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HYPERASYMPTOTIC SOLUTIONS OF SECOND-ORDER ORDINARY 

DIFFERENTIAL EQUATIONS WITH A SINGULARITY 

OF ARBITRARY INTEGER RANK 

B. T. M. Murphy and A. D. Wood 

ABSTRACT. We develop a hyperasymptotic expansion for solutions of the general 
second-order homogeneous differential equation with a singularity of arbitrary in- 
teger Poincare rank at infinity. This expansion is in terms of certain integrals 
which are generalisations of the hyperterminant integrals developed in other pa- 
pers for the rank one case. 

1. Introduction 

The general linear homogeneous differential equation of the second-order is given by 

d2W      _, ,dW       , ,TJZ     A 
-MT + M-te +9(z)W = 0. (LI) 

The problem we shall study is that of an irregular singularity of rank r at infinity. In 
this case, the functions / and g can be expanded in power series about infinity of the 
form 

OO      j. CO 

3=0   Z 3=0   Z 

which converge in an open annulus \z\ > a. At least one of the coefficients /o, #o? 9i 
is non-zero; otherwise the singularity would have lower rank. 

This equation (1.1) is studied in detail for the case r = 1 in [2] where a method 
of rigorous re-expansion of the remainder terms in the asymptotic expansion of the 
solution is developed. The re-expansions are in terms of certain multiple integrals, 
the so-called hyperterminant integrals. This equation also is studied in [3] for the 
case of arbitrary r, and a method for the calculation of Stokes' multipliers is derived. 
Using these results, we have developed the hyperasymptotic expansions (see [1, 2] for 
references) for the differential equation (1.1) for the general case of the second-order 
linear differential equation of arbitrary rank r. 

2. Setting up the problem 

By making the transformation 

w(z) = exp Q J* f(t)dtj W(z), (2.1) 

Received March 6, 1995, revised July 30, 1996. 
1991 Mathematics Subject Classification: 34E05,34A20. 
Key words and phrases: asymptotic expansions, differential equations, exponential improvement, 

hyperasymptotics, irregular singularity, Stokes' multipliers, remainder term. 

250 



HYPERASYMPTOTIC SOLUTIONS OF DIFFERENTIAL EQUATIONS 251 

the differential equation (1.1) is transformed to the equation 

d2w 
dz2 = *(*)*» (2-2) 

where 

Hz) = \f2(z) + lf'(z)-g(z). 

We may assume without loss of generality that \fo—go is non-zero1 so that the square 
root of 0 can be expanded in the form 

0£ 
zs 

s=0 

We now define sectors 

Sk = \z : ?—^TT < ph^ < ^ 2 ^^ I 
I r r J 

where a = ph (J)Q . 
If we define 5^ to be any closed sector properly interior to Sk-i U Sk U 5^+1, then 

the differential equation (2.2) has unique solutions Wfc defined by 

WfcO*) - e-Mz"1 Y, ^T.        z -> oo in 5fc (2.3) 

for A: even, and 

oo 

Wk (z) ~ e^ ^2 J^ ^,        z -> oo in 5fc (2.4) 
s=o zS 

for A; odd (see [3, 4]). These sectors differ slightly from those in [3], and because of 
this so do the solutions Wkiz). The order r polynomial £ is given by 

and the coefficients //i, ^2? ^5,1 and as^ can be calculated using a recursion relation 
derived by substituting the expressions (2.3) and (2.4) into the differential equation 
(2.2) (see [3]). 

We now would like to define a new variable x such that 

xr = 2£(z), 

so that the polynomial f in the exponent of the asymptotic form of the solutions (2.3), 
(2.4) becomes simply xr. We can do this by writing 

-«E 
s=0 

1The case when ^/Q — go is zero is dealt with by using the transformation of Fabry; see [4]. 
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and calculating the coefficients cs by reversion of power series. Performing a full 
reversion of power series is laborious, but if we now truncate this series and make the 
change of variables 

r-l 

s=0 

we then can transform equation (1.1) to write down a new differential equation for W 
in the variable x: 

d2W      -     dW -g + f{x)— + §(x)W = 0. (2.5) 
We can apply the transform (2.1) to this differential equation, and this yields an 
equation with solutions in the form (2.3), (2.4) with the polynomial £ having the 
simple form xr/2 in the new variable x. Without loss of generality, we now can 
assume that the equation (1.1) is in the correct form initially, so that when we derive 
(2.2) from it, there are two solutions which have the following behavior 

(2.6) 
s=0    Z 

z -> oo in Sk 

for k even, and 
oo 

s=0 
z -> oo in Sk (2.7) 

~o  *- 
for k odd. 

There are only two linearly independent solutions to the second-order differential 
equation (2.2), so there must be a linear relationship between any three solutions; a 
connection formula. In particular, we can write 

Wk+2(z) = Ck+iWk+i(z) + Wk(z). (2.8) 

The coefficient of Wk(z) is unity because Wk+2{z) and Wk{z) have the same dominant 
asymptotic form in their common sector of validity. 

We now define functions 

Uk(z) = ezr/2z-^e^k^rWk{ze-k^r) 

for k even and 

Uk(z) = ezr/2z-^e^k7rL/rWk(ze-knL/r) 

for k odd. These functions have the asymptotic form 

"*(*) ~ E r^-WrW        z^ooinSo (2.9) 

for k even, and 

4^ (ze-k7rL/r)s' 

»*(*) ~ S te-ff/rw        z-toomSo (2-10) 

for k odd.  Using the connection formula (2.8) for w, we now can define connection 
formulae for u 

Uk+2(ze2^r) = Ck+iezrz"e-k^rUk+i(ze^r) + uk(z) (2.11) 
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for k even, and 

uk+2{ze2^lr) = Ck+le
zrz-"ek™lruk+1(Ze™lr)+uk{z) (2.12) 

for k odd. The number uo = ^2 — fix. Note that Uk+2r(z) = ^fc(^)- 
In a similar manner to [3], we now can write down a Stieltjes integral representation 

for each of the functions Uk • The representation has a slightly different form depending 
on whether k is an even or odd integer. 

Lemma 1. For even k, 

r-l 

Uk{z) = -^ 

■pe(-2i+fc+1Wr ,,_^(2j-ife)Wr) 

+ e 

For odd k, 

Uk(z) = 

— kirtuj/r 

Y< rpeK '' U2j{te 

r-l ooot 

.•_n J pe- 

dt 
t(t - Z) 

/0e-(2j-fc + l)7ri/r t{t — Z) 
dt (2.13) 

z 

27a ^ Jpe(-2j + k-2)7rL/r t(t - z) 
=0JPeK 

r-l pooe-W-V*1 

+ ek^/ryc    I 
JT^ Jpe-(2j-k)nc/r 

dt 

et't-u,U2j(te^ ooe   W-k)nL/r  „tr+-u>ai_ .(+0(2j-k)in,/r\ 

t{t - z) 
-dt (2.14) 

We use these integral representations for Uk to derive an integral representation for 
the remainder after truncation of its asymptotic series. This is done by expanding the 
term {t — z)-1 as a finite geometric series. The details of the proof are similar to [3] and 
are omitted. As a byproduct of this process, we also find an integral representation 
for the coefficients of the asymptotic expansion for Uk- These can be used to develop 
asymptotic expansions for the coefficients (see [2, 3]). 

n-l 

Theorem 1. 

where the coefficients a5ji in the expansion are given by 

(2.15) 

27a 

r-l 

£* , — 2jsTVb/r 

r-l 

\ U2j(t)ts-1dt 
Jpe-*''/r 

JP 
U2j+l{t)dt 

3=0 

(2.16) 

and 

Rk(z,ri) = - el(z-p,n) 
27UZn 

1 ^~^ /»o 
 ekniri/r ST^ n            -(2j+l)(n+w)7rt/r   / 

S^"-16 UC23+ie JP 

e-trtn+u-lU2j+i{t) 
te-(2j-k+l)KL/r _ z 

dt   (2.17) 
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for k even, and 
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n-l 

s=0 ^ ) 

(2.18) 

where 

a>s,2 
2'KL 

r-l 

j=0 

-(2j+l)sTri/r / U2j+l(t)ta'1dt 
J pe-nL/r 

r-l poo 

(2.19) 

and 

Rl(z,n) = - e0
k(z;p,n) 

2irLzri 

r-l 

2inzn-1 

3=0 f ■m™)n'r rCSX*-]* (2-20) 
for k odd. 

The definition of e0
k is given by 

j=0 Jpe-"'/ 

"^        u2j(t)f n-l 

te(-2j+k)ni/r _ z 
dt 

for k even and by 
r-l 

dt 

for A: odd. 

FIGURE 1. V for 0 < 
phz < 7r/r 

FIGURE 2. V for -7r/r < 
phz<0 

In the integrals in (2.17) and (2.20), z has been restricted to the phase range 
|phz| < 7r/r — 5. We would like now to include the phases ±7r/r. We do this by 
analytically continuing the integrals. This is performed in the standard way, i.e., 
indenting the straight line contours from £ = pto£ = ooina semi-circle ||z| — t\ = S 
where the indentation goes to the left (resp. to the right) of z when 0 < ph z < ir/r 
(resp.  —7r/r < phz < 0) (see Figures 1,2). We shall call this contour V. With this 
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extension and the continuation formulae, we can get a representation for any solution 
of the differential equation for any z. 

3.  Optimal expansion at level zero (Poincare asymptotics) 

We now wish to minimise the remainder in (2.15) and (2.18) to determine the optimal 
number of terms of these expansions to use with the single standard Poincare asymp- 
totic series. We will consider in detail the case for even k\ the calculations are similar 
for odd h. 

Let n = NQ in (2.15). The remainder term is given in (2.17). We deal with the two 
terms separately. The first term is estimated by 

^^&«r,m=o(p»°z-»<>). (3.1) 
In the second term of (2.17), we can see that the dominant contribution to the bound 
occurs when — ir/r < ph z < 0 and arises from the integral for which 2j — k = 0.2 The 
path along which we integrate is indented at \z\ to pass to the right of \z\. To derive 
sharp error bounds, we need to perform the analytic continuation of the previous 
section in a different way. 

Starting with the dominant integral (assume 0 > phz > —n/r) 
,00  e-trtNo+u,-luk+i{t) 

f J  O 
te-KL/r _ -dt, 

' p 

we replace z by z exp(—in/r) and make the substitution t — vllr (taking the principal 
branch) to give 

/ Jpr r    Jpr vl/r - . 
-dv. 

Now we perform the analytic continuation allowing z to be real and indenting the 
contour in a semi-circle centered on and to the right of z of radius 5i in the v plane. 

We bound this integral in two parts. For the integrals 

r [Jpr J\z\r+8j V1IT-Z 

we can say that \v^lT — z\ = 0(1), u\~ is 0(1) uniformly on the region |z| > p, so that 
the sum of integrals is 

cr((iVo + 7^)/r) (3.2) 

where c = O(l) is a generic constant. 
For the part of the integral around the semicircle we have \v — \zY\ = Si so that 

  / — r/ 
Uk+l{V 'dv = e-^V + <5ir°+^)/,-i O(l) 

(3.3) 

uniformly in the region of validity for z. 
Now we assume that 

Wo = A>Wr + ao (3.4) 

2Symmetrically when 0 < ph^ < TT/V and 2j — k = —2. 
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where /?o > 0 is 0(1) and ao is bounded. Now using this form for iVo, comparing (3.3) 
to (3.2), and using Stirling's asymptotic estimate for the gamma function, we have 

e-\*\r(\z\r + <Ji )W+K")'r-1 

r((7Vo+^)/r) ~Ce        lZl 

= Ce"121''\z\Mz\r+ao+Ku>-rePo\z\r/r 

x (ig0/r)-^o/r)lzlr|z|-^ol2lr+ao+7ea;)+5 

= ce-l^>|-^2(e^/r(A/r)-/3o/r)kr = 0(kl"r/2) 

The last step is due to the fact that ef3o/r(i3o/r)~f3o/r has its maximum at /?o = r. This 
estimate for the semicircular indentation of the integral therefore can be absorbed in 
the estimate for the straight-line part of the integral (3.2), and this is our final estimate 
for the integral. The remainder term in (2.17) then is estimated by 

0(r((iVo + ^a;)/r)^-iVo+1). (3.5) 

Using the value of iVo in (3.4) and Stirling's formula, we can minimize (3.5) with 
respect to /3Q. We find that 

z-N°+lr((No + nLj)/r) = c \e-^^(0o/r) \(0o/r) \z\l+nuj-r/2 

and /?o = r for the remainder to be minimal. Substituting this value of /SQ in (3.5), we 
find that the minimal remainder estimate for k even is 

0(s1-r/2+*we-|*|r). 

The corresponding estimate for k odd may be shown in a similar manner to be 

0(zi-r/2-nu,e-\z\y 

4.  Optimal expansion at level one 

To construct the first level of hyperasymptotic expansions, we re-expand the remainder 
terms in (2.17) and (2.20). The calculations for even and odd k are similar, so only 
the even k calculations will be shown. Substituting the expressions (2.18) into (2.17), 
we find that 

1-iVo ^i-1 r-1 

/r 
Rl{z,N,) = -Z-—-ekN^ J2 as,2j2C^^e~{2j+lKNo^~S)7r 

Z7ri
 3=0 j=0 

xG1
2^k+1(z]No--s) + R1

k(z'JNoiN1) 

where 

poo    -tr J.NO+UJ-1 

Gl'"(Z,N0) = l    jpj^—dt, (4.1) 
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and 

zl-No 
RlfrNotN!) = -^-e0

k(z',p;No) 

s=0 j=0 

f Jo 

e-trtNo+u-l-s 

te-(2j-k+l)irL/r _ z 

X 

kNoiTL/r V^ Q -(2i+l)(No+w)7r4/r 

j=0 

Jv      te-M-k+D^/r _ z     
ai' ^'l) 

Now we estimate the remainder as in the previous section and then proceed to minimize 
it. The first term on the right-hand side of (4.2) is e\{z\ p; NQ), which is estimated as 
before in (3.1) to be 0{z-NopNo). 

In the second term in (4.2), we have that |£e-(2.7-fc+1)W'r _ z\ > |^| — p in the worst 
case, so that 

rp     p-trfNo+uj-i-s 

I   fe-w-M-iWr -   * "= 0(z-H(No + Tto - 8)/r,p*)) = 0{z-^INQ). 

Prom [3] we have that 

«s,2 = 0(r((s - ll(jo)/r)) as 5 ->• 00, 

so that the whole second term is estimated by 

O(r((N1-w)/r)z-N°prf<>/N0). 

In the third term, taking the expression for -Riy+iO^ -^1) from (2.20) and replacing all 
occurrences of p by p — 5 (to ensure convergence of the integrals), 

f e-trtw''+"-1JZ§j+1(<,JVi)     _J_f      e-trtN°-Ni+» 

Jv      te-W-k+Mr -z ITU }V te-(2j-fc+iWr _ z 

The estimate for the integral of the e term is given by (3.1), so that we have 

, g-t^jVo-JVx+u, o     n        g N j 

Jv te-W-^/r-z 
dt = 0((P - *)Wir((^ - * +■*"')/'■)). 

The double integral written out in full is 
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Jv Jp- 
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-dtidt. (4.3) 
h Jp-6 (ie-W-^+DWr - 2)(ile-(2(-2j-i)W - t) 

We estimate this by noting that 

|te-(2i-fc+l)»t/p -z\>s    and    |fie-(M-2j-i)x»/r _ t| > |t|c_ 

Then (4.3) splits into the product of two single integrals and is estimated by 

0(r((JVo -Ni+ Ku})/r)T((Ni - nu)/r)). 

All of the other terms can be absorbed into this estimate, so that we have our final 
estimate 

Ri(z; No,^) - O(z-N°+1r((N0 - ^ + 72a;)/r)r((^1 - Tlu)/r)). (4.4) 

Following (3.4), now assume the standard form for iVo and iVi: 

No = l3o\z\r + ao, 

Here /?o > Pi > 0 are O(l), and ao, ai are bounded. 
Using Stirling's formula to give an asymptotic estimate for the gamma functions in 

(4.4), we find that 

RKz'.No.m) = O(z-h\*\r-°o + lyz\(fh-fii)\zr+ao-a i+^-r/2 

SsL^JL\\z\ 
x    e 

_flo-fli 7?o - /3i zMzF+cn-nu-rfi (e-£± 
r 

&L \*\r 

(4.5) 

We find that the estimate (4.5) is minimized when /?o — Pi = r and Pi = r, so that 
Po = 2r, and the optimal estimate for the remainder at level 1 is 

iT^A^TVi)^1-7^-21^. 

5.  General levels 

The complete expansion for Uk(z) can now be written down and proved by induction. 
The number Vk in Theorem 2 is 1 when k is even and 0 when k is odd. 

Theorem 2. Assume —ir/r < phz < ir/r. For k even 

No-l 

Uk w=E flfl,! 
Nn-1 

-?  {ze-k7VL/r) 
+ zl-Noc^oWr^Hn   ^a^^ 

6=0 

n E a 
:=o Liz=o 
r-l 

27r^ 

Jn-1=0 

C: 2jn-i+l-»/n       (2jn_1 + l-t/n)(JVn_i-a-(-)"a))irt/r 
27rA 

+ flg(«;JVo,JVi,...,Ai.) 
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where the remainder is estimated by 

Rl(z; No, JVi,..., Np) = 0(z-N°+1r((No - N, + Ho;)/r)r((JVi - iV2 - 8iw)/r) x • • • 

x r((^p_i - NP + (-y -1^)/r)r((ivp + (-y^/r)). 

For k odd 

NQ-I P Nn-1 

s=0    V ; n=l s=0 
n-2 

X 

Z=0 

r-1 

r-1 

ji=0 

C2jl+l-vlr_(2jl + l-l,l)(Nl-Nl+1-(-)lu>)irL/r n E^—« 
V^     Cf2jn-i+^nc-(2,7T1-1+^)(iVn_1-S+(-)nct;)7r6/r 

in-l=0 

X G?;o"-fc,2i1-2io+l,...,2(i»-x-i-ii)+(-l)- Wo-Nu..., Nn_2 - N^N*-! - s) 
+ Rl(z;N0,N1,...,Np) 

where the remainder is estimated by 

Rp
k{z; N0, JVi,..., JVp) = 0(^-JVo+1r((iVo - ^ - Kw)/r)r((M - iV2 + «w)/r) x • • • 

x r^JVi - ivp + (-)p-2^)/r)r((Arp + (-f-1^)^)). 

In the case where the expansions are optimally truncated after n series, the number 
of terms in the final re-expansion is iVp = r\z\r + a^; then in each previous expansion, 
the number of terms increases approximately by this amount, i.e., Np-i = (i+l)r|z|r + 
ap-ii etc. The optimal error term in this case is R^ = 0(z1~p^e~p^z^). 

The general integral G appearing in the expansions above is given by 

poo        poo e-tr-t[~—tltMo+wtMi-u , _ , iMn_i+(-)"-1wiMn + (-)na.-l 

/   ••• /     —; ;—; 77 ^ 7 T1    / ; -, :—dtn-•-dtidt Jo       Jo       {te-k™lr-z){t1e-^lr-t)---{tne-k^lr_tn_l) 

(5.1) 

for n > 1 and for n = 0, it is given by (4.1). 

6.  On calculation of the integrals G appearing in expansions 

The integrals (5.1) and (4.1) (often called terminant integrals) can be calculated nu- 
merically by writing them in terms of the integrals in [2]. We then can use some results 
in [1] which express these simpler integrals as a convergent infinite series of confluent 
hypergeometric functions. 

To recast our integrals in terms of those in [1], we first substitute t = v1/7*, tj = Vj, 
j = 1,..., n into (5.1) taking the principal branch in all cases. We then use the results 

r-1 
-kirL\jo/r   r-l-jo  i = i V (ve-kiu) 

(ve-kirL)l/r _ z        Ve-k7rL — zr  ^ v y 

jo=0 
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and 

1 1 r"1 

 t  _   V^ (v   e-kn^^\jn/rv(r-l-jn)/r 
(vne-^)i/r _ ^       Vne-kn^ - ^_1 ^ n n-l 

to show that (5.1) can be expressed as the n + 1-fold sum of n + 1-fold integrals F 
defined in [1] in the case where fci,..., kn are all odd integers: 

^,t1
1;lfen^

Mo,M1)...,M„) = 
^ r—1 r—1 i—1 
  Y^ zr-l-Jo  V^ ...  V^ e-(kjo+k1j1+-+knjn)iri/r 

30=0 ii=0        jn=0 

v jpn+if r Mo+jo-h+u  M1+j1-J2-u) Mn + jn + (-l)na;^ 
r ' r + 1 ' r + l '•••' r /• 

To calculate with Theorem 2, we then use the results of [1]. These calculations for 
various examples confirm numerically the theoretical error estimates of Theorem 2. 

7.  Conclusions 

In Theorem 2, we have obtained in general form a hyper asymptotic expansion at all 
levels for solutions of a second-order homogeneous linear ordinary differential equation 
which has an irregular singularity at infinity of arbitrary rank r. 

As in [2], this expansion for sufficiently large level p is numerically unstable. This 
instability is due to the fact that in general we sum a divergent series past the point 
where the last term added is of order one, leading to severe cancellation. This may be 
dealt with in the same manner as in [2]. The optimal numerically stable scheme will 
use fewer terms than the corresponding optimal series from Theorem 2, but it will not 
be as accurate for the same level p. 

We also may extend the region of validity of the exponentially improved expansions 
in a manner similar to [2, Section 10], with a corresponding weakening of the error 
estimates in the expanded sectors. This is really of only theoretical interest, however; 
in practice, the high accuracy results in this paper can be used to generate approxi- 
mations to any solution anywhere in the complex plane by direct use of the connection 
formulae (2.11) and (2.12). 
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