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SOME BERNSTEIN-DURRMEYER-TYPE OPERATORS

W. Chen and A. Sharma
To Professor Lee Lorch on his 80" Birthday

ABSTRACT. Three Bernstien-Durrmeyer-type operators are introduced in this pa-
per. These operators are based on the linear positive operators defined by A. Meir
and A. Sharma that generalize the Bernstein and Szdsz operators. Some approx-
imation properties of the operators are investigated. In each case, we obtain a
Voronovskaja-type theorem.

1. Introduction

Thirty years ago A. Meir and A. Sharma [8] defined two linear positive operators
which generalize the Bernstein and Szdsz operators. The first one is denoted by B

(A <0, @ > —1) and is based on the Laguerre polynomial L (z), @ > —1. For any
f € C[0,1], they set

BEi) = s Z Cr)me (2)ea-arei(%).

It was shown in [2] that if f € C[0,1], then B»*(f;x) converges uniformly to f(z) in
[0,1]. For A = 0, B)'*(f;z) becomes the Bernstein polynomial since

row=3 (210 S (12)

— |
=0 n—v v.

Their second operator S;) () real) uses the Hermite polynomial H, (z) of degree v and
is based on the identity

Z (= 1)(2113:“(0\) (nz)F =e™cosh 2X Vnz . (1.3)
For any f € C[0,0), they set
SMfia) = k%azk(x)f(;), A real, (14)
where
api(z) == ™™ sech(2\ v/nz) (—1)* I‘—’(z;}i;)\) (nx). (1.5)
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240 CHEN AND SHARMA

Our objective is to define two Durrmeyer-type operators based on the operators
B} and S). We denote our operators by M\ and 52, respectively. The pre-
cise definition of M,(L)"a) is given in Section 2. The operator P,?"") is the subject
of Section 3. In Section 4, we treat the operator S',’) In each case, we obtain a
Voronovskaja-type theorem.

The Bernstein-Durrmeyer operator was introduced by Durrmeyer [5] in 1967 as
a certain modification of the Bernstein operator. Some approximation properties of
this operator were investigated by Derriennic [4]. This operator has some very nice
properties, and the strong converse inequality of this operator was discussed in [1].
Similar modifications of Szdsz operators were introduced and studied by Mazhar and
Totik [7]. In [3], Chui, He, and Hsu examined the asymptotic properties of certain
positive summation-integral operators. The operator M,(l)"a)( f;x) can be considered
as a special case of the summation-integral operators in [3].

2. The operator M{*®

For any f € C[0,1] and for any A <0 and o > —1, the operator MM maps C[0, 1]
into 7, and is given precisely by

n & (o4 o - '
sy L 5 (100) 0 (2)eta- o [ s
(2.1)

where pn () = (7)t¥(1—t)"* and A (A) defined by (1.2) is the Laguerre polynomial

of degree n. Since A < 0, L™ ()) > 0 and M) is a linear positive operator. For

A=0, M,E'\’a)( f;z) is My, (f; =), the Durrmeyer operator. We shall prove

Theorem 1. If f € C[0,1], then M,(L)"a)(f;x) converges uniformly to f(z) in [0,1] as
n — 00.

The proof of this theorem will be based on the following two lemmas.

Lemma 1 ([8]). For a given A\ <0, we have

1 LER)

v m =0(1) asn — 0o (2.2)
L0 oL
M—1+O<\/ﬁ>, as n — oo. (2.3)

For a proof, see Meir and Sharma [8].
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Lemma 2. M,(f"a) is a contraction operator and satisfies the properties:
MM (152) =1, (24)
A1 -z) L&)

MT(L)\,C')(t; ;1;) =z — nt2 L%a)()\) nt 2 s (25)
(o) (2. ) — g2 4. 2A(n = Da? = (n =Bz — 9 LTEV )
Mn (t 5 ) + (n ¥ 2)(n + 3) Lsz,a)(A)
bt —dnz -2  N(1-2)? L) (2.6
(n+2)(n+3) (n+2)(n+3) L&) :6)

The proof depends on (1.2), the integral

1 B (k+1)---(k+20) f
/0 prk(t)t'dt = i Dmt2)  (ntftD)’

and elementary calculations.

Using Lemmas 1 and 2 and the Korovkin Theorem about linear positive operators,
we get Theorem 1.

To obtain a result stronger than Theorem 1, we need to calculate M) ((-—2)%2)
for i = 3,4. The following lemma is useful in the computation and is easy to prove.

Lemma 3. For j € N, we have

i (}) HE =0 =t - =n(n= 1) = d)e*, @)

(=N mta
Z .) (n i k) k(k—1)--- (k= 5) = (-X)THLEHED (). (2.8)
=0

From (2.5) and (2.6), we have M\ ((+ = 2)%2) = o(£). Using Lemma 3, we
can obtain an explicit expression for M\ (3, z) and M a)(t4 z) after some cum-
bersome calculations. We thus obtain

M(’\ o (t3 ) 1 Z (a+J) ()‘)
(n+2)(n+3)(n+4) L(a) ()

(2.9)

where A, j(x) are cubic polynomials in z and of degree 3 — j in n. Similarly, we can
obtain

LED )

5 7(;,) o (2.10)

4
(M@ (4. ) — 1 in .
M8 2) (n+2)(n+3)(n+4)(n+5) ,;)/\]Bn’]( )

where By, j(x) are polynomials in z of degree 4 and of degree 4 — j in n. It is easy to
see from the above that

1 3 S I
(n+2)(n+3)(n+4) ]go on. (2)A L&)

MM ((- - z)%z) = (2.11)
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and
(a+J) ( )

(n+2) (n+5) Z dng(@)N N

MM((- - 2)%z) =

where ¢, j() are cubic polynomials in z and dn,j (x) are quartic polynomials in z.
From these, we can obtain

MM ((- - z);z) =0(n"%), j=3,4. (2.12a)
‘We shall prove
Theorem 2. If f € C3[0,1] and MM (f;x) is given by (2.1), then we have

A1 = z)Ll D 1
) - p+ 20Dt B L pip)
(n+2)Ln"(X) n+ Loo[0,1]
(a+2) (a+1)
LI - Y L B
n L${")()\) n lea)()\) / o [0,1]

(2.13)
where C1, Cy are constants independent of n and f and P(D) = 4 (z(1 — z)) 4.

For A = 0, this gives Voronovskaja’s Theorem for the Durrmeyer operator.

Proof. Applying the operator M to both sides of Taylor’s expansions of f(t)— f(x)
yields

MM (f;2) = f(z) = MO ((- = 2);2) f'(x)
+ MM (- - 2)%2) (2) + In(f3 )
where
In(f;z) = M (Ra(+);z), Ru(t):=13 / (t = v)* " (v) dv. (2.14)
From (2.5) and (2.6) in Lemma 2, we have upon simplifying
M) ((- = o)) f'(a) + 5 5 MO((- = 2)%2) (@)
_P(D)f Ml-z) L("‘“)(/\) v [ 1—6z(1—2)
St 1@y Ot )[(n+2)(n+3)
2@ -DE@-DIEP0) | R -2 0) }
(n+2)(n+3) L)) 2n+2)(n+3)LP0)]
It remains to estimate |I,(f;z)|. From (2.14), we have
o< Wl 1) S~ (nt e p@) (A kg ek It—=f
) < VG S (Cr )0 (2)eta-or* [ oy L o

Using the Schwarz inequality first on the integral and then on the sum and using
(2.12a), we obtain

" 1/2 "
() < L [ (-~ asa)u@ (- - )] < I O(ns—l/z)

This completes the proof. O
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3. The operator PM

We now define the operator P,ﬁ*"*) which maps polynomials of degree m into polyno-
mials of degree m + 1 except when m = 0. For any f € C[0,00), we set

(>‘ @ (fiz) :=n(l+2)"* L exp(Az) ZL(O‘)(A (l-l— )u/ooo e (nt F()dt
v=0
(3.1)

where A < 0 and L,(,a)(A) is the Laguerre polynomial of degree v. Our definition is
based on the following identity:

d z
L& (A (

(Szegd [9, p. 100, (5.1.9)]). It is clear from (3.2) and n f;° e‘"t(—%l: dt = 1 that
P,(,A’D‘)(l; z) = 1. Differentiating (3.2) with respect to z and simplifying, we have

> VLI M) ( o

v=0
This shows that

x)u = (1+z)*le™e, (3.2)

m) ’ = e (14 2)% M z(a+ 1) — Az(1 + 2)]. (3.3)

ar 1+2z)(1- )

PX () = — —z asn— oo if % — 1. (3.4)

From now on, we shall take @ = n and write P,({\’") as P). Again, we can evaluate
P)t?; ) in a similar way. Indeed, we obtain

PMt% ) = %{(n+ Dz — Az(1+ w)}2

S ERR R (RS RN L) S CE)

This shows that P)(t?;z) — 2% as n — oo. By Korovkin’s theorem, it follows that
if f € C[0,00), then P)(f;x) converges uniformly to f(z) on any compact subset of
[0,00).

It is easy to see that P is a contraction operator. We now shall prove the following
Voronovskaja-type result for the operator P..

Theorem 3. If [a,b] is any closed interval in [0,00) and if f € C?[0,00), then

PA(fia) - flo) - SR |

C
<— 17| Lo [0,00) -

oola,b]

Proof. Using (3.3) and (3.4) and the Taylor expansion, we now can see that

PA(fsa) ~ f(z) - LD

n(1+4z)~"1 MZL(") )\)<1+w)u/oooe_"t%/:(t—v)f”(v)dvdt

v=0
1
< Iz wpo,00 Pa (- = )% 2).
Using (3.2), (3.3), and (3.5), we obtain ||[P2((- — 2)%2) ||t ey < <. O
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Remark. An operator analogous to P, is obtained when A = 0, on setting

Rt er e () (12

u=0

x /Ooo (n : “)tl‘(l )R dt

The above operator is very close to the operator defined by Gupta in [6]. It can be
easily seen that

- ~ 2z +1 6nz? +4(n+ 1)z +2
PX(Liz)=1, Pt;z)=zx+ — = D(n=2)
From these formulae, one can easily prove the following Voronovskaja-type result for
the operator P for a closed interval [a, 8] in [0, 00):

~ 2z+1 ,
P - f - 2

Pl(t%2) =2"+

< —llf"“Lm[o,oo)-
Leofat] T

4. The operator S5
For a fixed 8 > 0, we shall denote by Lo [0, 00) the set of all functions satisfying
11l Leo 510,00) = esssupte[o,oo)\f(t)e—ﬁt\ < oo,

If f(t) € Loog[0,00) and aﬁ’k(x) is given by (1.5), we define
e =n Yo [ e ()
=0 0

It is easy to see that S’\ is a positive linear operator. We prove below some properties
of S

Lemma 4. The following relations hold for S)(f;z):
SM1;2) =1, Sit;z) =z + /\\/_étanh(m\/n:c) + %, (4.2)

§\(%i0) = ﬁi‘l_)”i + 2 - (2/\ + ;/\) \/% tanh(2\v/nz),  (4.3)

s, (3)2 +9)x (15,\2+24) 6

2n? nd (44)

Sp(t% ) =

3AL5/2 (203 +33)\)z3/2 33\ z!/2
+tanh(2/\\/nw)( 7 +( 2n\/ﬁ) n2\/_)

. 2 3 41 49)2 2) 2 9
S,),‘(t4;m)=m4+6/\ + 16z +(/\ +42)0% 4+ 72)z +( 07/\2+96>£3

n2
24 4AzT/2 (403 4 450)25/2
+— +tanh(2)u/m:)[ it o~
4 (1323 +123))z/2 + 5T\/T
n?vn ndvn |’

(4.5)
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Proof. From the identity (1.3), we get Y p—q ap ,(x) = 1 which implies (4.2). Differ-
entiating (1.3) with respect to x, we get on simplifying

i ko . (z) = nz + Av/nz tanh (2\/nz). (4.6)
k=0 .

Since SA(t;z) = n Y2 gad (z) B = L4 Lsnee ko, (), we obtain the second

formula in (4.2). Differentiating (1.3) twice and simplifying, we obtain (4.3). Similarly

we get (4.4) and (4.5). d
Lemma 4 leads easily to

Lemma 5. For 5’,};( f;z) given by (4.1), we have
Sa((- — x)iz) = /\\/gtanh(Z)\\/ﬁ) + %, : @)

~ N+2 TNz 2
A p— 2. = _
Sp((- = z)%2) —a+ o tanh(2\y/nz) + 5 (4.8)

. A3+ 6))2%/2
S (- - z)%2) = (——%——tanh(%\ﬁﬁ)

(1502 + 12)z | 33\z!/2 6
+ 53 + 3 7 tanh(2/\\/nx)+n3, (4.9)

< (A 41202 +12)22  (13)3 + 90N)23/2
Sa((- = o)) = = + —T tanh (2A/nz)

9(23)24+32)z | 57\ [z 24
R e e} —tanh (20v/nz) + —. (4.10)

Remark. The operator S is not a bounded operator from Lo, g[0, 00) to itself. To
see this, we consider the case when f(z) = €”® which belongs to Lo [0,00). Then
using the relation (1.3), we have

00 k
~ n n
852 = 725 L) (725)

_n < npBz cosh (2/\, / :i%) 1l
B R n—ﬁ) cosh(2\y/nz) (4:11)
Thus we have
206,/ 2L 1+ exp (—4),/222
A/ p. —Bz _ n ,621,' n—pg p ( 'n.--ﬂ) .
Salf3o)e _n—ﬂeXp<n—ﬁ+ﬁ+m) Treonvm  —A@)
(4.12)

Since the right side is bounded for fixed z, but is not so when z € [0,0), it follows
that 3 (f;2) ¢ Loo,s(0, 00).

Lemma 6. If 5)(f;x) is given by (4.1) and if f € L 3[0,00), then we have for any
e>0

15203 2) | w1000 S COS B l2m p0,00) (4.13)
where C(\, B) is independent of n and f.
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Proof. From (4.1), it follows that

152 (£;2)e™ T2 | < || llL pios0re” PFn D" adi(2) / et D" ot gy
o, ) 0 kl

k=0

S CNBNS N zoo pl0,00) (4.14)

where C(), 8) is the bound on the half real line of e=**A(z), A(x) being given by (4.12).
O

We now shall prove a Voronovskaja-type theorem for S} (f;z).

Theorem 4. If [a,b] is a closed interval in [0,00) and if f € C3[0,00), then for
SA(f;x) given by (4.1), we have

~ / 2 - 1"
S -s-L- G Bz \f tanh(2\y/77) (f + L)

< ;IIf”IILw[o,oo) + —n3 1 w000 (415)

Lo [a,b]

Proof. Applying 5’,’,‘ to the Taylor expansion of f, we obtain
Q Q / 1s 1"
Sa(fie) = £(@) = Sa((- = 2)i2) £(2) + 55(( = 2)%2) (@) + Tu(f32)  (4.16)

where

oo oo k t — )2
L(fi2) =nY " o 4(2) /0 ont (’:? / (t 2”) £ (v) dvdt. (4.17)
k=0 oUe
Clearly |I,,(f;z)| is bounded from above by

B ection tate) [ e G ap

_—”f/"”Lw[ooo){S ((+ = z)? } {S’)‘( pars )}1/2

< C”f”'”Loo[o,oo)m-
The result (4.14) follows on using (4.8) and (4.10). O

For convergence, on [0,00) we shall use the weighted Lo [0, 00) norm. We shall
prove

Theorem 5. If 3 > 0 and f"” € Lo g[0,0), then for any e >0

SV - £ - (A\)/: tanh(2Av/nz) + ) C (;\; By s

where C(A, B) is independent of n and f.

| 2oo0,00)

Loo,ﬁ'(-e [0)00)

Proof. Using Taylor’s formula and the formula (4.7), we have

SN (fi2) - f(=) = (% + A@ tanh(%/%))f’@) = Julfie)



SOME BERNSTEIN-DURRMEYER-TYPE OPERATORS 247

where
— *© (nt)* rt
Jn(fi2) = nZa;\l,k(x)/ e_"t-k—'/ (t —v)f" (v) dvdt.
k=0 0 v Ja
Note that |J,(f;z)|exp(—8 — €)z is bounded above by
1"l oo 10,00)€ (ﬂ+5)znza x)/ e "t (nt

Since

t
|t —v|efdv| dt.  (4.18)
T

t
1 1 t 1
/m |t — v|efPdv| = ZeP® <x - —) — =P 4 ﬁieﬁt
1, it follows that

k
and [ e o =

"l vl e (1) ST L
/0 e o m|t v|ePVdv dt-nﬁ z 5 5 +,82(n—ﬁ)’“+1'

Now from (4.6), we have

% Zaf‘hk(x)(k +1l)=z+ )\\/gtanh(%\/nx) + -
k=0

and
no o0 Hoi(6)) [ n2z \*
nzan k(iﬂ )k+1 = n—ﬂe sech(2\v/nz) g(_l)k_g—l%(n_ﬂ)

n ( nBz )cosh(2)\ 1’;27%)

Y] P\ = B) cosh(2Ay/nz)
Therefore, from (4.18), we get after some simplification
1 1
| T (£32)e™CH7| < || ]| 0,000~ [% + @IKn,l(ﬂc)l + IKn,z(x)lJ
where ‘
B 2 cosh (2)\ )
Kn1(@) = n— ,Be " “cosh(2\/nz) (4.19)
and
2z
K (x) — e,fL_f, COSh(2>‘ ’?—_—'3) —1-X38 EE@L an) (4 20)
w2 cosh(2\y/nz) n cosh(2\/nz)’ ’
In the following lemma, we shall obtain estimates for | K, 1(z)|e® and | K, 2(z)|e 52,
which yield our result. a

Lemma 7. For K, 1(x) and K, 2(z) given by (4.19) and (4.20), we have

Kng@lemee < SO oy, (421)
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Proof. Writing the hyperbolic cosines in terms of exponentials and simplifying, we get
_ B
Kna(2) = SA(2)

where A(z) is given by (4.12) which yields (4.21) for j = 1. For K, 2(z), we rewrite

e2Av/nz T
Kn,Z(x) = m {Sl (.’1?) + SQ(.’IZ) + )\,6\/;6_4)‘\/1%} (422)

where we set

S1(z) —exp[ﬁi ﬁ+w ynz/(n_5) ] Aﬂ\f

Vn+y/n—3
Sa(z) := exp [ /Bi 5 -2 nn_xﬁ(\/ﬁ+ \/77—_/6)] e\

Putting a := + 2’\?/—” _7://% and using the inequality 0 < e® — 1 —a < a%e%/2

for a > 0, we see that

1
|S1(z)| < §a26“ +la—

On the other hand, we can write

- [ (B _ VD)
n=B  Jntvn-p

|S2 ()

< 1 B2z _ 2\By/nz/(n - B) B2z _2/\[5'\/na:/(n—;8)
S 14+4\z/nz|n—-B Jn+vn-8 L Py vn++n—-_

T 2 n—
BRI E =

on using inequalities e* — 1 < ae® for all @ and e™® < (1+a)~! for a > 0. Similarly,

we have
‘ BA \/7 —4>\\/1T:-t_
Now notice that

- e2Vnz e Bz 2/\,8\/nz/(n )
cosh(2)\\/_) —ﬁ Vn++n—

and for any b > 0, we have

BA c(\.B) ﬂ)
= 1+4\/nz n

62)\\/11:3

cosh(2\/nz)
ePVnE C(\B)
2 cosh(2\/nz) 195 (@)] < n

from which (4.21) follows for j = 2. |

—ET

2’ <O\ B),

—ET

<
I
—

o
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