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Dedicated to Martin Kruskal to celebrate his 70th birthday. 

ABSTRACT. We consider the important question of the relationship between an 
"integrable" nonlinear evolution equation, a partial differential equation (PDE), 
and its stationary reduction, an ordinary differential equation (ODE). We are 
mainly concerned with "transporting" algebraic machinery from the PDE to the 
ODE. In particular, given a Hamiltonian representation of the original PDE, we 
would like to derive the Poisson brackets, Hamiltonians, etc. for the stationary 
flow. 

In this paper, we give a systematic derivation of these Hamiltonian properties, 
using an x — t reversed form of the spectral problem for the PDE. We obtain, in 
this way, the Hamiltonian structures, etc. of the PDE, but written in terms of 
the stationary manifold coordinates. These structures naturally reduce to their 
finite dimensional counterparts for the stationary flow. 

We illustrate our results with several examples, including the Korteweg-de 
Vries, dispersive water wave, and Ito hierarchies. 

1. Introduction 

When Martin Kruskal and his collaborators discovered the soliton and introduced 
the Inverse Scattering Method for solving the Korteweg-de Vries (KdV) equation, 
they opened up a whole new field which exploded into numerous subfields having 
repercussions far beyond the subject of nonlinear wave equations. One of the early 
discoveries was that the KdV equation can be regarded as a completely integrable, 
infinite dimensional Hamiltonian system [14, 23]. This gave a whole new impetus to 
the general theory of completely integrable Hamiltonian systems, (both infinite and 
finite dimensional). During the 19th Century, there had been great interest in such 
systems, but the subject fell from grace when Bruns and Poincare showed the non- 
integrability of the 3-body problem. However, following the discovery of the KdV's 
Hamiltonian properties, many new examples were found, such as the Toda lattice, 
Calogero-Moser system, and numerous partial differential equations (PDEs). At the 
end of the 1970's, two very important discoveries were made. 

1. Bogoyavlenskii and Novikov [7] showed that each of the stationary reductions 
of the KdV hierarchy constitutes a completely integrable (finite dimensional) 
Hamiltonian system. 

2. Magri [18] and Gelfand and Dorfman [15] independently developed the theory 
of "bi-Hamiltonian" systems, giving the KdV equation as a prime example. 
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The first of these is concerned with stationary flows, meaning that we consider 
solutions u(x, t) (for example) of a PDE (generally a system) which are independent of 
t. Such solutions satisfy an ordinary differential equation (ODE) (generally a system). 
In simple cases, such as the KdV equation, this is obviously a Hamiltonian system 
(even Newtonian). Generally, this is highly non-trivial and follows (in our context) 
from the Hamiltonian property of the PDE. As noted in (1) above, this Hamiltonian 
system of ODEs can actually be completely integrable. 

The "second" (local) Hamiltonian structure of the KdV equation (noted in (2) 
above) is perhaps best understood in the context of Miura's "Remarkable explicit 
nonlinear transformation" [19], which is, in fact, a Poisson map, under which the 
second Poisson bracket of the KdV equation is just the image of the single (local) 
Poisson bracket of the modified KdV (MKdV) equation. These ideas were generalised 
in the 1980s, being developed for general Lax and many other classes of equations 
[11,12,17,3]. 

In [5], it was shown that the stationary flows of the KdV and MKdV hierarchies are 
also bi-Hamiltonian. Thus, we have examples of bi-Hamiltonian PDEs whose station- 
ary flows are also bi-Hamiltonian. However, as has often been pointed out (see, for 
example, [8]), the situation is unsatisfactory, in that the relationship between struc- 
tures (such as Poisson brackets) associated with a PDE and those associated with its 
stationary reduction is rather obscure. Ideally, we would like to "transport" known 
machinery from an infinite dimensional system, directly to its finite dimensional reduc- 
tions. However, the original approach of Bogoyavlenskii and Novikov required going 
out of the Lax pair/zero curvature framework and using a Lagrangian representa- 
tion to start afresh. Whilst the Lagrangian itself is derived from a PDE Hamiltonian 
density, the resulting Poisson bracket bears no resemblance to that of the PDE. The 
situation was improved by Antonowicz and Blaszak [1], who used x — t reversal (see 
the discussion leading to equation (24) below) together with the Miura map (following 
the approach of [5]). 

In this paper, we give a systematic treatment of this problem, by starting with 
a zero curvature formulation of the given PDE in x — t reversed coordinates. Using 
techniques employed in [3], we systematically derive (from a knowledge of the zero- 
curvature representation) a Hamiltonian formulation of the PDE in x — t reversed 
coordinates (our examples are, in fact, bi- or tri-Hamiltonian). The resulting infinite 
dimensional Poisson brackets naturally reduce to their finite dimensional counterparts 
for the stationary flows. The basic approach is to rearrange the Lax or zero curvature 
equation in an appropriate way. In the case of a "generic" spectral problem, this is 
straightforward, but for our stationary flows, which are deep reductions of the generic 
case, the calculation is highly non-trivial. 

In Section 2, we briefly describe how to build Hamiltonian operators from a zero 
curvature representation, using the approach of [3, 4]. We first describe the generic 
case, illustrating these ideas with the KdV hierarchy. For the benefit of the non- 
specialist, we use the latter as a vehicle for introducing a number of "well-known" 
ideas and facts, such as Miura maps and the construction of conserved densities. This 
section also contains some important background information on stationary flows and 
the idea of x — t reversal. We refer the reader to [4] for a more formal and complete 
exposition of all these ideas. 
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The main results of this paper are in Section 3, where we show how to construct 
the Hamiltonian structure of a PDE in terms of any coordinate system on the station- 
ary manifold. The main difficulty here stems from the fact that the zero curvature 
representation is a deep reduction of the generic case. After some general discussion, 
we consider the case of the stationary KdV equation. Whilst this example is suitable 
for introducing a number of ideas, it is too special. The stationary 5th-oideT KdV 
equation is much more representative, so it is studied next in this section. 

In Section 4, we consider some systems of PDEs associated with "energy dependent" 
Schrodinger operators. In particular, we discuss the dispersive water wave (DWW) 
and Ito hierarchies. In these cases, it is possible to use the recursion operator of 
the PDE to derive a third Hamiltonian structure. Whilst this construction would be 
invalid in the stationary reduction, the resulting Poisson brackets do reduce correctly. 

2. The zero curvature representation in Hamiltonian form 

Since the early discoveries of Gardner, Greene, Kruskal, and Miura, there has been 
interest in equations with a so-called Lax or: zero curvature representation. We consider 
nonlinear evolution equations which can be represented as the integrability conditions 
of a pair of linear equations: 

ttx = tftt, (1) 

% = VV (2) 

where U and V are N x N matrices, dependent both upon the functions entering the 
nonlinear equations and upon a spectral parameter A. The integrability conditions 
are 

Ut-Vx + [U,V] = 0. (3) 

This can be interpreted as the zero curvature condition for the Lie algebra-valued 
connection defined by (1) and (2). With At = 0, this is said to define an isospectral 
flow of the spectral problem (1). For a given C/", the matrix V can be determined 
algorithmically for simple classes of A—dependence. We write (3) in the form 

Ut = (d-^dU)V   withd = dx (4) 

where (ad{7)F = [£/, V]. These can be represented with respect to some basis, with 
U = UiBi'. 

YJ Wtei = - (XIBijOi ® ej) ( Yl vkek) ^-Ys (BiJvj)e^ 
i i,j k i,j 

with e* the dual basis of e* , so that BijCi <g> ej is a (2,0) tensor whose components 
are (at most) first-order differential operators. In components, 

uu = -ByVj,    v* = gijVj,    gij = tr(eiej). (5) 

Here the matrix B (components Bij) is the Hamiltonian operator and the vector 
(vj,..., ^iv)77 is the gradient of some Hamiltonian functional. The simplest way of 
calculating this is to check the trace form tr(UtV) since 

tr(UtV) = ut.v*. 

We are mainly interested in the hierarchy of isospectral flows of a spectral problem 
with U dependent upon A and the "potential functions" in some specified way. We 
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often have polynomial dependence upon A, generating a sequence of polynomial flows, 
labeled by "times" tm: 

Utm-V(m)x+[U,Vlm)]=0. (6) 

All the examples of this paper involve second-order spectral problems, so we just 
present the case N = 2 here (see [16] for some higher order examples). 

Example 2.1 (2x2 matrices). We have 

"-(: i). "-ft _;), 
and define 

u = (6, c, a)T, v = (a, /?, 7)T,    giving   v* = (/?, a, 27):r = -8uh. 

The above formula gives 

/      0 -d + 2a     -6 \ 
(7) 

With some A-dependence of a, 6, and c, these can form blocks within larger Hamilton- 
ian structures. In [9], this is used to generate multi-Hamiltonian structures. When U 
is linear in A, we get a bi-Hamiltonian formulation. 

Example 2.2 (The linear pencil: w = A + WQ, q = q0,r = ro). This is the case of the 
generalised Zakharov-Shabat (ZS) spectral problem, which immediately gives the bi- 
Hamiltonian formulation 

ut = (Bi - XBo)5h,    Sh = (5qoh, 8rQh, SWoh)T, 

written explicitly as 

/0    -2    OV 
-A    2     0     0 

\0     0     0) 

This example is deceptively simple as a consequence of the simple dependence upon 
A. The spectral problems associated with stationary flows are deep reductions of the 
generic case and have complicated A—dependence. 

2.1. The KdV hierarchy. If, in example (2.1), we put a = 0, 6 = 1, c = |A - u, 
corresponding to the Schrodinger equation ipixx + rnpi = ^A^i, then we find 

7 = -^x,    /3 = --Oixx-(u- -X)a, (8) 

and 

ut = (Bi - ABo) a, 

where 

Bo = ifl,    Bi = ±ds 4- 2ud + ux. (9) 
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In a simple way, this has generated the bi-Hamiltonian formulation of the KdV hier- 
archy, with a — Sy/H. Taking a to be a polynomial expansion in A gives an element 
of the usual KdV hierarchy. The first three polynomial flows are Ut0 = ux and 

u^ = uxxx + §uux, (10) 

ut2 = uxxxxx + lQuuxxx + 2Quxuxx + SO^2^, (11) 

which correspond, respectively, to a(o) = 1, a:(i) = A + 2tz, and a^) = A2 + 2\u + 
2uxx + 6u2. 

The Miura map. The second Hamiltonian structure Bi is the image of a much 
simpler structure through the Miura map. By adding a parameter, we get Gardner's 
generalisation, which enables us to obtain both Hamiltonian structures and an infinite 
number of conservation laws. Explicitly, this takes the form 

u = M[v] = -vx -v
2 + ^A, (12) 

The Jacobian (Prechet derivative) of this map is defined by M'lvjw = j£M[v+ew] | 0, 
giving M' = — d — 2v. As in the finite dimensional case, the Jacobian is used to 
"transport" Poisson brackets (now infinite dimensional). Generally, with 

Vt = BSvn 

where B is some Hamiltonian operator, and u = M[v], we have 

ut = M'vt    and   6vn = (M,^5un 

where il[v] and H[u] are related by ti - U o M (mod Im<9) and (Af7)1" is the formal 
adjoint of M'. Piecing these formulae together, we get 

ut = M'BtM')1"^. 

In this way, the single (local) Hamiltonian structure of the MKdV hierarchy, —^9, 
is transported to give 

M' (-\d) (M'y = ^d3 + 2ud + ux- ^\d = Bi - ABQ. 

Each Hamiltonian functional, %[u]^ is pulled back to a functional (an equivalence class 
of functional) of v: 

n{v\ = n[M[v}}, 

and we have the mapping of Hamiltonian vector fields 

Vt = ~d8vU    *->    ut = (Bi - XB^Su-U. 

The Miura map can be used to build an infinite family of commuting Hamiltonians. 
We introduce the asymptotic expansion 

1 ^ 
t; = ~-fc + t/fc-1+^^fc-%    A = fc2, (13) 

2 i=2 
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which starts as 

V2 = UX, vs = u2 + uxx, 

V4 = (2u2 + uxx)x,   V5 = 2u3 -ul + (uxxx +6uux)x, 

and satisfies (for i > 1) 

i 

Vi+i = Vix + 2J VjVi-j, 
i=o 

so, at each level, v^+i can be solved in terms of a /oca/ functional of vi,..., v*. It is 
easy to prove that the even coefficients V2i are exact derivatives, so that 

Suv = k'1 (1 + 2UA-1 + (2uxx + 6u2) A"2 + •-•). 

If we define Tin = V2n+i, ra = 0,1,..., we get ^v = fc-1 J^^Lo ^~n&uT-Ln- Since 

(Bi - ABQ) (5n^ = -^M'a^t; = 0, 

we may define a = kSuv = X^^Lo ^~n^^n? and the mi/l flow by 

^tm = (Bi - ABo) «(m)i    «(m) = (AmaO+ 

where the subscript "+" means taking only the non-negative powers of A. This gives 
the bi-Hamiltonian representation 

Utm = Bi^Hm = Bo5uWm+i. (14) 

This bi-Hamiltonian ladder property guarantees that the Hamiltonians Hn are in 
involution with respect to both Poisson brackets. The flow (14) is the image of the 
vector field 

The first two flows and their "modifications" are 

a(o) = 1,    /3(o) = -2v        =>        ut0 = ux,    vto = vx, 

a(1) = A + 2tt, V f ^1 = u*** + 6utt*' 

/?(!) = -3Ai; + Av3 - 2vxxj \ Vtl = ^^ - 6v2vx + -A^. 
(16) 

For each flow (15), — |/?(m) is an expression in v and its x-derivatives. By substi- 
tuting (13) into (15) and equating coefficients of fc, we obtain an infinite sequence of 
conservation laws, obeyed by each member of the hierarchy 

The fluxes Tnm play the role of conserved densities when we consider the x—tm reversal 
in later sections. The above discussion of the Miura map and its uses is very important 
for what follows. These ideas and methods have a wide range of applicability in the 
theory of integrable systems (see [4] for a review). 
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Stationary reductions. Bogoyavlenskii and Novikov [7] used a generalised Legendre 
transformation to write the stationary flows of the KdV hierarchy in Hamiltonian form 
and then proved complete integrability. In [5], the Miura map was used to construct 
a second Hamiltonian structure, and in [1], the equations were viewed with x and t 
reversing their roles. 

The rat,l-stationary flow in the KdV hierarchy is defined by 

utm = ^SuHm+i =0,    m > 1, 

which is in the form of a generalised Lagrangian equation (see the Appendix) 

Ou£"m+l = 0>      £m-t-l ^ rlm+l ~~ CmU. 

Remark 2.1. Not all operators have such a simple kernel. For the KdV hierarchy, 
Ker BQ = 5u(cii), but Ker Bi is not so simple. For Bi, however, it is possible to 
extend the space of variables in order to achieve this [6]. Generally, constants such as 
c above arise from the kernel of the relevant Hamiltonian operator B (see the examples 
of Section 4). 

It is possible to write these Lagrangian equations as an m-degrees of freedom canon- 
ical Hamiltonian system. If we take Cm as a dynamical variable, then the Poisson 
bracket is degenerate, with cm as Casimir: 

tf■»>= If7*IT = WFWs), J=(-im  o  o oxi      OXJ y  0        o     Qj 

where Im is the m x m unit matrix. Bogoyavlenskii and Novikov [7] showed that this 
Hamiltonian system is completely integrable with first integrals given by the fluxes of 
the Hamiltonians Hi,..., Tim'. 

0 = rLktm = Fkmx      AJ = 1, . . . , 772, 

where the first of these is just the equation, which is an ODE of order 2m. This is 
used to eliminate higher derivatives from the fluxes Fkm, which then can be written 
as functions of the variables {quPi, cm): Tkm = ^fc(^jPij cm), fc = 1,..., m. The later 
fluxes become functionally dependent upon fti,..., /im. Since {Hi^Hm} = 0 for all 
elements of the KdV hierarchy, the stationary manifold is invariant under the action 
of the flows. The first components of each of the commuting Hamiltonian flows of the 
stationary flow are precisely 

utk = -d5Hk+i,    A; = l,...,ra-1, 

when written in terms of the stationary manifold coordinates, since qi = u. 
The Miura map between the KdV and MKdV equations induces a diffeomorphism 

between corresponding stationary manifolds. The fluxes/Hamiltonians for the station- 
ary flows are calculated directly from 

with cm given as a differential polynomial in v. Thus, substituting the expansion for 
v into cm, we directly construct the fluxes as coefficients in the k-expansion of cm. 
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Furthermore, it is possible to use the Miura map to construct the second Hamiltonian 
structure for the stationary flows. 

Example 2.3 (The stationary KdV equation). The stationary KdV equation (which 
defines ci) is 

2uxx + 6u2 = ci, (17) 

with Lagrangian C given by £ = 2us -u*— ciu and canonical coordinates 

q — u,    p = -2ux,   -ci, (18) 

ci being the Casimir of the degenerate canonical bracket. The Legendre transforma- 
tion gives 

he = ciq - 2q3 - -p2, 

which is the flux oiHi^u2. 
The Miura map induces the diffeomorphism M given by 

p = -ci + 4g3 + 2qp - 3Ag5 (19) 

ci = \p2 - 2q4 + 2^! + 3\q2 + ^A2, 

relating (17) to the stationary MKdV equation 

-2vxx + 4v3 - SXv = ci, (20) 

which has Lagrangian £ = v2 4- v4 — civ — |Av2 and canonical coordinates 

q = v,    p = 2vx,    ci. 

The canonical Poisson brackets between the modified variables 

{&P} = 1» ■ {$,2i} = {p,ci} = 0 

induce 

{9,p} = -2g-A,     {^0!} = -^    {p,c1} = -2c1 + 12g2. (21) 

This is a non-canonical Poisson bracket for the stationary KdV equation. In fact, it is 
a one-parameter family of Poisson brackets; the coefficient of A is just the canonical 
bracket, while the remaining part is the second bracket [5]. This proves not only that 
each coefficient is independently a Poisson bracket, but also that they are compatible. 

The variable ci is a Casimir for the degenerate canonical bracket with its level 
surfaces being symplectic leaves. The symplectic leaves of the second Poisson bracket 
are different, being the level surfaces of he, while ci now generates the stationary KdV 
equation. 
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Reversing the role of x and t. The KdV equation (10) defines a flow on the infinite 
dimensional space with coordinates {u^ux^uxx^...) and evolution parameter t. Since 
we are interested in the stationary flow, we consider the KdV equation (a PDE) as a 
special flow on the infinite dimensional space with coordinates (q,p, ci, qt,Pti cit, • • •) 
where g, p, and ci are defined by (17)-(18), and with evolution parameter x. We now 
must give the first three components of this flow: 

In [1], this flow was shown to be Hamiltonian, with a 3 x 3 matrix Poisson bracket, 
which reduces to the stationary case when the potential functions are independent oft: 

(22) 

where this last vector is just 8S(ciq — 2qs — jp2) where Ssh = (5qh, Sph, <5Cl h)T denotes 
the gradient of h with respect to the stationary coordinates. This could have been 
done in any coordinate system, generally producing a non-canonical Poisson bracket. 
However, with the same canonical variables as before, the equation took "canonical" 
form. 

Similarly, the MKdV equation (see (16)) can be written 

= BSsh (23) 

where h = qci — q4 4- \p2 + | A^2, and Sg denotes the gradient with respect to the 
modified stationary coordinates. 

The Miura map (19) is only changed by —2qt in the definition of ci. As shown in 
[1], the above bracket for the MKdV equation then is transformed to 

0 -2q dt-p    \ /0     1     0\ 
2q -2ft 12q2 - 2ci      - A    -1    0      0      . (24) 

Kdt+p    2cx-\2q2    A(qdt + dtq)) \Q     0    2ft/ 

These define Poisson brackets for the full KdV equation written in terms of the sta- 
tionary manifold coordinates and clearly reduce to those (see (21)) of the stationary 
equations when the potential functions are independent of t. 

Such x — t reversed flows and Poisson brackets also have been considered in [13, 20]. 

3. The x — t reversed spectral problem 

The above derivation of (24) was ad hoc, suited only to simple examples. We now 
fit our stationary flows into the scheme described in Section 2 and thus treat them 
as isospectral flows. In so doing, we give a systematic construction of Hamiltonian 
structures, Hamiltonians, and time evolutions of the "wave functions" (of the associ- 
ated spectral problem). For the latter, we give a formula in terms of gradients of the 
corresponding Hamiltonians. In this section, we mainly present this in the context of 
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the KdV hierarchy, but start with some general statements. Other examples are dealt 
with in the next section and in [16]. 

Consider an equation in some hierarchy with zero curvature representation (6). For 
simplicity of notation, we restrict attention to scalar equations, but multi-component 
examples present no difficulty (see Section 4). In order to consider the tm stationary 
flow, we just reverse the roles of U (which equals V(o)) and V(m) (which now is playing 
the role of the spectral problem). We write the zero curvature equations as 

V(m)x = Ut - [V(m), U] 

where £ = tm. It should be noted (see the examples) that V(m) depends upon u and 
some (but not too many) of its ^-derivatives. Following the argument which led to 
(22), we write this in terms of some set of coordinates on the stationary manifold. For 
comparison of results, we choose the canonical coordinates. 

We write V(m), when written in terms of the stationary manifold coordinates, as U 
and consider a general evolution (labeled by r) with zero curvature representation 

Z/r = Ve-[W,V]. (25) 

The particular choice V = U = V(o) corresponds to our original equation in x — t 
reversed form (in terms of the stationary manifold coordinates). All the examples of 
this paper are associated with 2x2 matrix problems, so we now restrict to this case 
(see [16] for other cases). We have 

«-(: -6
(,). v-(j _;) (26) 

where a, 6, and c are functions of <&, p;, Ci, and A. Except for very simple cases (such 
as the KdV equation), there are more than 3 coordinates, so (25) does not give the full 
evolution qr where q = (gi,..., (7n>Pi> • • • jPn> ci,..., Cfc)T. Indeed, if we represent U 
by the vector b = (6, c, a)T, we obtain 

br = B6bh (27) 

where B is given by (7) (with d = Jt) and Sbh is shorthand for 

fSh 8h 5h\ ,_      rt XT 

If Jtp denotes the Frechet derivative of the map (p : q »->- b, then 

hT = J(pqr    and    5qh = j} • Sbh (28) 

where h = hcnp. Our task is to resolve (27) and (28) into the form 

qT = &8qh, 

even though J^ is a 3 x (2n + k) matrix, with right kernel of dimension 2n + k — 3. 
This construction deals with each stationary manifold separately. 
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3.1. The KdV equation. In this case, we have example 2.1 with (8): 

u = vm= L b X + 2qy 

X2-^Xq + q2-^c1      -\p 

where coordinates {q,p,ci) are defined by (17)-(18). The map ip then has Jacobian 

Uip — 

f  ' 2         0 o\ 
2q-\\    0 1 

2 

I     »         1 oy 
In this case, it is possible to invert J^ to obtain 

-i\t qT = J-1B(j-1)T^ = B*g/» (29) 

where 

B = 
0 -2q - A -p + 5 

2q + A -20 1292 - 2ci 

^p + a    -12g2 + 2ci    (4g-A)a + a(4g-A)y 

(30) 

As previously mentioned, this is related to the simple Hamiltonian structure of (23) 
through the Miura map. This is an alternative way of proving that B is indeed 
Hamiltonian. 

To calculate the hierarchy of Hamiltonians, we repeat the argument used with the 
KdV hierarchy in the usual coordinates. Since ci is a flux m the usual MKdV language, 
it is now a conserved density under r-evolutions. Furthermore, it is a Casimir function 
of the Poisson bracket given in (23), so it generates the bi-Hamiltonian ladder (24) 

BSqCl = 0 BSqCx = M'B(M'^ci = M'BSqC! = 0, 

where B is given by (30). The asymptotic series for ci can be derived from the known 
series (13) by substitution into the formula (20), replacing x-derivatives of u by q, p, 
ci, and their ^-derivatives. Explicitly, we have 

q = --* + qk-1 - -pk-2 + (-d - 2q2)k-3 + (<fc + gp)Ar4 + • • • , 

ci = -2vxx + 4v3 - 3Xv 

= k3- dk'1 - 2q^k~2 + ( -p2 + 4q3 - 2c1q + pA k'3 + • • • . 

The Hamiltonians 

h-i = -ci,    ho = -^P2 + qcx - 2q3,    hx = -<% + q^p, 



HAMILTONIAN FLOWS ON STATIONARY MANIFOLDS 223 

and second Hamiltonian structure, generate 

M 2*' 

6q2 - ex 

lq\ M 

VCl/T0   vw^ 
(      \c\i - Iqqt, - 5PC1 

-2q^ - 2qpiL + 6g2ci - c?    . 

In general, we have 

qTr = (Bi - ABoKV) = Bi^^r,    /»(r) = Ar+1/i_i + • • • + hr. 

The time evolution \1>.JV is given in terms of Sgh^y. 

8h> 
7 = 

(r) 

5p 
Q; = 2- 

5/I (r) 

Sci /3 = -« 
i^M + ^.s^fe 
2   5g 5ci 

(31) 

Thus /i_i generates the KdV equation and ho the "translational flow", telling us that 
ro = £. We can use the T_I flow to write p, ci and q^ in terms of ^ and its r_i 
derivatives after which 

^n = ^xxxxx + 10qqxxx + 20qxqxx + 30q2qx, 

where we have written T-i = x. 
Thus, the hierarchy is just the KdV hierarchy in disguise. However, without the 

T_I flow, this hierarchy shows no hint of being reducible from the (#,£>, Ci) space to 
the q space. In these coordinates, the reduction to the stationary flow q^ = 0 is very 
natural, with (30) reducing to (21) and the bi-Hamiltonian ladder becoming finite. 

3.2. The fifth-order KdV equation. Here 

uta = ^«3 = 0,    H3=u2
xx-10uu2

x + 5u4. 

The Lagrangian £3 = ulx - lOuul + 5u4 - C2U gives the canonical variables 

qi = u,    q2=ux,    P2 = 2uxx,    pi =-2uxxx-20uux, 

C2 = 2uxxxx 4- 20uuxx + 10ul + 20u3, (32) 

with C2 being a Casimir function of the degenerate canonical bracket. The spectral 
problem is given by V(2) of the KdV hierarchy (example 2.1 with (8) and a = a^)), 
with (32): 

#£=W#,    where 
"-(: -«)• 

(33) 
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with a, 6, c given by 

a = -\q2 + -Pi+^qm, 

C = 4^ " 2 A2gi ~ 4A(P2 + ^^ " 2C2 + giP2 + 4^ " ^' 

We denote this mapping by y? : q ^ b. As before, we consider an evolution V (see 
(26)) where a, /3, and 7 are functions of (^,^2,02), their ^-derivatives, and A.  The 
integrability conditions are again (25). 

The Jacobian J^ is the 3x5 matrix 

U(p — 

/ 12gi + 2A 0 0 1 0 \ 

12<?2+p2-A<7l-!A2      -2g2      0    fc-lA    -i 

^ 4^2 4qi - A    § 0 0 y 

which does not, therefore, have a unique inverse. Thus the equation 

br = ^qT (34) 

is underdetermined for the components of qT, whilst the equation 

Sqh = J^5bh (35) 

gives an overdetermined system of equations for the components of 5bh, which we 
would like to solve in terms of 5qh. Thus Sqh must be orthogonal to w G Ker J^ 

w* 5qh = (JpwySbh => w^Sqh = 0, 

apparently giving rise to some constraints on 5qh. In fact, these "constraints" can be 
identified with part of the recursion relation of the bi-Hamiltonian ladder, so do not 
constitute a restriction. The (right) kernel of J7^ is important in what follows, and is 
spanned by 

vi = (1,0, -802, -12(zi - 2A, 2p2)
T, 

V2 = (0,l,-8gi +2A,0,-4g2)T. 

The left kernel of J^ is 0. We then can solve (uniquely) for Sbh: 

Sah = 25p1h,    Sbh = Sp2h + (2gi — -X)5C2h,    5ch = —25C2h, (36) 

with "constraints" 

X5Plh = --5q2h + 4qi6Plh + 2q25C2h, 

XSp2h = -5qih — 4q25p1h — 6qi8p2h -\- p2SC2h. (37) 

Since we do not have a left inverse for J^, we cannot use (29). We write (25) as 

J(pqT = BSbk (38) 
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where B is the 3x3 Hamiltonian structure given in (27). We write (36) as 6bh = DSqh 
where 

^0   0    0   .1    2q1-±\\ 

D=    0   0   0   0        -2 

^0020 0      j 

but are free to add the transpose of an element of the right kernel of J^ 

2 

Sbh = (D + '22fivi)6qh = D8qh. 
t=i 

Indeed, 

JJ,Sbh = Sqh DJ^Sbh = DSqh = Sbh DJ} = h 

(39) 

where /s is the 3x3 identity matrix. Thus, for any choice of f;, D is a left inverse of 

Whilst the fi make no difference to the formula (36) for ^ft, they can change the 
right-hand side of 

(40) 
i=l 

which involves the truncated Hamiltonian /i(r), which no longer satisfies the infinite 
recursion relation represented by the "constraint" (37). 

We now use our knowledge of the standard KdV hierarchy. The Hamiltonian /i(r) = 
(Ar"f"2/i)+ is given in terms of the fluxes previously calculated: 

h-2 = ^     ft-i = -5^ + Wqiq* + ^ic2 + Q2P1 + ^pl- 

We have the following correspondence between the usual KdV tk and rm: 

to = X,ti, t2 = £>      ^3J--- 

r_2 = a:,r_i,     TQ = C5    n,  

The r_2 flow is just the x — £2 reversed fifth-order KdV equation 

20<?? - 109| - ca 

-20^1^2 - Pi 

29i« J 

( 

92 

Pi = 

P2 

[02) r-a         V 
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whilst the r_i flow is the KdV equation for qi and its prolongation to the other 
variables (but written in these coordinates) 

U) -4?i q2 - \pi 

Q2 -10^-2^2 + ^ + ^2 

Pi = 120^ + 30^2 + 20gi^ - Qq^ + 4<72Pi + pi - 2^ 

P2 ZOqfa + 4qiPi - 2^2 + 2qiz 

\c2) 
T-l 

^                        I2qiqiz+P2z                        ) 

Substituting these equations into (40) determines ft to be zero.   Thus, for this 
example, the correct choice of D is D. 

Remark 3.1. Whilst for the KdV hierarchy and several other examples, we find 
ft = 0, this is not always true (in this paper, see Ito's equation). 

We wish to find a 5 x 5 matrix B such that 

Using D (= D), we can find a particular solution B of (41) satisfying 

& = tf&D   so that   J^pji = (JvD*)B(DJt) = B. 

This B explicitly takes the form 

(41) 

B = 

0 0 0 0 0 

0 0 0 0 0 

0 0 -2d Ts Ti 

0 0 -Ta 0 28 + Fa 

\ 

where 

^0    0    -Fi    28 - T2    4(0gi + qi d) - 2Xd) 

T1 = 40ql + 801^2 - 44 - 2C2- 2\p2, 

T2 = -16gig2 - 2pi + 4A02, 

r3 = Uqf + 2p2 + 4Agi + 2A2. 

To this we can add any skew-symmetric matrix which is in the kernel of M *-» J^MJ^: 

2 

B = B+^ (aivt-viaj). 

We wish to write the evolution equations for q as 
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2 

qTr = B6qhir) = (B + J2 M - Viat^V), (42) 

but also have (38) after replacing B: 

J^ (qrr - B8qh{r)) = 0. (43) 

To be consistent, we require 

2 

Since we do not have vt£gft(r) = 0, we need J^a; = 0, so that a^ = Ylj=i Vjdji, and 

2 

B = B + Yl v<6yvi 

where 6^ = (b)ij with b a skew-adjoint matrix differential operator (in the present 
case, a simple skew-symmetric matrix). Equation (43) implies qrr —'BSqh(r) G Ker J^. 
Prom the forms of B and v^, we have explicitly 

qrr = B(5g/i(r) + V\q\Tr + V2g2rr. (44) 

Matching (42) and (44), we have 

2 

i=i 

The coordinates (32) define the fifth-order KdV equation as an x — t reversed flow, 
with T_2 = x, from which we find 

1 
qiT-2 = #2,    <?2T_2 = 2^2. 

In our Hamiltonian formulation, this should be generated by the function h-2 = 2C2' 
Substituting these into (44) gives 

&ii=&22=0    ,    bi2 = -b2i = --. 

The Hamiltonian operator B then takes the form 

B = Bi — ABQ 
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where 

(o    o 1   0    0^ 

0      0 0   1     0 

Bo = -1     0 

0     -1 

Ko    0 

0   0    0 

0   0    0 

0   0   2dj 

? 

f   0 i 
2 4qi 0 \ 

2^2 
1 
2 0 -4«2 -Qqi P2 

-4<?i 4^2 -2a GOqf + 2p2           fii 

0 6^i    -( 30g? - 2p2 0 28 + ^2 

{-^2 -P2 -fii 29-^2 4(dqi+qid), 

-20</2
2- - 2C2, ^2 = = -40gig2 -2pi. and fii = 40^1 

The modified fifth-order hierarchy has a single local Hamiltonian structure (almost 
identical to BQ above). This simple operator is transformed onto Bi — ABQ by the 
Miura map (12), when extended to this 5-dimensional space. Once again, this is the 
simplest proof of the fact that BQ and Bi are both Hamiltonian and compatible. The 
modified fifth-order KdV equation is 

1 15 
vt2 = --C2x,    C2 = -2vxxxx + 20v2vxx + 20vvl - 12v5 - 5k2(vxx - 2v3) - -r^v. 

Comparing with (15), we have 

C2 = CK(2)a: " 2va (2)- 

Using the expansion (13), the coordinates (32), and their ^-derivatives, we obtain an 
infinite expansion for C2. This is our ft, from which ft(r) = (Ar+2ft)+ is calculated. 

The time evolution (26) is calculated from ft(r) by (39) (compare with (31)): 

7 = £pifyr)5    ot = -2£C2ft(r),    /? = (5p2ft(r) + (2q1 - -A)£C2ft(r). 

When ^-derivatives of the phase space variables are zero, then BQ and Bi reduce to 
the previously known [5] Poisson matrices of the stationary fifth-order KdV equation. 
We then have just three independent Hamiltonians: C2, ft-25 ft-i- The integral C2 is 
the Casimir of BQ, and ft_i is the Casimir of Bi in this reduction. 

4. Some two-component examples 

We have illustrated our procedure in the context of the KdV hierarchy. The KdV 
equation itself is a special case, but the fifth-order member of the hierarchy already 
includes many of the general features. The details of the seventh-order KdV equation 
and its modification are presented in [16]. 

In this section, we present some interesting examples which illustrate certain addi- 
tional features. For instance, Ito's equation requires non-zero f* (see Remark (3.1)). 
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4.1. The DWW hierarchy. This hierarchy is isospectral to a particular case of the 
energy dependent Schrodinger operator [3]. Since the KdV hierarchy is also a special 
case of this, the zero curvature representations are very similar: 

/V)  =M°<m>. ^y)(^)=v(m)* (45) 
V^2/tm        V     C(m) %<X{m)xJ   \lp2J 

where C(m) = -^a^m)xx - {UQ + uiA - A2)a(m) and a(m) = ]>Xoa™-^- Tlie 

isospectral flows are tri-Hamiltonian, with 

where u = (uo,ui)T, and 

with Jo = id3 + 2tio9 + ^oxj Ji = Zuid + uix, J2 = —2d. The first few Hamiltonians 2 
are 

Ho = ui,    HI=VQ + -UI,    %2 = -^UQUI + -ul, 

Hz = -^u2
lx + ^ng + -1101*; + -uf, 

The ti and ^2 flows are 

^Oti  = jiuixxx + ^UQUIX + 2l4oa;Wl), 

3 
uiti = (WO + T^I)X5 (47) 

1 3 
^0*2 ^ T^Oxrcrc + 6lio^Ox) + Q (^l^lrcxx + 3uixUixx + tAQx^i + 4notAitilx), 

4 o 
1 5 

Ulta = ji^lxx + 6^0^! + o^l)^- (48) 

The first of these is known as the dispersive water wave (DWW) equation (after a 
simple change of coordinates) whilst the second is a coupled KdV equation. Half the 
flows reduce to those of the KdV hierarchy when ui = 0. 

Example 4.1 (The DWW equation). The stationary solutions of the DWW equation 
(47) have Lagrangian 

C — H^- UQCI - U1C2 - julci 

= ~~ 16^ + 4W° + 8^°^ + 64^ ~ UoCl ~" UlC2 ~ 4^Cl 
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where the terms involving c* form the Casimirs of BQ.  As a function of UQ and m, 
this is degenerate, but Lagrange's equations 

1 3  o 1 3 So 
Cl = -UQ + -%,      C2 = -Uixx + -UQUI + — % r^ici, (49) 

can be used to eliminate UQ, resulting in a one degree of freedom system with La- 
grangian 

£ = - g ( 2^1* + 2^ ~ 4ci^ + 8c2Ul 

Convenient coordinates for the stationary manifold of the DWW equation thus are 

q = u1,    p = --ulx,    ci,    C2. 

The DWW equation corresponds to V(i) (of (45)) with a^ = A + |^i, and with UQ 

and wiajx eliminated using (49), so the x — t reversed spectral problem is (33) with 
cp : q >->► b given by 

111 1 
a = 2p,    6 = A + -g,    c = A3 - -A2g + X(-q2 - 2^) - 2c2 + qcx - -q3, 

with Jacobian 

Uif 

A 0        0 o\ 
7 0    q-2X -2 

\o 2        0 0 i 

where 7 = -|g2 + ci + |Ag - |A2, whose right kernel is spanned by 

v1 = (0,0,l,ig-A)T. 

Thus, with time evolution (45), we once again have the underdetermined system (34) 
for qT and overdetermined system (35) for Sbh. One solution for Sbh is given by 

Sbh = D Sgh   with   Dj£ = I3 

where 

D = 

{2    0   0     j\ 

0    0   0-| 

\0   §   0     0) 

Once again the fi of (39) is zero, so D = D. Our aim is to find a 4 x 4 matrix operator 
B satisfying (41). We use D and B of (27) to obtain a particular solution B = D^TiD 

(    0        -k-A   0   -4p + a\ 

B = *9 + A -i» 0 -r 
0 0 0 0 

^4p+a r 0 X 
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where 

r^ 

-U 
29C1 + 2C2' 

« +2Cl + W a - ;A2a. 
2^4 

To this we can add an extra term: 

B = B + vi&nvj 

where bu is determined by comparison with the r_i flow: bu = |9. We find 

B = Bx — ABQ 

with 

Bo = 

/0 

-1 

0 

0 

0 

0 

0 

I® 

Bi^ 

0 

0 

\4p + d 

-a? 

0 

r 

-4p + d\ 

-r 

log 
\qd    dp + pdj 

0 

0 

where p = -\q2 + |ci. 
The DWW equation is tri-Hamiltonian in any coordinate system.   We form the 

recursion operator 

Ft = BIBQ   — 

0 

■iff 
0 

r 

-spa-1 + 2 
-2ra-1 

o        la^a-1 

-4p-a   2p + 2dpd-1 

0 

1 

and then define B2 = RBi to give 

^    0 i9
2 

4p + a r 
B2 = 

-4p + a 

-r 

^(«a-a?)   ba+la2   -idq2 + ^(dd + ad) 

h(dq-qd) 
iap-ia2 

-ig2a +i(0c1 + c1 a) 
|(ac2 + C2a) 

Remark 4.1. This construction is only possible on the PDE level since Bo becomes 
degenerate (and thus cannot be inverted) when reduced to the stationary case. Nev- 
ertheless, the reduced B2 is still valid. 
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The hierarchy is tri-Hamiltonian with 

The integrals ft(r) can be calculated as the fluxes of the DWW integrals in the usual 
(uo,ui) coordinates, or can be calculated with a parameter dependent Miura map as 
previously explained. Parameter dependent Miura maps also enable us to prove that 
the operators B^ are Hamiltonian and compatible. The time evolution (45) is given 
in terms of Sh^ in a similar way to (31). The details can be found in [16]. Here 
we just give the parameter independent Miura maps and the modified Hamiltonian 
structures, together with the connecting diagram. The Miura maps, 

Mi 
C2 = -§<f + \qp2 + \qc2 + |pci 

ci = |C2, 

\fc> 

Mo 
q = 2p,    p = qp-^cu     ci = -2c2, 

C2 = -q2p2 + qpcx + qc2 + 4p2 - |c? + |%, 

transport Hamiltonian structures as shown in the figure below: 

q 

B2 

Bi 

Bo 

q 

B2 

Bi 

q 

B2 

where 

Bi = 

/o    1 o o\ 
-10 0 0 

0     0 -2d 0 

\ 0     0 0 28/ 

B2 = 

\-2qp -ci+d 

-q 
0 

a 
-3q2+p2 + C2 

B2 = 

/0 

-1 

0 

0 2gp + ci+9\ 

9 3q2-p2-C2 

0 -29^ 

-2p5 2dq + 2qd J 

0\ 
0 

Remark 4.2. The other members of the DWW hierarchy are very similar, but the 
matrix operators are larger (6 x 6 in the case of the third-order DWW equation (48)). 
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4.2. The Ito hierarchy. We consider the isospectral flows of 

A/JA = /       o i\ /^A 

\^)x     \*-UI-UQ\-1    o)\fhJ' 

The general time evolution is given by V(m) of (45), but with C(m) = — ^o^m)xx — 
(^oA-1 + ui — A)a(m). The ti flow, corresponding to a(i) = A + l^i, is the coupled 
KdV system 

^Oti = ^^Oa:^! + ^O^lx, ^Iti = j(ulxxx + 6uiUix + 4uox). (50) 

In the coordinates q = -ui, r = 2u0' , this takes the form of Ito's equation. This 
system is tri-Hamiltonian [2] 

where B^ takes the same form as (46), but with 

Jo = 2uod 4- ^ox,    Ji = ^d3 + 2uid + uix,    J2 — -2d. 

The first few Hamiltonians are 
1 111 

Ho = uu    'Hi=uo + -uf,    % = - jg^L + 2UoUl + s^' 

1 1 5 13 5 
% = guoulxx + gjtiL* - 32^1^■+ 4^0 + g^o^i + —uf. 

Example 4.2 (Ito's equation). Ito's equation (50) corresponds to RQSHS. For the 
stationary flow, we need the kernel of BQ, which is (ci, |i6ici + C2)T where Q are 
constants. Allowing Ci to be non-constant, this is still a good representation for the 
gradient, even in the non-stationary case. Putting STis = (ci, |wiCi + C2)T, 

g {uixx + 3u? + 4wo) = ci, (51) 

1 5 3 1 
^ (^l^aja: + tUOxx) + 32 (Wl« + 2ulUlxx + 2tA?) + -iXQ^l = C2 + -UiCU 

the second of which can be simplified to give 

1 1   2       1 1   3     1 
C2 = ^clxx - —ulx + -uotii - ^6^1 + 21ilCl- (52) 

The stationary flow of Ito's equation (50) is reduced to one degree of freedom by 
eliminating UQ and is Lagrangian with 

C =: 32UlU*x " 16^ + 2^Cl ~ UlC2 

where the Ci are constants. This, up to an exact derivative, corresponds, after elimi- 
nating UQ, to T-Ls — UQCI — U1C2 — \u1C1. The term UQCI -I- U1C2 + \u1C1 is the general 
Casimir of BQ. Convenient coordinates for the stationary manifold of Ito's equation 
are thus 

1 
q = ui,     P = JzUlUia;,      Ci,      C2. 
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In the definition of U = V(i), we thus can use (51), (52) to eliminate UQ and uixx to 
give the x — t reversed spectral problem as (33) with (p : q f-^ b given by 

a = -4M"1,        & = A+-<7, 

c = A2 - ^A? + ig2 - 2d + Ud - 2c2 - ig
3 - 16p2g-2 + Hpq'1)^ A"1, 

where the term 4(^~1)^ stems from Ci^ = ^i^ = S^g-1)^. 
The Jacobian J^ is the Prechet derivative of this map: 

Uip — 

( \ 0 0 

a       A-1(-32pg-2 + Adq-1)    X^q - 2 

\Apq~2 -4g~1 0 

0    \ 

-2A-1 

0 

where 

o- = A-^-f?2 + ci + 32pV3 - 4apg-
2) + i« - ^A. 

The right kernel of J^ is spanned by 

vi = (0,0,l,^-A)r. 

Thus, with this time evolution, we once again have the underdetermined system (34) 
for qr and overdetermined system (35) for 6bh. One solution for Sbh is given by 

Sbh = DSqh   with   DJ* = I3 

where 

/2     2M-1     0     -|g2 + Cl+lA(1[«lA2\ 

£>=    0       0       0 -±A 

^0     -ig     0 4M-1 + i» j 

To this £> we are free to add the transpose of an element of the right kernel of J^, 
since this does not change the relationship (35): 

5bh = (D + fivJXh = DSqh. 

However, in this case, fi ^ 0 (see Remark (3.1)), as we find by substituting the r_i 
flow (stationary Ito's equation) into 

J^rr = BD6qh(ry 

We find 

fi^T^-i.Of 

where 

Ti^A-^+^-^A,     with    e=^-c1+2c2q-
1 + iep2q-3-4q-1(Pq-% 
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after which 

D = 

(2 2pq-1 Ti          T2      \ 

0 0 4         -^ 
1° -h 0     Apq-1+\dj 

where 

T2=QA-
1
«-1^-|9(« + 2A) + C1. 

We then can calculate B = D^flD: 
( 

B = 

where 

0 

-\f-\M 
-1 9 - 8pg 

i9
2 + iAg      Spg^+a        \dq - \qd - SXpq'1 - XO  \ 

-^qdq       fii + dpq'1    ±qd2 + ±dp - Afii - \dpq-1 

T4 r2 Ta 

Ti = -\dq+ ^qd + SXpq-1 - Ad,    r2 = -^d2q + ^pd + AUi - Apg"1^ 

Ta = (|« - A)fi2 + dp! + P2d,    Ti = (ig - A)fi2(^ - A) + dp3 + p3d + ^3, 

r5 = n2 + ±(dq + qd)-±\d, 
1   2        1 1 1, 1 ^   2        1> 

Pi = -g9 +2Cl'    'j2=::2Cl-4 9'    /'3 = 2C2 + 8  9      2      ' 

ni = 9pi - |p2-+4p2<r2,   n2 = ^A"1^ + 00). 

To this, we add the extra term 

B = B + vi&i1v{ 

where 611 is determined by comparison with the T_I flow:   611 = —fi2-   We find 
B = B2 - ABi where 

B1 = 

0 -h 0 Spq'1 +d\ 

0 0 fix + dpq'1 

0 0 ±0 \dq 

y-Spq^+d    -fli+pg"^    \qd dp1+p1dj 

B2 = 

0 b2 

-tf 

i0g - ^0 

^02 + i0p 

/9l0+|0Ci 

Spg"1+ 0 

±qdq Qi + dpq'1 

-Spq-1 + 0     -fix +p9-1a     |(0g + g0) 

^-i0g+ig0   -i02
g+ip0   0p1 + ici0    i(0c2 + C20) + |03y 
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The notation anticipates the same phenomenon as in the (UQ, UI) coordinates. That 
is, the third Hamiltonian structure is actually the first! We define the recursion oper- 
ators R = B2B11 

/ 

R = 

V-ni + |a2 

0 

0 

Spq-1 6 

Wpq^d'1 + 2 

(2fii + 2dpq-1)d-1 

\dqd-1 

2/91 + 2dp1d-1 

0\ 

0 

1 

5?/ 

which is invertible. The Hamiltonian operator BQ then is constructed by BQ = R 1Bi 

Bn = 

/0 

-1 

0 
19 
0 

0 

0 

0 

0 

*0 

0 

Remark 4.3. Once again, since Bi degenerates upon reduction to the stationary 
flow, this construction is only valid on the PDE level. However, BQ is still valid upon 
this reduction. 

In the usual way, we can construct an infinite sequence of Hamiltonians satisfy- 
ing the bi-Hamiltonian ladder, Miura maps and modified systems, and all the other 
formulae, such as (31), in a systematic way [16]. 

5. Conclusions 

In this paper, we have been interested in the relationship between an integrable nonlin- 
ear evolution equation (PDE) and its stationary flow. We were particularly interested 
in the reduction of the infinite dimensional Hamiltonian structures to their finite di- 
mensional counterparts. This reduction is most transparent when the PDE is written 
as a flow in a larger space whose coordinates are those of the stationary manifold, 
together with their ^-derivatives. 

Starting from a zero-curvature representation (reversing the roles of U and V), we 
gave a systematic construction of the isospectral flows and their Hamiltonian struc- 
tures. We have adopted the approach presented in [3, 4], which simultaneously con- 
structs the isospectral flows, time evolutions of the wave functions, the Hamiltonians, 
and Hamiltonian structures. This close relationship between the zero curvature rep- 
resentation and the Hamiltonian formulation of the equations perhaps is best seen by 
the formula (31). 

An unsatisfactory feature of our approach is that each stationary manifold has 
to be treated separately. Thus we construct 1 x 1, 3 x 3, 5 x 5, etc. Hamiltonian 
representations of the KdV equation, but know of no way of reducing from higher to 
lower order representations. This deficiency perhaps could be overcome by giving some 
Lie algebraic description of stationary reductions (see [21] for the general approach). 
However, since the appropriate spectral problems are such deep reductions of the 
generic case, we can expect the appropriate algebra to be rather complicated. 

Whilst the importance of our results is mainly in the realm of the stationary reduc- 
tions, we have, in passing, answered a number of the questions raised in [13], where 



HAMILTONIAN FLOWS ON STATIONARY MANIFOLDS 237 

they believed they had found a new hierarchy of equations.  We have seen that, in 
fact, this hierarchy is just the KdV hierarchy in disguise. 

In this paper, we presented a selection of examples, including the KdV, DWW, and 
Ito hierarchies. Further examples from the DWW and Boussinesq hierarchies can be 
found in [16] and will be presented elsewhere. 

Appendix: Generalised Lagrangians 

We consider a (generalised) Lagrangian: 

£(9(0wi,,-,«(w)),   <*w = 0> »>i. 
where £ is non-degenerate (^(7^2 ^ 0). The corresponding Euler-Lagrange equations 
are 

Canonical coordinates can be defined as 

gz = g('"1),        i = l,...,n, 

dC dC 

The Euler-Lagrange equations then take canonical Hamiltonian form with 
n-l 

h = ^  Qi+lPi + QnxPn - ^{qi, • • • , Qn, Qnx), 
2=1 

where qnx is removed by inverting the non-degenerate Legendre transformation [22]. 
The generalisation to more than one component qi is straightforward. 
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