
Methods and Applications of Analysis © 1997 International Press 
4 (3) 1997, pp. 326-338 ISSN 1073-2772 

AN EXPONENTIALLY-SMOOTHED GRAM-TYPE FORMULA FOR THE 

RLEMANN ZETA FUNCTION 

R. B. Paris and S. Gang 

ABSTRACT. We examine the asymptotic nature of an expansion for C(s) where 
s = a + it, in which the terms of the original Dirichlet series (valid in a > 1) are 
smoothed by an exponential factor. It is found that in the critical strip 0 < a < 1 
when \t\ ^> 1, the "cut-off" in this smoothed sum occurs after 0(|£|) terms, so 
that the expansion can be said to be of Gram type. Numerical examples are given 
to illustrate the accuracy of the expansion. 

1. Introduction 

The earliest published method of computing the Riemann zeta function £(s) as a func- 
tion of the complex variable s = a-hit is the so-called Gram formula [4,5]. This results 
from an application of the Euler-Maclaurin summation formula and is an asymptotic 
expansion valid for all s (^ 1) given by 

n=l 171=1 v        ' 

where i?2m are the Bernoulli numbers and (a)m = r(a + m)/T(a). The asymptotic 
parameter in this expansion is N, and inspection of the terms in the sum over m 
shows that for this to possess an asymptotic character (i.e., for the absolute value of 
the terms to initially decrease before ultimately diverging), N must be chosen such 
that N > \s\/27r. On the critical line a = |, the number of terms in the finite main 
sum (over n) in (1.1) when t is large is thus of 0(|£|). 

A more powerful means of computing £(s) on the critical line for large t (> 0) is 
the Riemann-Siegel formula [3,5]. This is usually presented for the real, even function 
Z(t) = exp(z#0O)C(§ +it) where the phase-angle #(*) = argr(| + |rt) - ^logTr. This 
(probably) asymptotic formula is given by 

Nt oo 

Z(t) ~ 2Reew 2n_^_" + (-)JVt~1(V27r)"^ ^(-)r(f/27r)"*r*r(2) (1.2) 
n=l r=0 

where Nt denotes the integer part of {tfen)*, z — 2{(£/27r)2 — JV^} — 1, and the func- 
tions ^rr(^) are combinations of derivatives of the function #0(2) = 
cos7r(^22 + §)/cos7r2. For t >> 1, this formula is a more efficient means of com- 
puting £(^ + it) since the main sum involves Nt ~ (t/27r)^ terms as compared with 
0(t) terms in the Gram formula. 

Recently, some new asymptotic formulas for Z(t) have been developed in which 
the terms in the original Dirichlet series J2^Li n~s are smoothed by a function which 
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is approximately unity for n < Nt and decays to zero for n > Nf. The first is an 
expansion derived by Berry and Keating [2], in which the leading term is given by the 
convergent sum 

wg„-.-xi«fc{(i)
1^!} M 

where £(n,£) = logn — ^'(t), q2(^,t) = K
2
 — itd"^), and K is a real free parameter. 

For large t, £(n,£) c^ log(n/Nt) and g2(ft,t) ~ K
2
 — |i, so that (1.3) resembles the 

finite main sum of the Riemann-Siegel formula, but with the sharp cut-off after Nt 
terms smoothed away by the complementary error function. One advantage of such a 
smoothed formula over the Riemann-Siegel formula is the removal of the discontinuity 
in the main sum as a function of t resulting from the discrete upper limit Nt. Other 
expansions with the normalized incomplete gamma function Q(a, z) = T(a, z)/T(a) as 
the smoothing function have been developed in [6,8]- In [8], an expansion for Z(i) is 
obtained from the result 

Z{t) = 2Re|ew f] n-sQ{^s, 7m2i) - '"^,\^ \ (1.4) 
7r4e4 

on the critical line s = | + it. The uniform asymptotics of the incomplete gamma 
function for large t shows that it can be represented in terms of a complementary 
error function, with the result that Q(~s,7rn2i) is approximately unity for n < Nt 
and decays to zero for n > Nt. Thus, the expansion (1.4) also involves a main sum 
smoothed by a complementary error function, although with a different argument to 
that in (1.3). Since the cut-off occurs after roughly Nt terms in both the expansions 
(1.3) and (1.4), we see that these formulas are both of the computationally more 
powerful Riemann-Siegel type. 

In this paper, we derive and investigate a generalisation of the expansion (1.4), 
which involves the incomplete gamma functions with a free parameter a, instead of 
|s. Suitable choice of this parameter then enables us to present expansions in which 
the main sum is smoothed either by an exponential factor or a complementary error 
function of real argument. Examination of the asymptotics of the correction terms 
and the remainder term in these expansions shows, however, that for these terms to 
possess an asymptotic character, we are forced to take the cut-off in the smoothed 
main sum to occur after 0(t) terms. Consequently, it seems the price to be paid for 
such simple smoothing of the Dirichlet series is that the resulting formulas are of the 
less powerful Gram type. 

2. A generalised expansion for £(s) 

Let p be a positive real number and a, K denote arbitrary complex parameters which 
will be restricted to satisfy |arg.&T| < n/ip and, for convenience, Re (a) > 0. We 
employ the Mellin integral representation of the incomplete gamma function T(a,x) 
given by 

1     /'c+ooi _  du 1 
r(a,a;) = — / r(a + u)x  u —,     |arg:z|<-7r, 

27rz Jc-ooi u 2 
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where c > 0, to express the absolutely convergent sum (valid for all values of s) of 
incomplete gamma functions in the form 

g„-<?(.,(„/«)*•)- 5^55jf^ r(. + 5)JP«. + «)T.       (2.1) 

largi^l < 7r/4p,        c > max {0,1 — cr}. 

This Perron-type formula is readily established by reversal of the order of summation 
and integration (justified by absolute convergence) followed by introduction of the new 
variable z — 2pu. 

The integrand in (2.1) has poles at z = 0 and z = 1 — s. As we are primarily 
interested in s values situated in the critical strip 0 < a < 1, we shall suppose for 
convenience in presentation that a < 1. This ensures that the pole at z = 1 — s 
lies in Re (z) > 0, thereby avoiding the possibility of the formation of a double pole. 
Displacement of the path of integration and evaluation of the residues at the simple 
poles z — 0 and z = 1 — s then shows that 

00 Y(a 4- ^"M isi—s 
Cis) = $>-'Q(a, (n/K)2") +      T(J

P
S_1 + J (2-2) 

n=l ^   ' 

where 

'-5f5oL_ ^ £>*■«•+ *>T- (2'3) 

and 0 < c/2p < Re (a). We remark that the restriction on a is easily removed 
to include the case cr > 1 by suitable indentation (when necessary) of the path of 
integration in (2.3) to lie to the left of the pole z = 1 — 5 but to the right of the poles 
of the gamma function.1 This result also can be obtained by a generalization of the 
method described in [7] and application of the Poisson summation formula. 

Straightforward displacement of the path of integration in (2.3) to the left over the 
simple poles of the gamma function, combined with the functional relation £(s) = 
x(s)C(l — s) where 

then leads to the result 

X(S) - Fir*-1 sin ^(1 - s) = TT'-*   
K
*     *', (2.4) 

^      M-l /_\m  ■^■-2p{m+a) 
J=TT^Y.       i T C(s " 2p(m + a)) + RM r(n.\   ^—'      m.\ m. -\- a rfa) ^—^   ml       m + a 

m=0 

^"f (=g(^)-;'-'^+fiM (,6) 
r(a) z—'    m! m-l-a 

where M = 1,2, The coefficients Am are defined by 

sin |7r(g - 2p(m + a)) r(l - s + 2p(m + a)) ^^ 
Am = * r-^ — r C(l - s + 2P(m + a))5        I

2-6) 
sm ^TTS 1(1-5) 

1This separation of the poles will not be possible when s = 1 + 2p(m + a), m = 0,1,2,..., due to 
the presence of a double pole at z = 1 — 5. In this case, the second term on the right-hand side of 
(2.2) would disappear. Since this situation only can arise for cr > 1, we do not consider this further. 
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and the remainder RM, when | arg.ftT| < 7r/4, is given by 

RM 27rr(a) J_ rla+f )K*a8 + z)^ 
DM-ooi \ ZPJ Z 

Af = 1,2, (2.7) 

where DM = c + 2p(M - 1 + a) and 0 < c < 2p. 
Combination of (2.2) and (2.5) then gives the desired expansion for ((s) in the form 

C(s) = £ n-g(a, (n/10*) + -ta^^j K 

n=l 
r(a) s-1 

■  XW v1(-r(27riir)-2^+°) X{s) 
r(o) 

m=0 
771! m + a 

(2.8) 

This representation of £(s) is seen to involve the original Dirichlet series smoothed by 
the incomplete gamma function. We remark that the coefficients Am in (2.6) enjoy the 
unusual property of involving the zeta function itself. The expansion (2.8) therefore 
will be of computational use only if Re (a) > cr/2p, for then the zeta functions in 
(2.6) can be computed simply from the convergent Dirichlet series. This expansion 
generalizes the result in (1.4), which corresponds to the particular choice a = |s and 
p = 1; the connection between the two expansions is discussed in Appendix A. 

3. A bound on RM when a > 0 

A simple bound on .RM in the critical strip 0 < a < 1, when p > 1 and a, K are 
positive real (we recall from §2 that for (2.8) to be meaningful we require a > cr/2p)y 

can be obtained as follows. We choose c = p in (2.7) and employ the functional relation 
for C(s). With s = a + it (t > 0) and the new variable z = — S + m, u = y — t, where 
5 = 2p(M + a - |), we then have, for M = 1,2,..., 

/»—8-\-ooi       / \ J 

- ^ £r {-M+M) (rf)"i+"«1 -'+' - *> 
rf^ + f) («-•«)' 

From the result 

V2 ^ 2^; 
it follows that 

r( 
1      ^ 

-M+2 + ^ 

cosh 7ru/2p 

1 2     2p 

< (27r)5e-'
rl"l/4P, 

1 
+ r- 

<(27r) ie-7r|«|/4p 

M-l 

n 
r=0 

r(|) 
r(M + |)- 

2^ 

-i 
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Use of the inequality \(^(x + iy)\ < ((x) for real x (> 1) and y then shows that for 
0 < a < 1 (so that 1 - a + 5 > 1) 

i*-'<%i^M'U{i-'+5)iy'M',"F(v)iy (3'i) 

where 

T(a-Uy) 
F(y) = a=i(l-(7 + <S). (3.2) 

r(i-a+iiy) 
In Appendix B, it is shown that F(y) is an even, monotonically increasing function 

of y when a > |. From Stirling's formula, the scaled gamma function ratio G(2/) = 

(y/2)2~2aF(y) is such that G^y) —>■ 1 as y —> +oo, for fixed a. This function also is 
discussed in Appendix B, where it is established that G(y) is monotonically decreasing 
in y for y > 0 when a > 1. Defining the integral in (3.1) by / and using the above 
properties of F(y), we can write 

1={r+1]+1 *} e"'rM/4pjF^ d» 
»        nOO nt 

= 2 cosh H   /     e-^/^Ffy) dy + 26"^/^ /   cosh ^ F(y) dy 
4p Jt Jo 4p 

< 2cosh^Gp(M;*) H e'^^y/i^^dy + — e^^sinh ^-Fft),     (3.3) 

since in the critical strip a = (1 — a + 5)/2 > 1 for p > 1, M = 1,2..., and a > a/2p. 
To denote the dependence of the scaled gamma function ratio G(y) on p and M (we 
omit the dependence on a and the parameter a), we have written 

G(y) = GP(M; y) = (y/2)i-2aF(y). (3.4) 

The integral in (3.3) then can be evaluated as an incomplete gamma function to 
yield 

Sv f 1 \ N 1 
7<v(2t)   C^M'^        JV = 2"-2' (3-5) 

where 

Cp(M;t) = Gp(M;t){e-x smhX + X-Nr(N + l,X)coshX},    X = irt/4p.   (3.6) 

We note that the expression in braces in (3.6) tends to unity as X —>> oo for fixed iV. 
For M and t values such that X > N (> 0), use of the well-known bound for the 
incomplete gamma function, given by X~Nr(N-t-1, X) < e~x/(I - N/X), yields the 
simpler result 

Cp(M\t) < Gp(M;*){l + e-xcoshX/((X/N) - 1)},        X > N. (3.7) 

Hence, from (3.1), we finally obtain the bound on RM in the critical strip given by 

i*"' < «iw*ffiU+i) (^)i" (^)w''+°"!,c'(M!(, ^ 
where we recall that a = ^(l — (T)+p(M+a— |). The function GP{M\ t) is determined 
by direct computation from (3.2) and (3.4). In Table 1 we show values of Gp(M; i) for 
different M when a = p = 1 for * = 50 and t = 100. For low values of Af, Gp(M; t) ~ 1 
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in accordance with the asymptotic approximation in (B.4). For larger values of M, it 
is found that Gp{M\i) ceases to be 0(1) once M > (|t)2/3/p. 

a=l   p=l 
M GP(M;50) GP(M; 100) 
5 1.09122 1.02230 
10 1.79844 1.16447 
15 5.99574 1.62045 
20 48.5599 2.98869 
25 1042.88 7.82060 

TABLE 1. Values of the coefficient Gp(M]t) when a — 1, p = 1 for 
t = 50 and t = 100. 

4. An exponentially-smoothed main sum 

In the remainder of this paper, we shall put a = 1, since Q(l, z) = e~z, and let if be a 
real positive parameter. This choice results in the main sum in (2.8) being smoothed 
by the real exponential factor exp[— (n/K)2p]. We note that the integral (2.1) in this 
case is equivalent to that given in [9, §9.43] for a general Dirichlet series. 

We shall further suppose p to be a positive integer (although this is not necessary), 
so that the coefficients Am in (2.6) assume the simpler form 

Am-i = (-rm(l - s)2prn C(l - s + 2pm), 

Then, from (2.8) and (4.1), we obtain, for p = 1,2,..., 

K1-8 

2p 

771 ■ 1,2,.... (4.1) 

C(5) = ^n-Sexph(n/^)^] 
2p 

M 
(-> (4.2) 

771=1 

where Ru is bounded by (3.8) in the critical strip 0 < cr < 1. 
The formula (4.2) exhibits an exponential smoothing of the terms in the infinite 

main sum (over n) which effectively "switch off" for values of n given by n* ~ K 
where the parameter K, as yet, has not been specified. The choice of K, however, is 
unfortunately not entirely at our disposal. This results from the large ra-behavior of 
the terms in the finite sum in (4.2) which, since C(l — s + 2pm) -> 1 as m —> oo, is 
controlled essentially by the behavior of 

t   \2pm(l-s)2pm 

^I-KK) m\t2Pm   ' 
m= 1,2,.... (4.3) 

It is easily shown that, for the terms in this sequence to possess an asymptotic charac- 
ter, it is necessary to choose K > t/2'ir. (see also the bound on the remainder RM given 
in (3.8)). Since the main sum is smoothed after n* c± t/27r terms, the formula (4.2) has 
the character of a Gram-type formula, rather than that of the Riemann-Siegel-type 
formulas discussed in [4, 5, 6]. With K chosen in this manner, the terms in (4.2) at 
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first will decrease to a minimum value at m = MQ, before finally diverging in typical 
asymptotic fashion. The optimal truncation point MQ is given approximately by 

Mo ~ (t/2\p)2ptt2p-V (4.4) 

when A = t/27rK = 0(1). 
The final parameter which is free to be chosen in (4.2) is p. First, it is seen that 

provided p is chosen such that t/2p ^> 1, the finite series in (4.2) will possess an 
asymptotic character and thereby provide a means of accurately computing £(s) in 
the critical strip. Secondly, it is clear that increasing p will be of computational 
advantage since (a) the terms in the smoothed main sum will decay more rapidly for 
n > n*, and (b) the value of ((1 — s + 2pm) will approach the limiting value unity 
more rapidly as m increases and consequently will be easier to compute. However, 
this enhancement is offset by the fact that the sequence in (4.3) ultimately will lose 
its asymptotic character for fixed t if p becomes too large. In addition, the value of 
the minimum term of the asymptotic sum in (4.2) at optimal truncation will increase 
as p increases, thereby limiting the attainable accuracy. 

To illustrate the expansion in (4.2), we consider the critical line where, from (2.4), 
x(| + it) = exp(—2M?). We first take p = l and choose K = t/27r. Then we have 

C(s) = J2n-sexp[-(27rn/t)2] - Aft/^-'r^) 
n=l 

M 

■*(*)£ 
(1-8} 2m C(l - s + 2m) + RM (4.5) 

771=1 

where s = \-\- it. 

m\t2m 

From (2.16), the remainder term satisfies the bound (when a = |) 

\RM\ < 
2iC(2M+f)Ci(M;*) 

7rr(M+§) 
(4.6) 

where ((2M + |) ~ 1 for M > 1 and the expression for Ci(M; t) is given in (3.6) (or 
(3.7)) with X = 7rt/4, N = 2M + 1. 

In Table 2, we present the optimal truncation point MQ ~ t2/4 for a range of t 
values (see (4.4)), together with the absolute value of the least term in the finite series 
(over m) in (4.5) (see (4.3)). For the same t values, Table 3 shows the real function 
Z(t) computed from (4.5) with M chosen to guarantee an accuracy of 25 decimal 
places. For the smallest value t = 10, M was chosen to be the optimal value MQ = 24, 
while for the other t values, truncation of the series (4.5) was highly sub-optimal. 

a = 1   p = 1 
t Mo IfflMol 

10 24 2.711 xlO-s 
20 99 2.405 xHT32 

30 224 5.496 xlO-80 

40 400 2.725 xlO"149 

50 625 2.780 xHT240 

TABLE 2. Optimal truncation values of the finite sum in (4.1) for 
different t values when a = p = 1. 
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a = 1       p = 1 
t ■Zapprox M 

10 -1.54918 98595 24 
20 +1.14784 24121 85197 27763 50341 50 
30 +0.59602 85192 39884 95531 85143 33 
40 -1.30888 23934 56599 15901 61454 29 
50 -0.34073 50059 55024 98275 33166 27 

TABLE 3. Computation of Z(t) from (4.1) for different values of t. 
When t — 10, optimal truncation yields a value accurate to 5 decimals 
only. For the other t values, M was chosen to yield an accuracy of 25 
decimal places. 

t = 50       Mo = 625 

M 
a = l a = 1/2 

\Z - Zapproxl \RM\ \Z — Zapproxl |-RM| 
5 
10 
15 
20 
25 
30 

1.366 xlO-3 

4.588 xHT8 

3.268 xlO-13 

1.217 xlO-18 

3.718 xlO-24 

1.188 xlO-29 

4.047 xlO-3 

2.070 xlO"7 

2.464 xlO"12 

2.330 xlO"17 

5.198 xlO"22 

6.189 xlO-26 

8.053 xlO"4 

2.411 xlO-8 

2.911 xlO"14 

1.273 xlO"19 

1.171 xlO-24 

4.643 xlO"31 

2.284 xlO-3 

1.100 xlO"7 

1.156 xlO-12 

9.219 xlO"18 

1.608 xlO"22 

1.455 xlO"26 

t = 100       Mo = 2500 

M 
o = l a = 1/2 

Z — -Zapprox \RM \Z — Zapprox •RMI 
5 
10 
15 
20 
25 
30 
40 

1.250 xlO-3 

2.763 xlO"8 

7.709 xlO-14 

6.102 xlO-20 

2.123 xlO"26 

4.290 xlO-33 

6.996 xlO-47 

3.453 xlO"3 

1.038 xlO"7 

3.706 xlO"13 

3.689 xlO"19 

1.654 xlO"25 

4.605 xlO-32 

2.520 xlO-45 

6.461 xlO"4 

8.704 xlO-9 

1.064 xlO"15 

9.179 xlO"21 

1.078 xlO"26 

5.603 xlO"34 

9.583 xlO-49 

2.116 xlO"3 

5.967 xlO"8 

2.037 xlO"13 

1.945 xlO"19 

8.304 xlO"26 

2.184 xlO"32 

1.022 xlO"45 

TABLE 4. Values of |iJM| for t = 50 and t = 100 when p = l,K = tfeir. 

The bound (4.6) is unfortunately not sharp enough to establish the asymptotic 
nature of the expansion in (4.5). For modest values of M (which would, however, be 
quite sufficient for most computational purposes), this bound turns out to be very 
realistic, but is too crude for values of M near optimal truncation. To illustrate this, 
in Table 4, we compare the bound (4.6) for different truncations M with the actual 
error incurred in computing Z(t) for two different values of t. Inspection of this table 
reveals that the bound is quite realistic until M ~ [^t]. For higher values of M, (4.6) 
begins to deteriorate and is quite useless at optimal truncation. 

In Table 5, we present the results of computing Z(t) from (4.5) with different 
values of p and K when t = 100. This table illustrates two important facts. The first 
is that, although increasing K clearly increases the attainable accuracy, this is at the 
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K = t/2v K = 3t/47r 

p Z — Zapprox Z — Zapprox 
1 4.290 xl0-3a 5.243 xlO-44 

2 7.699 xlO-24 1.708 xlO"46 

3 3.273 xlCT5 1.483 xlO"18 

4 6.711 xlO-2 4.964 xlO-10 

5 5.970 xlO"1 7.763 xlO"7 

TABLE 5. Calculation of Z(t) from (4.5) for different values of p and 
K when t = 100. The number of terms in the finite sum is given by 
M = min{Mo, 30}. 

cost of increasing the effective cut-off point n* ~ K of the smoothed infinite sum. 
Secondly, although increasing p results in a more rapid decay of this latter sum from 
the exponential factor exp[— (27rn/t)2p], the overall attainable accuracy nevertheless 
is reduced on account of the decrease in the optimal truncation point of the finite 
series (see (4.4)) and the resultant reduction in the least term. 

5.  Concluding remarks 

The expansion (2.8) involves a smoothing of the main sum (the original Dirichlet 
series) by the incomplete gamma function Q(a, (n/K)2p) where a is free to be chosen. 
The choice a = 1 in §4 leads to the particularly simple smoothing by the exponential 
factor exp [— (n/K)2p]. Another obvious choice is a = \ since Q(\, z2) = erfc (z), and 
the main sum then is smoothed by the complementary error function. In this case 
with p = 1 and K = t/27r, we have the expansion on the critical line s — \ + it 

«.)-£>-.* (./JO+
^<1-t•)"'J,'>,- 

n=l 

. x{s) v-^ (: 

A 
m 4.—2m—1 -)mt 

m+2 
-Am + RM (5.1) 

where 

and 

Am = (-)T -1 cot -7rs(l - s)2m+iC(2 + 2m *) 

\RM\ < \ — 
C(2Af+|) 

CiCMjt). (5.2) 
TT/    Afr(M+!) 

In order for the finite sum to possess an asymptotic character, this formula again will 
require the choice K ~ t/Zn, so that the resulting expansion is similarly of Gram type. 
Numerical results for the case a = \ and p = 1 are shown in Table 4. 

The Berry-Keating formula, for which the leading term is given by (1.3), also in- 
volves the main sum smoothed by a complementary error function whose argument 
depends logarithmically on n/Nt. This difference in the n-dependence of the er- 
ror function argument, however, results in the main sum cutting off after roughly 
n* ~ iVt ~ (£/27r)2 terms, so that their formula is of the more powerful Riemann- 
Siegel type. The expansion (2.8) has been shown to produce a Gram-type expansion 
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when a = 0(1), but it is a Riemann-Siegel-type expansion (see [8]) when a = ^s. It 
would be of interest to explore the domain of a values corresponding to the transition 
between these two categories of expansion. 

Finally, the bound (4.6) on the remainder term RM was found numerically to be 
no longer realistic once M > [^t]. We attribute this deterioration of RM to the 
relatively crude bounds employed in §3. It would be necessary to give a more refined 
analysis of the integral defining RM in (2.7) which possibly also takes cognizance of 
the oscillatory nature of the integrand. We remark, however, that if it were possible 
to assume the asymptotic nature of the expansion (4.2), then Table 2 indicates the 
enormous accuracy that could be achieved in the computation of C(| + it) from (4.2) 
at optimal truncation. 

Acknowledgement. One of the authors (S. C.) wishes to acknowledge the financial 
support of a Research Studentship at the University of Abertay Dundee. 

Appendix A. The relation between the expansions (1.4) and (2.2) 

We demonstrate how the result in (2.2) contains the expansion (1.4) as a special case. 
To see this, we let a = ^s and p = 1 in (2.2) and (2.3) to find 

Cis) = ^n-Q (^(n/Kf) + ^f^ + J (A.1) 
n=l ^ ' v2   / 

where 
• f-C+OGi       /i i    \ Jz 

J=2^7) L^ r (r+r) «'«< +-*>T' 0<c<^ 1 ^ < ^■ 
(A.2) 

The above integral has only a single simple pole at z = — s on the left of the path of 
integration, the remaining poles of the gamma function being cancelled by the trivial 
zeros of £(s + z) situated at z = — 5 — 2k, k = 1,2, Observing that £(0) = — |, we 
therefore find, when | argif | < 7r/4, 

J - - JS) + SrW £17 r(is + »"*'«'+ "T        (' > '> 

(A.3) 

upon use of the functional relation for ((s) and replacement of the variable z by —z. 
The integral in (A.3) is seen to be of the same form as that on the right-hand side 

of (2.1) (when a = |s and p = 1), with 5 replaced by 1 — 5 and the parameter K by 
(nK)-1. Hence, we find the result 

From (A.l), we then obtain the expansion 
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+ X(5)£n5-1QQ-^,(7rnif)2) 
n=l ^ ' 

(A.4) 

a—l^—z as ^ -> oo valid for all values of 5 (^ 1) and | argii'l < 7r/4. Since Q(a, z) ~ z{ 

in |argz| < 37r/2, both the sums in (A.4) converge absolutely for largiiTl < 7r/4, so 
by analytic continuation, the expansion (A.4) holds in |argif| < 7r/4. The choice 
K = (7ri)~~2 and use of the conjugacy property Q(a,z) = Q(a,z) together with 
x(^ + it) = exp(—2i^), where t? is defined at (1.2), then yields the convergent ex- 
pansion (1.4) on the critical line s = ^ -\-it. 

Appendix B. The monotonicity of F(x) and G(x) 

In this appendix, we establish two monotonicity properties connected with the function 

r(a — ^ix) 
F(x) 

where a > 0 and x > 0. Prom [1, p. 256], we have 

l + ia;2/(n + |-a)2 

F(x) = 
T(a) n r- 

(B.l) 

(B.2) 

which is evidently an even function of x.  Logarithmic differentiation of (B.2) then 
yields 

F>(x) 
= x    a- 

1 
■J: 

2n+| 

F(x)      2 V"     4;^0[(n + a)2 + Ix2][(n+i-a)2 + ia;2], 

from which it seen that F'fa) > 0 for x > 0, provided a > |; we note that F(x) = 1 
when a = |. Hence, F(x) is a monotonically increasing function of x when a > |. 

For # —)- +oo, the leading behavior of F(x) is given by F(x) ~ (x/2)2a~2.   To 
remove this growth, we define the scaled gamma function ratio by 

<?(*) = 
i |-2a 

F(x), (B.3) 

so that G(a;) -> 1 as x -> +oo and, for a > ^, G(x) -> +oo as x ->- 0. We now 
obtain the range of a values for which G(x) is a monotonically decreasing function of 
x. From the standard asymptotic expansion of the ratio of two gamma functions [1, 
p.257] we obtain the behavior 

G(x) = 1 + -a(a - -) (a - -):r~2 + O^-4),        x -> +oo. (B.4) 

Consequently, G(x) is monotonically decreasing for large x when a > |; we note that 

G(x) = (tanh ^TTX)* when a = \. 
Expressing the gamma function ratio in (B.l) in terms of a single gamma function, 

we have 

G[x) = J-xz-2a r(2a + ix)sm{7r(a + -) + -nix} 

= yf r(2aM- fl {l + (^y {Sin2lt(a + h) ^^ ^'l1 
n=0 
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so that 

Gf(x) _ \ - 2a     ^ x 

G(x) ~      x ^ (n + 2a)2 + x2 

2 2.      y       sin 7r(a + |) + smh  ^TTX J 

Making use of the integral 

^—— = /    sinxt e-V dt    (/3 > 0) 

to express the sum appearing in (B.5) in the form 

E-. —^-75 ^ = /     sin xt e 
(n + 2a)2+a;2      Jo 

-2at       ai 

^ (n + 2a)2 + x2      Jo 1 - e-£ 

and the identity 

1 1 1     rt  Z*00  sinxt   ^ 
-TT coth -Tra; = - + 2 /     -rr—-at, 
2 2 x       J0    e

2t -1 

we obtain from (B.5) the inequality 

§JM < il^ _  rsmxtH(t)dt 
G{x) x J0 

where 

H(t) = 
e(l-2a)t 

-1       e2*-l' 

Then, upon applying integration by parts twice and noting that -H"(0) = § — 2a, we 
finally find the result 

ST^T < 4 rsmxtH"(t)dt. (B.6) 
G{x)       xz J0 

It is easily demonstrated (we omit the details) that, for a > 1, Hn{t) < 0 and 
\H"{t)\ is a monotonically decreasing function for t > 0. From the fact that (when 
x > 0) /Q

00
 smxtf(t)dt > 0 for positive, monotonically decreasing functions /(£), it 

follows from (B.6) that G'fa) < 0, and hence, that G(x) is monotonically decreasing 
for x > 0 when a > 1. Direct numerical computation with Mathematica shows that 
G(x) is in fact a monotonically decreasing function for x > 0 when a > ao where 
ao « 0.63605. 
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