 

 27r(g2n+2; g) 

d^ (6.4) 

(,,   _gn+l/2)   ^n-H^   .^^  ^^   .^^   _gn+3/2.   ^' 
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Therefore, 

, <-»*?>- m = i ^
l'2t~    £ ±^_       (6.5) 

(-w2;g2)oo (Q,q,-q,-q1/2;q)oo ^0i-qn+1/2 K   ' 

where we have used the identity 

(<Z2n+2; q)00= (qn+\ -qn+\ qn+3/2, -qn+3/2; q)    • 

However, 

^  (-a;2)n 1 (q, q1/2 2^ 
ljl_gn+l/2  = 1ZY72  2^1^      g3/2      5  9, "" J 

by (III.l) of [8].  The last line provides an analytic continuation of this sum in the 
complex cj-plane. Finally, we obtain 

1     /,7r        « (p2ie    p-2i0.   n\ 
k(U) = -2 I   (C2(coS^) + 52(cos^))  ((?1/^; ^.t^ dB       (6.6) 

=*  (s,-2;^   r^¥u2ipi{ -q^ ;q>q)-    (6-7) 

The second line gives the large asymptotic of the function k(co), 

h(, A-ir  (-91/2^2;g)°o     (-^2;g2)oo     r.    ,   „,  ,-2M /- fiN 
^"^     (-^,qU      (-q^q2U[l + 0{U    )]' ^ 

as u2 —> oo but a;2 ^ — q-71"1/2 for a positive integer n. In particular, when a; = a;n 

are large zeros of the basic sine function S(r]]u;), one gets as n —> oo 

fcK) ~ fc(^4-") ~ 2^ ^fj^ (6-9) 
by (5.11) and (1.9) of [8]. 

With the aid of (6.6)-(6.7), one can now rewrite (3.31) and (3.32) in more explicit 
form, 

(6.10) 

and 

(6.11) 

These basic integrals are, obviously, ^-extensions of the following elementary integrals 

f1 1 /    cos2 ux dx = H— sin a; cos a;, (6.12) 

/    sin2c<;a; dx = 1 sin a; cos a;, (6.13) 
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respectively. 

When UJ satisfies the boundary condition (3.23), the last terms in the right-hand 
sides of (6.10) and (6.11) vanish and we obtain the values of the normalization con- 
stants in the orthogonality relations (3.26)-(3.27) in terms of the function fc(u;) defined 
by (6.7). 

Remark 2. Mizan Rahman has established the following relations by direct series 
manipulations: 

C2(cos^a;) = i(-a;2;9
2)1/2 

+ 3^2 f 

S2(cos0;uO = i(-u;V)1/2 

( 

3^^     '    _fl. _;i/a i?.-"2 
ql/2j  gl/2eW«>  ql/2e-2ie   _ 

-9. -91 

-«1/2, -91/2e2ie, -y/2e-2ie . „      o 
-g,  gV2 ><?>-" 

gl/2|   9l/2caW>  gl/2e-2ie 

(6.14) 

3^2 
"ff,   -?1/2 

; 9,-w2j 

3^2 
gl/2j -qWeM, -qWe-™ 2 

-q, qV* ; 9'"W (6.15) 

and 

[* C2(COS0;UJ) 
Jo 

(e™, e-™; q)e 

(gl/2e2W)   gl/2e-2ie.   g)o 
d^: T     (g1/2;g)g, (-^2;92)oo 

i-91/2   (9;?)2o   (-^2;<?2)c 

2^1 f    ^o3^9   ;   9>'~fa,a) +2^  ( -^-9 -a     J 3/2 '   9'-W (6.16) 

/  S^cos^uO 
(e2^, e-^sgjoo        ^ =      TT       (g1/2;^   (-a;2;g2)c 

(qWe**, g1/2e-2i0; g)o i-?1/2   («;9)L   (-^2;a2)c 

2V1 (   9„3/'29   ;   g.-^2] -2^1 f -9l/2'-9-o    o;2 
3/2 >   9>-w (6.17) 

The last two formulas give alternate expressions for the right-hand sides in (6.10) and 
(6.11). One can easily see also that (6.14) and (6.15) are consequences of equations 
(4.2), (4.12), and (4.14) in [26]. Relations (6.16) and (6.17) follow from our equations 
(6.6)-(6.7) and (6.10)-(6.11) in this paper with the help of (4.3) and (4.13) of [26]. 
Both 2^1-series in (6.16)-(6.17) can be summed as a consequence of the ^-binomial 
theorem, 

2^1 
f-<Z1/2, -q.a    J\_ X_l_gl/2     ~     (-l;?V2)2n+1 E (iw) 2ra+l 

2^     ^(q^q^hn+i 

i-g1/2
) (-fc>;g1/2)L-(^;g1/2)go 

4iuj     ' (-W2;^ 
(6.18) 
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and 

2^1 (     3/2   ; <?> -^ ) =lin} 2^1 (      3/2    ; 0, -<*> 

l-g1/2 ,.       1 ——=— lim-  
2104        €-*l 1 — € (iw;^)^       (-icc;;g1/2)c 

■ ^gjl !»(-*«%>-, (6.19) 

From (6.6), (6.16)-(6.19) one gets 

*(t,,) =  Mte9)aoo(-^5fl»)co   Sl0g  (^Moo • (6-20) 

7. Orthogonality relations for ^-exponential functions 

Euler's formula, 

eiujx _. COSOjX _j_ 2Sin^x, (7.1) 

allows us to rewrite the orthogonality relations for the trigonometric functions (1.6)- 
(1.8) in a complex form, 

— /   exp (i^j-x) exP {~i~fx) dx = 5mn (7.2) 

where 

J 1    if m = n, 
I 0   if m T^ n. 

The ^-analog of Euler's formula (7.1) is 

£q(x;iu;) = Cg(x;a;) -\-iSq(x]Uj) (7.4) 

where 5g(a;;Q;) with a = iu is the g-exponential function introduced in [18]. (See 
also [5] and [26]. Here we shall use the same notations as in [26].) Cq(x;u) and 
Sq(x'1uj) are basic cosine and sine functions defined by (2.1) and (2.2), respectively. 
Our orthogonality relations for the basic trigonometric functions (3.26)-(3.28) result 
in the following orthogonality property for the ^-exponential function 

1        /■7r (e2ie e~2ie-q) 
UfcjJo  £q(coSe;ium)£q(cose;-iu,n) ^^^^T.^ d0 = 6mn    (7.5) 

where um, u)n = 0, ±ui, dtU2, ±^3,.. • and LJQ = 0, ui, UJ2, ^3? • • • are nonnegative ze- 
ros of the basic sine function 5(77; u) arranged in ascending order of magnitude; the 
normalization constants k(ujn) are defined by (6.7). 

A basic analog of 

g^a+y) = cosu;(x + y)+i smuj(x + y) (7.6) 

is 

£q{x,y',iuj) = Cq(x,y',uj)+iSq(x,y',uj) . (7.7) 

See [18] and [26]. The general exponential function on a ^-quadratic grid £q{x^y\iu)) 
has the following orthogonality property. 
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Theorem 9. 

i £q(cos6, cos w twm) fg(cos0, cos^; -«-;„) ^,2^ ql/2e-2Je.q)c 
0 

= 2fc(u;n) fq(cosy?; ia;n) 5g(cos <p'] -iujn) 5mn (7.8) 

where uJmiUn = 0, ±u;i,±ci;2>:fca>3j... and UJQ = 0,a;i,C(;2jW3r-« •; ^^ nonnegative 
zeros of the basic sine function S(rj; u) arranged in ascending order of magnitude; the 
normalization constants k(ujn) are defined by (6.7). 

Proof. Using the "addition" theorem for basic exponential functions [26], 

eq(x, y, IUJ) = Sq{x\ iu) £q(y\ iw), (7.9) 

and the orthogonality relation (7.5) one gets (7.8). □ 

In a similar fashion, we can establish the following results. 

Theorem 10. 

r (e2ie   e~2i9' q) 
j^ Cicose.cos^um C(cos^cos^;a;n) ^1/2^ ^-m?q)oQ 

de 

(7.10) 
0 ifm^n, 
k(ujn) C(cos <p, — cos ip'; (jjn)    ifm = n; 

I   5(cos(9, 
Jo 

(e2i0    e-2i0.   q\ 
cos(p\u;m) ^(cos^jcos^;^) ' ' 

0 ifm^n, 
k(u;n) C(cos (p, — cos <£>'; cvn)    ifm = n; 

(7.11) 

and 

fed 
Jo 

(e2i0    e-2i9.     \ 
COsO,COSWUJm) SicOsOiCOSip'^Un) ' '^z00 

(qWe™, qV2e-2iB\ q)c 

0 if m i=. n, 
fc(a;n) ^(cos y?, — cos y/; a;n)    ifm — n\ 

(7.12) 

wftere a;m, a;n = wi, a;2, a;3,... are positive zeros of the basic sine function S(rj\ w) ar- 
ranged in ascending order of magnitude; the normalization constants k(ujn) are defined 
by (6.7). 

Proof. Use the "addition" theorem for the basic trigonometric functions [26] and the 
orthogonality relations (3.26)-(3.28). □ 
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8. Basic Fourier series 

By analogy with (1.2), we now can introduce a q-version of Fourier series, 

oo 

/(cos0) = ao + ^(anCg(cos0;u;n) +&nS'g(cos0;u;n)) (8.1) 
n=l 

where UJQ = 0,u;i,u;2j^3> • • • are nonnegative zeros of the basic sine function S(r}-uj) 
arranged in ascending order of magnitude, and 

* = m [ f{™e) m ?Zt,u * (8-2) 

-=wj £nc0BS) c'{eose^) (g./^; ff^r,). *•    <8-3» 

The complex form of the basic Fourier series (8.1) is 

oo 

/(cos 5)=   ]P  cn SqicosO-.iujn) (8.5) 
n=—oo 

with 

* - ara r/(cose) s><cosft "i"'') fav^l; ^r^. •   «*> 
where a;n = 0, ±a;i, zfc^, ±c<;3,... and WQ = 0, a;i, a;2, ^3,... are nonnegative zeros of 
the basic sine function 5(77; uf) arranged in ascending order of magnitude; the nor- 
malization constants fc(u;n) are defined by (6.7). These expressions, of course, merely 
indicate how the coefficients of our basic Fourier series are to be determined on the 
hypothesis that the expansion exists and is uniformly convergent. We shall study the 
question of convergence of the series (8.1) and (8.5) in the next sections. 

The ^-Fourier series of / in either of the forms (8.1) and (8.5) will be denoted in 
the usual manner by S[/]. 

9. Completeness of the ^-trigonometric system 

Completeness of the trigonometric system {ei'Knx}<^=_00 on the interval (—1,1) is one 
of the fundamental facts in the theory of trigonometric series (see, for example, [1], 
[6], [20]-[22], [29], and [33]). In this section, we shall prove a similar property for the 
system of basic trigonometric function {Sq{x\ iuJn)} where un = 0, ±ui, ±U;2J i^s? • • • 
and LJQ = 0,u;i,a;2,a;3,... are nonnegative zeros of the basic sine function Sfaui) 
arranged in ascending order of magnitude. But first we need to discuss connections 
between the basic trigonometric functions and the continuous g-Hermite polynomials. 

The continuous g-Hermite polynomials, 
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have two generating functions, 

oo n i 

when |r| < 1 and 

oo        n2/4 

J2 J—y <xnHn(cos9\q) = ((Z02;«2)oofg(coBfl;a) (9.3) 
n=0   W'^n 

(see, for example, [8], [18], and [26]). 

Lemma 1.  The following functions 

e(x, a) = (ga2; q2)oo£q(x\ a), (9.4) 
,2.^2 s^^i-qu;2^2) S^UJ) (9.5) 

= ^ (e(a:,ia;)-e(x,-ia;)), 

flnrf 

c(u;) = (-qu2;q2)C(muj) (9.6) 

= - (e(a:, iuj) + e(x, -ia;)) 

are entire functions in a and UJ, respectively, of order zero for all real values of x. 

Proof. The generating function (9.3) gives a power series expansion for the func- 
tion (9.4), 

oo 

e(^aO = ]r/ina
n (9.7) 

n=0 

with 

n2/4 
K = hn(x) = f—^ Hn(x\q). (9.8) 

The radius of convergence of this series is infinity because 

^=lim(M1/B (9.9) 
R 

/       n2/4 \l/» 
= lim      f-^- Hn(x\q) = 0. 

(9; q)n 

Thus, e(x, a) is an entire function in a. The order of this entire function is [21] 

/  nlogn  \ / nlogn \ 

n^ l,ri^|M J = J^ Ulogl^^^Vte^lJ = ^ (9-10) 

Functions (9.5) and (9.6) are just a sum or difference of two functions of type (9.4), 
so they are also entire functions of order zero. This proves the lemma. □ 

The next step is to establish the following inequalities. 
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Lemma 2. Let — coshr < -1 < x < 1 < coshr where x = cos0, 0 < 0 < TT, and 
r>0. T/ien 

|e(cos0;a)| < e(coshr; |a|) (9.11) 

and 

e(coshr; |a|) < e(coshri; |a|) (9.12) 

ifT<Ti. 

Proof. One can rewrite (9.1) as 

K2]        ,     x 
ifn(cos0|9) = 2 ^        ^        cos(n - 2fc)fl. (9.13) 

Thus, 
[n/21      r^-^ 

|ffn(cos%)| < 2 j;        ^ cosh(n - 2k)r (9.14) 
^ {QlQ)k[q]q)n-k 

= Hn(coshT\q). 

Estimating both sides of (9.3) gives 

00   ^2/4 
IteaVU^cosflja)) < V?^- Hn|i?n(cos%)| 

n=0 W» flfjn 

n=0 

= (^l^|2;92)00^(coshT; |a|) 

by (9.14) and (9.3).   This proves (9.11).  The monotonicity property (9.12) follows 
from the monotonicity of the hyperbolic cosine function. □ 

Clearly, the system {£q{x]iujn)}^L_00 is complete if the equivalent system 
{e(x, iu;n)}^=_00 is closed. 

Suppose that the system {e(x,iu;n)}'^L_00 is not closed on (—1,1). This means 
that there exists at least one function (/>(£), not identically zero, such that 

(f)(x) e(x, iu>n) p(x) dx = 0,        n = 0, ±1, ±2,..., (9.15) 
/: /-i 

where p(x) is the weight function in the orthogonality relation (7.5). Then the function 

f(u) = /   <j)(x) e(x, iu) p(x) dx (9.16) 

is an entire function of order zero and /(u;n) = 0 for all n = 0, ±1, ±2, — Thus the 
study of closure amounts to the study of zeros of a certain entire function. Suppose 
that 0(a;)is integrable on (—1,1), 

f   \4>(x)\ p(x) dx = A < oo. (9.17) 
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Then 

l/MI < /   |0(a?) e(x,iu>)\ p{x) dx 

< e(coshr, |a;|)   /    \<l>{x)\ p(x) dx 

(9.18) 

= Ae(coshr, |a;|) 

by (9.11) and (9.17). 
Consider the quotient 

sH = M (9.19) 

of two entire functions, f(uj) and S(<JJ) defined by (9.16) and (9.5), respectively. The 
functions f(uj) and S(UJ) have the same zeros, so g((jj) is an entire function. The order 
of this entire function is zero because both f(uj) and s(u;) are of order zero (see [21, 
Corollary of Theorem 12 on p.24]). Moreover, this function g(<jj) is bounded on a 
straight line parallel to the imaginary axis. Indeed, let u = 7 + i5. Using the same 
arguments as in Section 5, one can see that 

s(iS) 
lim      /   '     <oo. (9.20) 

|*|->oo e(?7,|5|) ' 

Prom this condition and the inequality (9.18), it follows that the entire function g(uj) 
is bounded on the imaginary axis. But an entire function of order zero bounded on a 
line must be a constant (see [21, Theorems 21-22 and Corollary on pp.49-51] ). Then, 

f(uj)=cs(uj) (9.21) 

and, therefore, 

N = I f fa) 
\J-i 

j-i 1 

e(x, iu) 

S(UJ) 

e(x, iuS) 

p(x) dx 

p(x) dx 

(9.22) 

8(v) 
\£q(coshT] \u>\) 
|5(coshri; |a;|) 

00 and r < Ti. Thus, /(a;) is identically zero and the function </>(#) does not 

<A 0 

as \u\ 
exist. 

We have established the following theorem. 

Theorem 11* The system of the basic trigonometric function {£q(x;iu;n)} where 
n = 0, ±1, ±2,... and CJQ = 0, CJI, a;2, a;3,... are nonnegative zeros of the basic sine 
function Sfaoj) arranged in ascending order of magnitude, is complete on (—1,1). 

As corollaries, we have the following results. 

Theorem 12. If f(x) and g(x) have the same q-Fourier series, then f = g. 

Proof. The g-Fourier coefficients of / - g all vanish, so that / - g = 0. □ 

Theorem 13. // f{x) is continuous and S[/], the q-Fourier series of function f, 
converges uniformly, then its sum is f(x). 
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Proof. Let g(x) denote the sum of S[/], the ^-Fourier series in the right side of (8.5). 
Then the coefficients of S[/] are g-Fourier coefficients of g. Hence, S[/] = S[g], so that 
/ = g and, / and g being continuous, f(x) = g(x). D 

Bessel's inequality for the ^-trigonometric system {^(a^'o^)}^.^ where UJQ = 
0,a;i,a;2,a;3,... are nonnegative zeros of the basic sine function S(7];u) arranged in 
ascending order of magnitude, takes the form 

J2  \cn\2< /    \m\2p(x)dx (9.23) 

provided / G L2(—1,1), which means that |/(x)|2 is integrable on (—1,1) with respect 
to the weight function p(x) in the orthogonality relation (7.5). Here cn are the q- 
Fourier coefficients of f(x) defined by (8.6). When N —> oo, we get Parseval's formula 

oo ri 

E I^I2 = / i/(a 
•j — — rso «/—1 

x)\2 p(x) dx (9.24) 

due to the completeness of the ^-trigonometric system {Sq{x\iu;n)}^:z_00 and the 
space I/2 (—1,1) [1], [20]. It follows that the g-Fourier coefficients Cn tend to zero if 

10. Bilinear generating function 

In this section, we shall derive the following bilinear generating relation, 

22   "TZ—^^T^" fc""1(a;n) £q(cos6;iu;n)Eq(cos(p;-iru>n) (10.1) 

>K(reie+ilP, reie-i(P, re1*-16', re-*9-**; q)oo' 

for the basic exponential functions. Here, as before, u;n = 0, ±u;i, ±a;2, ±^3,... and 
UQ = 0, UJI , a;2, UJS , • • • are nonnegative zeros of the basic sine function 5(77; u) arranged 
in ascending order of magnitude. We shall use this generating function for a further 
investigation of the convergence of the basic Fourier series (8.5) in the subsequent 
section. 

Let us establish a connecting relation of the form, 

27v J0   (reie+^, re*-**, re*-**, re-*-**; q)^ ^VC08^'a) OP 

where |r| < 1. One can easily see that if we could prove the uniform convergence in 
the variable x = cos0 of the series in the left-hand side of (10.1), then the integral in 
(10.2) gives the correct values of the basic Fourier coefficients (see (8.5)-(8.6)), which 
verifies the generating relation (10.1) by Theorem 9.5. So, one needs to give a proof 
of (10.2) first. 
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The continuous g-Hermite polynomials have the following bilinear generating func- 
tion (the Poisson kernel), 

00 n (  2.   \ 

£T^h ^(cos%)^(c°s^) = ^ie^^e-iJJX-*,™-*-^^   (10-3) 

where |r| < 1. The orthogonality relation for these polynomials is 

T Hrn^O^Hn^O^i^^^qU dQ = 2*^^ 5mn (10.4) 
Jo [TiQjoo 

(see, for example, [8]). Expanding £q(cosip]a) in the right side of (10.2) in the uni- 
formly convergent series of the continuous g-Hermite polynomials with the aid of (9.3), 
we get 

1    [* (q r2 e2i{p e~2i{p'q) 
2^ X   (retf+*, rei8-i«, „*-», ^Z-^. q)oo (?« 5 ? )«»^(co8 W a) dtp (10.5) 

^ (q; q)n       2K J0   (re^+iv, reie-iV^e^-ie^e-ie-^. ^ nnKcos<p\q) ay. 

The series in (10.3) converges uniformly when |r| < 1. Then, using (10.4), 

1    r     ffntcos^farV^e-2^;^      ,        n 
^/o   (re^^,«»-*,n^-*.,re-^-^;g)^ ^ = r   ^(cos%)- (10-6) 

Prom (10.5), (10.6), and (9.3) we finally arrive at the connecting relation (10.2). 
Uniform convergence of the series in (10.1) can be justified with the help of the 

inequality (9.11) and the corresponding asymptotic expressions. This proves (10.1) by 
Theorem 13. 

It is worth mentioning a few special cases of (10.1). When r = 0, we obtain the 
following generating function, 

oo 1 

£   l-aufi-M    Hu, \ ^COB*fc*0 = («.g1/a«MW/ae-iW;g)oo, (10-7) 
n==_00 V    H^n^H  Joo K\Wn) 

for £q{x; iun). If ip = 71-/2, one gets 

~       f_ar2    2      2\ ■      /        2   nl/2p2ie   nl/2p-2ie.n\ 

nf^oo   (-^<;^)00 'K(-r2e2ie,-r2e-2l'6;q2)00 
} 

A terminating case of this generating relation appears when r2 = -IjqJ^ for an 
integer m ^ 0, 

|m| 

(10.9) 

Herem = ±l,di2,±3,.... 
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11. Method of summation of basic Fourier series 

According to Theorem 13, for a continuous function f(x) the basic Fourier series S[/] 
converges to f(x) if it converges uniformly. In this section, we shall discuss another 
method of summation of basic Fourier series. 

Let f(x) be a bounded function that is continuous on (—1,1) and let S[/] be its 
g-Fourier series defined by the right-hand side of (8.5). Replace this series by 

oo 

Sr[/]=    £    Cnfr) Sq(CQB0',iu>n) (11.1) 
n=—oo 

where 

cn(r) = ^f^^00 ^-r   f /(cos0) ^(cosfl; -im;n) (11.2) 

( 2id  p-2ie.n\ 

(qVWMtqWe-M'tqtco      ' 

provided that 0 < r < 1. Comparing (11.2) and (8.6), 

lim cn(r) = cn (11-3) 
r—*1- 

where cn are the regular ^-Fourier coefficients of f(x). Suppose that the series Sr[/] 
converges uniformly with respect to the parameter r when 0 < r < 1. Then, 

lim Sr[/] = S[/]. (11.4) 
r—>1- 

On the other hand, from (11.1)-(11.2) one gets 

Srlf}=    E     (7gS"l2?0°£^COSg'^) (11-5) 

X 2kM Jo  ^^ ^^ ^^ (^e^e-^U ^ 
Using the uniform convergence of the series in the bilinear generating function (10.1), 
we finally obtain 

/(cos^)(g,r2,e2^,e-2^;g)c 
S, 

\f] = JL / /(cos VP) far^e^^e-^;^ 

It has been shown in [3] (see also [32]) that 

1 r    fjcos^y^Y2^ ^ *,=/(Cos0)     (11.7) 

for every bounded function /(cos0) that is continuous on 0 < 0 < n. As a result, we 
have proved the following theorem. 

Theorem 14. Let f(x) be a bounded function that is continuous on (—1,1) and let 
Sr[f] be the series defined by (11.1)-(11.2). IfSr[f] converges uniformly with respect 
to the parameter r when 0 < r < 1, then linv^!- Sr[/] = S[/] = f{x). 
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12. Relation between g-trigonometric system and g-Legendre polynomials 

The trigonometric system {e*™*}^..^ and the system of the Legendre polynomi- 
als {Pm(^)}m=o are two complete systems in L2(-l,l). The corresponding unitary 
transformation between these two orthogonal bases and their inverse are 

/ 9 v 1/2   oo 

e-- = I JL J      2 i™(m + 1/2) Jm+i/2(7rn) Pm(x) (12.1) 
V / 771=0 

and 

Pm(x)=    E   Hrti)        <W/2(™K™*, (12.2) 

respectively. Relation (12.1) is a special case of a more general expansion, 

eirx = ( - )   r(i/) £ ^ + m) J,+m(r) ^(x) (12.3) 
\r/ m=0 

where ^(x) are ultraspherical polynomials and Ju+m(r) are Bessel functions [30]. 
Expansion (12.2) is the Fourier series of the Legendre polynomials on (-1,1). Or- 
thogonality properties of the trigonometric system and Legendre polynomials lead to 
the orthogonality relations, 

E m Jm+l/2(™) Jm+i/2(^) = Snh (12.4) 
771=0 

E   ~      Jm+iM^n) Jp+i/2(nn) = 5mp, (12.5) 
n=—oo 

for the corresponding Bessel functions. 
The basic trigonometric system {£q(x] iu;n)};jL_00 and the system of the continuous 

g-ultraspherical polynomials {Cm(x;/?|^)}^==o 
with I3 = 41/2> which are the basic 

analogs of the Legendre polynomials, are two complete orthogonal systems in L^(—1,1) 
where p is the weight function in the orthogonality relation (7.5). Therefore, there 
exists a <?-version of the unitary transformation (12.1)-(12.2). 

Ismail and Zhang [18] have found the following g-analog of (12.3), 

(g; q)™"' 

(-qu2',q2)oo(qv',q)c £,(*•>*•>)=, J:T^^ (12-6) 

771=0 

where J^m(2a;;^) is Jackson's g-Bessel function (see, for example, [8]). The special 
case u = 1/2 gives the basic analog of the expansion (12.1), 

(g; q)ocVn1/2 

(-q^q^ooiq^q) 

x f; i-(l - ^+i/2)g-
2/4 jM 1/2(2u;n;«) Cm(^; g1^^) 

771=0 
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where uj-n = —ujn and UJQ = 0,u;i,u;2,k>3,. • • are nonnegative zeros of the basic sine 
function 5(r/; a;) arranged in ascending order of magnitude. 

On the other hand, the continuous g-ultraspherical polynomials Cmfaq1/2^) can 
be expanded in the g-Fourier series as 

Cm(x;g1/2k)-7r(f/2\g)o0   f; H)m«ma/4 (12.8) 

-1/2 
X kM-qulrfU Jm+iM2^ 9) Site i"n). 

Indeed, by (8.5)-(8.6), 

OO 

Cm(x;q1/2\q)=   Y,  Cn Sq(x;iu)n) (12.9) 

where 

(12.10) 

Using (12.7) where the series on the right converges uniformly in x for any a;, and the 
orthogonality relation 

f* (p2ie  f>-2ie'n\ I  Cm(cos0;gV2|g)Cp(cos0;(?i/2|(?) ^^^^ dO (12.11) 

— o^.(^       »9)oo   /i        ^m+l/2\-l r 

(see, for example, [8]), one gets 

.(g1/2;g)oo   ,.}mnm2/4 ^ ^ T(2) Cn = 7r- ^r'-^^KX-^^^./.^W). (12.12) 

or 

r -Jg172;?)^ (-i)mr2/4   <(-^;g2)c 

/     _flm+3/2       _   m+5/2 ^ 
X 2<^1 ( ^ g2'm+3V :   <?2,   -Wn ) (12.13) 
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= TT- 
(<71/2;<7&    (-i)ro?ma/4< 

(«;9)lo      (91/2;9)m+l *(Wn) 

L(9,92m+3;g2)0o (-^2,-^/^2.^) 

_Aym+3/2       _/7l/2-m 

9 
X2V:'l Q2     -?- 

+ 
(-gm+1/2. g)oo      (a,2gm+5/2; g-l/2-m/(<;2. g2)c 

(9-l)g2m+3.g2)oo (-^2,-92/^2.^2^ 

X2V1 
_nm+5/2       _/,3/2-m 

(12.14) 

by (5.31) and (111.32) of [8], respectively. The last equation gives the large cj-asymp- 
totic of the basic Fourier coefficients. With the aid of (5.11), (6.9), and (1.9) of [8], we 
finally obtain 

|cn|~£>gn/2^0 (12.15) 

as n —> oo where D is some constant. Therefore, the series on the right-hand side of 
(12.8) converges uniformly, and we have established the expansion of the g-Legendre 
polynomials Cm(a:; q1^2^) in terms of the basic trigonometric functions Sq(x] iujn) due 
to Theorem 13. 

Relations (12.7)-(12.8) define the unitary operator acting in L2
p{—1,1) [2]. Orthog- 

onality relations of the matrix of this operator lead to the following orthogonality 
properties 

S.J^Cfcra r'n ^'^q) J'»'^r'q)=*- (12-16) 

and 

JL JLu-2w)i,qmV2 J^{2^q) J{^{2^q) =5mp  (12-17) 

for the corresponding Jackson's g-Bessel function. These relations are, clearly, q- 
analogs of (12.4)-(12.5). 

13.  Some basic trigonometric identities 

One of the most important formulas for the trigonometric functions is the main 
trigonometric identity, 

cos2 UJX -1- sin2 ux = 1. (13.1) 

It follows from the Pythagorean Theorem or from the addition formulas for the trigono- 
metric functions, but one also can prove this identity on the basis of the differential 
equation. The functions COSOKZ and sina;^ are two solutions of (1.9) corresponding to 
the same eigenvalue w. Therefore, 

— [W(cos<x>z,sina;:r)] =0, (13.2) 
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or 

cos2 ux + sin2 ux = constant. (13.3) 

Substituting x = 0, one verifies (13.1). 
We can extend this consideration to the case of the basic trigonometric functions. 

Consider equation (3.8) with u(z) — Cq(x(z)\u>), v(z) = Sq(x(z);u;)1 and p(z) = 1, 

A[W(u(z),v(z))] =0 (13.4) 

where 

W(%v) = W(C(x;u), S(x\u>)) (13.5) 

= ^—- [ C(x(z); UJ)C(X(Z - 1/2); u) + S(x(z)]u)S(x(z - 1/2); u>)] 

is the analog of the Wronskian (3.9), and we also used (2.12)-(2.13). One can easily 
see that W(u, v) here is a doubly periodic function in z without poles in the rectangle 
in Figure 1. Therefore, this function is just a constant by Liouville's theorem, 

C(x(z))C(x{z- 1/2)) + S(x(z))S(x(z - 1/2)) = C. 

The value of this constant C can be found by choosing x = 0, which gives 

f    , ,2. n2\2 

2*1 ( V •>*>-<*)*<*( l\q ;^-2) 

(^2;g2)2oo   „ ( Q .n2    J\ 
(-q^q2)2* ^ V- ' ^ -" ) 
(-^;g2)oc 
(-quj2^2)^ 

by the ^-binomial theorem. As a result, one gets 

Cq(cos6;uj)Cq(cos(0 + ilogq/2)'1uj) (13.6) 

+ Sq(cose;uj)Sq(cos(e + ilogq/2);u) = ^J^ 

as a g-extension of the main identity (13.1). The special case of (13.6) when z = 1/4 
and 7] = #(1/4) has the simplest form, 

*(*-) + #(*»)-£*$£. (13.7) 

Our identity (13.6) can also be derived as a special case of the "addition" theorem for 
the basic trigonometric functions established in [26]. 

In a similar fashion, we can find an analog of the identity 

cos2 UJ(X + y) + sin2 LJ(X 4- y) = 1 (13.8) 
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by considering more general basic sine and cosine functions, C(x, y; u) and S(x, y; a;), 
as two solutions of equation (2.10). The result is 

Cq(cos6,cos(p]u)Cq(cos(6+ ilogq/2),cos(p',uj) (13.9) 

+ 5g(cos 0) cos <p; uj)Sq (cos(6 + i log q/2)ycos ip\ a;) 

— Cq{cos(p, — cos(p;u)). 
(-quj2;q2) oo 

We have used (6.2) here. This identity also can be verified with the aid of the "addi- 
tion" theorems for the basic trigonometric functions. 

Identity (13.7) gives the values of the basic cosine function C{r\\u) at the zeros of 
the basic sine function 5(7/; u;), 

Cfao*) = (-1)" \  I ffiffi0 , (13.10) 

and vice versa, 

^^-'-""V^Sc- (mi) 

with the aid of Theorem 4. 
Equation (13.6) shows that the basic cosine C(x\ uS) and basic sine S(x\ UJ) functions 

do not have common zeros for the same value of u. 

14. Example 

Let us consider a periodic function pi(x) which is defined in the interval (—1,1) by 
Pi{x) = x. Its Fourier coefficients are 

co = 0; 

^ = 1 /   xe-™™ dx 

_ ("I)71"1 

ZTTTl 
n^O. 

Therefore, 

\n-l 
=  Y   1-41 ei7rnx (14.1) 

n=—oo 
oo 

n=l 

smTrnx 
irn 
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The special case m = 1 of (12.8), 

C1(x-,q^\q) = -in^^q^ (14.2) 
JOO 

oo                        -1/2 
— _Un    7(2) , 

£» ifeK)(4«5fl»)co J3/2(2^; 9) f9(x;^^ 
gives us a possibility of establishing a g-analog of (14.1). Let us first simplify the 
right-hand side of (14.2). Using the three-term recurrence relation for the g-Bessel 
functions (see Exercise 1.25 of [8]) and (5.34)-(5.35), one gets 

J$(2u;n; q) = -q-^J^^n; q) (14.3) 

(<71/2;<?)oo (-<E4;<Z
2
)C 

On the other hand, 

C(r}]ujn). 

C1(x;q1/*\q) = T^-UiX. (14.4) 

Combining (14.2)-(14.4) and (13.10), we finally obtain 
oo 

(?;?)« ^lfcK)^n v (-^n;92)oo 

These equations are, clearly, ^-analogs of (14.1). 

15, Miscellaneous results 

Under certain restrictions, a function f(z) analytic in the entire complex plane and 
having zeros at the points 01,02,03,... (these are the only zeros of f(z)) where 
Irnin-^oo |an| is infinite, can be represented as an infinite product, 

/(*) = m e"'<0>//<0> n ((l - £) ez/a") • (15.1) 
See, for example, [31] and [21]. Consider the entire function 

/(«) = (-q^q^^^l (15.2) 
u 

which has simple real zeros at LJ = ±ujn by Theorems 1-3. In this case 

m=m+h"(o)w2+.-., 
2J 

/'(0) = 0 

and 

/M = rrW S ((-S) «"'"■) ((1 + S)-"/"") 
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As a result, we arrive at the infinite product representation for the basic sine function, 

(15.3) 

In a similar manner, one can obtain an infinite product representation for the basic 
cosine function, 

Equations (13.10)-(13.11) and (15.3)-(15.4) result in the relations, 

(-i)V(-^;9)oo = n(1-^) (15-5) 
n=l ^ n^ 

and 
00    / 2  \ 

(-i)V(-^;9)oc = n(1-5i)' (15-6) 
n=l ^ n ^ 

between the zeros of the basic sine £(77; a;) and basic cosine C(rj] u>) functions. 

Appendix A. Estimate of number of zeros of £(77; a;) 

In this section, we give an estimate for number of zeros of the basic sine function 
£(77; CJ) on the basis of Jensen's theorem (see, for example, [7] and [21]). We shall 
apply the method proposed by Mourad Ismail at the level of the third Jackson q- 
Bessel functions [12] (see also [14] for an extension of his idea to g-Bessel functions on 
a g-quadratic grid). 

Let us consider the entire function f(w) defined in (15.2) again and let n/(r) be 
the number of zeros of /(a;) in the circle |a;| < r. Consider also circles of radius 
J? = i^ = xg""n, g1/4 < x < g~3/4 with n = 1,2,3,... in the complex u;-plane. 

Since n/(r) is nondecreasing with r, one can write 

nf(Rn) < n/(r) < n/^+i) (A.l) 

if Rn < r < i?n+i, and, therefore, 

n/(ftO  ^ v < [^ ^drK nfilUv)  f^ ^. (A.2) 

But 

JC 
Rn+1   dr 

— = logr 
Rn r 

ft n+l 

-logg 1 

Rn 



36 BUSTOZ AND SUSLOV 

and, finally, one gets 

f1 

\ogq-1 rifiRn) < / 
"tn+l tt/fr) dr <logq     n/CiJn+i). (A.3) 

fRn r 

In the proof of Theorem 1, we have established the fact that for sufficiently large n, 
there are at least two roots of f(u) between the circles |a;| = Rn and |u;| = Rn+i- Thus, 
for sufficiently large n, the inequality (A.3) should really have one of the following 
forms: 

Tln+1 ra/(r) 

or 

logg" 

log 

fRn 
-1 rtfiRn) < / 

jRn 
dr <logq     nf(Rn+1), (A.4) 

q-1 nfiRn) < [ ^ ^^ dr < logq-1 n/^+i). (A.5) 
JRn r 

Our next step is to estimate the integral in (A.4)-(A.5). By Jensen's theorem [7], 
[21] 

jRn r JO 

^ Jo 

^Idr 
r Jo 

rRn 

Jo 
nf(r) 

dr (A.6) 

fixq-71-1^*) 
f{xq-neii}) 

M. 

For large values of n, in view of (5.5), 

/(^-n-V*)      (qV2>c2q-2n-2e2iO;q2)c 

f(xq-ne^) (qS/2x2q-2ne2i*; q2)^ 

= 1 - q*'2x2q-2n-2e2i», 

and 

log 
/(xq-^e1*) 

f{xq-neM) 

where a = x2q~1^2. Therefore, 

^n+1 n/ (r) 

~ 2n log q    + log a 

JRn 

dr = 2n log q    + log a + o(l) (A.7) 

as n —> oo. 
Prom (A.3) and (A.7), 

1     loga/ log g 1 _ 1 < nfjRn) <1 + log a/logq 
2n n ~     2n     ~ 2n 

-i 

and, therefore, 

Hm 2^ = 1. 
n—+oo       2,71 

On the other hand, from (A.4)-(A.5), 

nf(Rn) < 27i + log a/log g-1 < nf{Rnjrl) 

or 

nfffin) < 2n + loga/logg~1 < nf(Rn+i), 

(A.8) 

(A.9) 

(A.10) 
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which gives 

nf(Rn+i) - nf{Rn) < (2n + 2 + log a/ logg"1) - (2n - 2 + log a/ log q'1) = 4. 

Thus, we have established that 

nf(Rn+i) -nf(Rn) < 4 (A.11) 

as n -> oo. Due to the symmetry /(a;) = /(-a;), the last inequality implies that there 
is only one positive root of S(r)\ uS) between the test points w = 7n and u = 7^+1 
defined by (5.6) for large values of n. 
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