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SOME BERNSTEIN-DURRMEYER-TYPE OPERATORS 

W. Chen and A. Sharma 

To Professor Lee Lorch on his 80th Birthday 

ABSTRACT. Three Bernstien-Durrmeyer-type operators are introduced in this pa- 
per. These operators are based on the linear positive operators defined by A. Meir 
and A. Sharma that generalize the Bernstein and Szasz operators. Some approx- 
imation properties of the operators are investigated. In each case, we obtain a 
Voronovskaja-type theorem. 

1. Introduction 

Thirty years ago A. Meir and A. Sharma [8] defined two linear positive operators 
which generalize the Bernstein and Szasz operators. The first one is denoted by B^a 

(A < 0, a > — 1) and is based on the Laguerre polynomial Ln(x), a > — 1. For any 
/eC[0,l], they set 

It was shown in [2] that if / G C[0,1], then B^a(f; x) converges uniformly to f(x) in 
[0,1]. For A = 0, B^a(f'1x) becomes the Bernstein polynomial since 

Their second operator 5^ (A real) uses the Hermite polynomial Hu{x) of degree v and 
is based on the identity 

(-l)fcff2fc(iA) ,_,fc 

(2fc)! 
£ ^ ^y   ; {nx)k = e™ cosh 2A ^ • (1.3) 
fc=0 

For any / E C[0, oo), they set 

where 

Sn(/;z):=£c4(z)/  -  '    Areal> M 
fc=o vri/ 

c&ix) := e— sech(2A y^) (-l)fe ^^ {nx)k. (1.5) 
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240 CHEN AND SHARMA 

Our objective is to define two Durrmeyer-type operators based on the operators 
B^a and S*. We denote our operators by M91

A'Q:) and 5^, respectively. The pre- 
cise definition of MAA,Q:) is given in Section 2. The operator P7l

A,a) is the subject 
of Section 3. In Section 4, we treat the operator 5*. In each case, we obtain a 
Voronovskaja-type theorem. 

The Bernstein-Durrmeyer operator was introduced by Durrmeyer [5] in 1967 as 
a certain modification of the Bernstein operator. Some approximation properties of 
this operator were investigated by Derriennic [4]. This operator has some very nice 
properties, and the strong converse inequality of this operator was discussed in [1]. 
Similar modifications of Szasz operators were introduced and studied by Mazhar and 
Totik [7]. In [3], Chui, He, and Hsu examined the asymptotic properties of certain 

positive summation-integral operators. The operator Mn (f;x) can be considered 
as a special case of the summation-integral operators in [3]. 

2.  The operator M7l
A'a) 

For any / G C[0,1] and for any A < 0 and a > -1, the operator M71
A'Q!) maps C[0,1] 

into 7rn and is given precisely by 

(2.1) 

where £«,*(*) = (f)tk(l-t)n~k and L^(A) defined by (1.2) is the Laguerre polynomial 

of degree n. Since A < 0, Ln (A) > 0 and Mn is a linear positive operator. For 

A = 0, Mn      (f;x) is Mn(/;#), the Durrmeyer operator. We shall prove 

Theorem 1. IffG C^, 1], then Mn (f;x) converges uniformly to f(x) in [0,1] as 
n —> oo. 

The proof of this theorem will be based on the following two lemmas. 

Lemma 1 ([8]). For a given X <0, we have 

1   L<£?H\) 
v^   4a)(A) 

Lia)(\) 

For a proof, see Meir and Sharma [8]. 

= 0(1) as n -> oo (2.2) 

= l + CU-y=J, asn-^oo. (2.3) 
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Lemma 2. Mn       is a contraction operator and satisfies the properties: 

MiA-">(l;i) = l, (2.4) 

„^»((;l) = I_MLif)^w + i^£, (2.5) 
" ' n + 2      L^)(A)        n + 2 (     ' 

"      V       ^ (n + 2)(n + 3) LW(A) 

6(n + l)a:
2-4nx-2        A^l-x)2    L^jX) 

(n + 2)(n + 3)       + (n + 2)(n + 3)   LW(A)   ' l ^ 

The proof depends on (1.2), the integral 

L o PnMJ (n+l)(n + 2)...(n + ^+l)' 

and elementary calculations. 
Using Lemmas 1 and 2 and the Korovkin Theorem about linear positive operators, 

we get Theorem 1. 
To obtain a result stronger than Theorem 1, we need to calculate Mn ,c^ ((• — x)1] x) 

for i = 3,4. The following lemma is useful in the computation and is easy to prove. 

Lemma 3. For j G N? we have 

J2 (?) k(k-l)---(k- j)xk(l - xT-k = n(n - 1) • • • (n - JV
+1

, (2.7) 
fc=o ^ ' 

^ HT- ("-*) Mfc-D-^-J^M^^iV^A). (2-8) 
fc=0 

From (2.5) and (2.6), we have Mn ((• — a:)2;^) = o(^). Using Lemma 3, we 

can obtain an explicit expression for Mn (t3]x) and Mn ia\t4;x) after some cum- 
bersome calculations. We thus obtain 

1 3 L^^tX) 
M^it3-^) = 7 oW       oW  Y X'Anjix)    n;\ ^ ) (2.9) n      y       >      (n + 2)(n + 3)(n + 4) ^        n^ )   LW(A) V     ; 

where AnjJ-(a;) are cubic polynomials in x and of degree 3 - j in n. Similarly, we can 
obtain 

1 4 Z/^VA') 
M^)(t4;^) - 7 — -^ —  YXBnAx)    n;{ V ;        (2.10) 

(n + 2)(n + 3)(n + 4)(ri + 5) ^       n'A ;   ^(A) V
       

; 

where Bnj(x) are polynomials in x of degree 4 and of degree 4 — j in n. It is easy to 
see from the above that 

M^ - '*•) - („ + 2)(„ + 3)(» + 4) g^W*' «        <2'11) 
i=o 
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^«•-«**>- (■+»)-(»+5) g *-WA( iP^    (2 12) 

where cnj(x) are cubic polynomials in x and dnj(x) are quartic polynomials in x. 
From these, we can obtain 

Mix'a\(--xy;x)=0{n-i),    j = 3,4. (2.12a) 

We shall prove 

Theorem 2. If f e C3[0,1] am* M^a){f;x) is given by (2.1), tten we have 

M^'aHf) - f + A(1 ~ a:-)L"-1   (A) f'--J—P(D)f 

<r /Aa^a)(A)     lAILJ-V^A)      l^||/w| 
22     r(a) ^   Lr;(A)       ^   Ua;(A) 2     r(a)/ n^ 

Loo [0,1] 

i     ^2     11////1 
Loop,!]        n3/2   \\J      IlLoop,!] 

(2.13) 

ly/iere Ci, C2 are constants independent of n and f and P(D) = ^(#(1 — x))4-. 

For A = 0, this gives Voronovskaja's Theorem for the Durrmeyer operator. 

Proof. Applying the operator MA      to both sides of Taylor's expansions of f(t) — f(x) 
yields 

MiX'aHf;x) - f{x) = M(^)((. - x);x)f(x) 

+ ±Mix^((.-x)2;x)f"(x)+In(f;x) 
where 

In(f;x) = Mix'a)(Rx(-y,x),    Rx(t) := 5 / (t-v)2f"'(v)dv. (2.14) 
Jx 

From (2.5) and (2.6) in Lemma 2, we have upon simplifying 

M^((. - xy,x)f'(x) + ^M^((- - x)2;x)f"(x) 

P(D)f     A(l-a;)4
a_+

1
1)(A) 

(^2) ZF^—^w+^w 
1 - 6x(l - x) 

_(n + 2)(n + 3) 

2A(2* - l)(a: - 1) ^(A) +   A2(l - xfL^X) 

dt. 

(n + 2)(n + 3)      L(«) (A)        2(n + 2)(n + 3)L^)(A)J' 

It remains to estimate |/n(/;:r)|. From (2.14), we have 

Using the Schwarz inequality first on the integral and then on the sum and using 
(2.12a), we obtain 

II f,ff\\ r 
|/n(/;aOI < ^[Mi^ii- - x)2;x)Mix^((- - x)*;x) 

This completes the proof. 

J      -     6 
/   1   \ 

■0(-372     • 

D 
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:>(*,<*) 3. The operator Pn 

We now define the operator Pn       which maps polynomials of degree m into polyno- 
mials of degree m + 1 except when m = 0. For any / G C[0, oo), we set 

Pi^\f;x) ^nCl + x)—1exp(Aa;)f:4a)(A)(r^)l/^00e-"t ^ /(*)* 

(3.1) 

where A < 0 and Lia'(\) is the Laguerre polynomial of degree v.  Our definition is 
based on the following identity: 

OO / \   v 
a+l— Xx 

°°„-nt(nt£dt  = 

(3.2) 

1 that (Szego [9, p. 100, (5.1.9)]).   It is clear from (3.2) and n/0   e 
PnX'a\l;x) = 1. Differentiating (3.2) with respect to x and simplifying, we have 

Y, ^4a)(A) ( ■^— )   = e-Xx(l + x^lxia + 1) - Aa:(l + x)]. (3.3) 

This shows that 

P^a){t\x) = h  -»• x    as n -^ oo if ► 1. (3.4) n      v     /       n n n 

From now on, we shall take a = n and write Pn       as P*. Again, we can evaluate 
Pn(t2;x) in a similar way. Indeed, we obtain 

P*(t2;x) = ^{(n + ^x - \x(l + x)}2 

+ 4{2 + x(x + 4)(n + 1) - 2A^(a: + l)(a: + 2)}. (3.5) 

This shows that P^(t2;x) -> x2 as n -> oo. By Korovkin's theorem, it follows that 
if / G C[0, oo), then Px(f;x) converges uniformly to f(x) on any compact subset of 
[0,oo). 

It is easy to see that P* is a contraction operator. We now shall prove the following 
Voronovskaja-type result for the operator P*. 

Theorem 3. //[a, b] is any closed interval in [0, oo) and if f G C2[0, oo), then 

p^)-m-{l+x){'-Xx)nx) c 
Loo [a,6] 

^ — H/'lUootCoo)- 

Proof. Using (3.3) and (3.4) and the Taylor expansion, we now can see that 

(1 + s)—V* f; 4n) (A) (j^) " J™ e-nt^f j\t - v)f"(v) dv dt 

<|ll/lwo,oo)i>„A((--z)V). 

Using (3.2), (3.3), and (3.5), we obtain ||i^((- - a02;a;)||Loo[Oit] < %. n 
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Remark. An operator analogous to P^ is obtained when A = 0, on setting 

The above operator is very close to the operator defined by Gupta in [6].  It can be 
easily seen that 

^(MHi,   pn
0(^) = , + ^,   pwV;^)-x2 + 6nx; + 41t

+l)! + 2. 
n — 1 (n — l)(n — 2) 

From these formulae, one can easily prove the following Voronovskaja-type result for 
the operator P° for a closed interval [a, b] in [0, oo): 

n — 1 
C 

<   —ll/'lUootCoo)- n Loo[a,b] 

4. The operator S* 

For a fixed /? > 0, we shall denote by Loo^O, oo) the set of all functions satisfying 

ll/IUoo^oo) = esssupt6[05Oo) /(*)e- •Pt < 00. 

If /(t) G ^oo,/?[0,oo) and a^fe(a;) is given by (1.5), we define 

$*(/;*) :=nf;<fc(a;) Te"^^ /(t) & (4.1) 

It is easy to see that S* is a positive linear operator. We prove below some properties 
of S^. 

Lemma 4.  The following relations hold for §„(/] x): 

5^(1; x) = 1, Sjlfcx) = x + AA/-tanh(2Av^) + -, 
V n v /      n 

S>(t2;x) = x2+ (A2 + 4)a; + A + f2Ax + 1^) ^tanh(2AV^), 
n nz      \ 2nJ\jn x ' 

SW;x) = **+ {3X2 + 9)X2 + 11^+24), + 6 
2n2 

(4.2) 

(4.3) 

(4.4) 

+ /SAx8/2  ,  (2A3 + 33A)x3/2     33A x1/2 

2n\/n 

5\n4.   x_   4 ,  6A2 + 16a:
3  ,  (A4 + 42A2 + 72)a2      ^207.,     „_\ x 

n 
+ + 

4   n2^ 

A2+ 96 

24 
+ — + tanh(2A\/nx) 

4A^7/2      (4A3 + 45A)^5/2 

v^ iv^ 
(13A3 + 123A)a;3/2     STA^/i 

n2y/n n3y/n 
(4.5) 
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Proof. Prom the identity (1.3), we get £fcLoan,/c(x) = 1 which implies (4.2). Differ- 
entiating (1.3) with respect to x, we get on simplifying 

oo 

zZ kan,k (x) = nx + ^Vnx tanh (2 Xy/nx). (4.6) 
fc=0 

Since Sfax) = n£r=o««*(*)^ = ^ + ^Er=o*<fc(^). we obtain the secoild 

formula in (4.2). Differentiating (1.3) twice and simplifying, we obtain (4.3). Similarly 
we get (4.4) and (4.5). □ 

Lemma 4 leads easily to 

Lemma 5. For 5^(/; x) given by (4.1), we have 

S*((- - a;);a;) = AJ^tanh(2AVni) + K (4.7) 

S*((- - xf;x) = ^X+ ^tanh(2Av^) + |, (4.8) 

^((. - ^)3;x) = (*3+y/2
tanh(2V^) 

(15A2 + 12)a;     SSAx1/2      , /„,  /—v  ,   6 ., nS 
+        2n2 +1^^ tanh(2AV^) + ^ (4.9) 

-A,.           4    .      (A
4 + 12A2 + 12)x2  ,   (13A3 + 90X)x3/\      (      r-. 

5„((- - x)4;x) = ^ ^ — + ^572 tanli(2AV^i) 

9(23A2 + 32)x     57A   fx ^   ,/n.   ,—, ,  24 ,A „. 
+ 4n3 + -^y'-tanh(2A^) + -4. (4.10) 

Remark. The operator S* is not a bounded operator from LOQ^O, OO) to itself. To 
see this, we consider the case when f(x) = e^^ which belongs to Loo^fO, oo). Then 
using the relation (1.3), we have 

k OO / \ 

„ exp(^y°^yg) 
n-/3    y\n-(3)   cosh(2Av^) 

Thus we have 

^(/,x)e       -ri_/3exp^n_/3 + v_ + v_?j        1 + e_4V^ -AW- 

(4.12) 

Since the right side is bounded for fixed x, but is not so when x G [0, oo), it follows 
that £*(/;£) ^Loo^oo). 

Lemma 6. If S^(f]x) is given by (4.1) and if f G Loo^O, oo), then we have for any 
e>0 

ll^(/;z)||w+£(o,oo) < C(A>i9)||/||Lo0i/,[oloo) (4.13) 

where C(A,/3) is independent of n and f. 
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Proof. From (4.1), it follows that 

|^(/;x)e-W+«)-| < H/IU^^e-^nfx^) He^^e^dt 
k=o Jo fc- 

<C(A,i9)||/||Loei<,[o,oo) (4.14) 

where C(X, j3) is the bound on the half real line of e~sxK(x), A(x) being given by (4.12). 
□ 

We now shall prove a Voronovskaja-type theorem for S^(f;x). 

Theorem 4. // [a, b] is a closed interval in [0,oo) and if f € C3[0, oo), then for 
S^(f;x) given by (4.1), we have 

S'M " ' " £ " l-^r1'" - Vft-MNVS) (/- + £) 
Loo [a,6] 

<   ^ll/"IUco[0,Oo) + ^2 liriUeotCoo).        (4-15) 

Froo/. Applying 5^ to the Taylor expansion of /, we obtain 

S!M;x)-f(x) = §*({■ - xy,x)f'(x) + ^((- - x)2;x)f"(x)+In(f;x)    (4-16) 

where 

InU\*) '.= n"t<k(x) r*-nt^r I  {-Lir^r(v)dvdt (4.17) 
fc=o Jo *•    Jx       Z 

Clearly |/n(/;x)| is bounded from above by 

f uriiLootcoo) E <, w jf00 e-*^\t - xfdt 

< \\\n\L„lo,ao){s*((- - ^)2;^)}1/2{^((. - a;)4;x)}1/2 

<C 11 /'"I IL^ [O.oo) ^3/2. 

The result (4.14) follows on using (4.8) and (4.10). □ 

For convergence, on [0, oo) we shall use the weighted Loo,/3[0,oo) norm. We shall 
prove 

Theorem 5. If ft > 0 and f" G Loo,/3[0, oo), then for any e > 0 

^A)(/)-/- (^tanh(2Av'^) + -y 

where C(\,(3) is independent of n and f. 

Proof. Using Taylor's formula and the formula (4.7), we have 

S£\f\x) - f{x) - (±+\<f*Unh(2\V^))f'(x) = Jn(f;x) 
\ IL y    ft J 

Loo.fl+ep.oo) n 
^  11/    IlLoo^lO.oo) 
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where 

Mf;x):=ny£a^k(x) H e'nt^ f {t - v)f"{v)dvdt. 

Note that | Jn(/; x)\ exp(-/3 — e)x is bounded above by 

t(nt)fc' ^ lin^Mo^e-^^n^U-) r^^T   / \t-v\e*>dv dt.       (4.18) 

Since 

cPx 

0 
1\      t fix 

[X    (3)     (3e    +Pe 
a0t 

and /o00 e-^^e^dt = (n_nL+1, it follows that 

f-^ir^hSB) 1\     e^Jfe + l       1 
■ + ■ 

Now from (4.6), we have 
.     OO I— 

- ^T a^k(x)(k + 1) = x + AW - tanh(2A\/nx) + - 
k=0 * 

and 

kH2k(i><) ( n2x ^k 
nS>^auk{x)i ^TTT = -e nxsec\i{2\^/nx)y^(-1)      .fXI    . 

c0sh(2Ayg) 
;exP 

f npx_\ 
\n-p) n - 0 ^"^ \n — PJ  cosh(2Av/ni) 

Therefore, from (4.18), we get after some simplification 

where 

eX^ + ^\KnAx)\ + \Kn,2{x) 

K, n'1(X>~n-/3 cosh(2Av^S) 

and 

Kn,2(x) = e 
cosh(2Av/n^) V n cosh(2Av/nx)' 

(4.19) 

(4.20) 

In the following lemma, we shall obtain estimates for \Kn^(x)\e~£X and \Kn^(x)\e~£X, 
which yield our result. □ 

Lemma 7. For iirn,i(a;) and Kn^{x) given by (4.19) and (4.20), we have 

C(\p) 
\Knij(x)\e-ex < 

n 3 = 1,2- (4.21) 
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Proof. Writing the hyperbolic cosines in terms of exponentials and simplifying, we get 

Knil(x)= ^Aix) 
n 

where A (re) is given by (4.12) which yields (4.21) for j = 1. For Kn^{x), we rewrite 

#71,2 0*0 = 

JlX^/nx 

2 cosh(2Av/n5) 
isiOs) + 52 (x) + AiS^e-^^^ J (4.22) 

where we set 

5i(a;) := exp 

52 {x) := exp 

/?2x       2Xp^nx/(n - (3) 

n- (3 y/n + y/n- (3 

(32x 

l-A/3 

-2A/^(^^+^/;^:^) _ e—^\/nx 

Putting a := |^ + ^^"^^ and using the inequality 0 < ea - 1 - a < a2ea/2 
for a > 0, we see that 

|5i(a:)|<|aV + a-Xf3 

On the other hand, we can write 

\S2(X)\ 

< 

-4Xy/rix 

1 

P2x       2X^nx/(n-p)\     l 

1 + 4Av/nx 

(32x       2\(3^nx/(n - (3) 

n- (3        y/n + y/n- (3 
exp 

(32x       2X(3y/nx/(n - (3) 

n- (3        v/^ + \/n- (3 

^c{x,P)[^+1-)^ 
I32x      2\Py/nx/(n-0J 

n- /?        y/n + y/n- (3 

on using inequalities ea — 1 < aea for all a and e 0<(l + a)   1fora>0. Similarly, 
we have 

(3\J-e-4X^ 
n 

<        /3A /i^CCA,/?) 

1 + 4Av/^5V n 

Now notice that 

cosh(2Av/n5) 

and for any 6 > 0, we have 

•"^     x.exp   ^L±2A^i^) \ 
n-/3 V^ + Vn — P 

p2\y/nx 

cosh(2\y/nx) 
xb<C(\,(3), 

2 cosh.(2Xy/nx) 

from which (4.21) follows for j — 2. 

"      e2V"      15^)1 <^^ j = l,2, 

D 
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