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RETRACING THE PAINLEVE-GAMBIER CLASSIFICATION FOR 

DISCRETE SYSTEMS 

B. Grammaticos and A. Ramani 

Dedicated to Martin D. Kruskal on the occasion of his 70th birthday. 

ABSTRACT. We present the discrete equivalent of the Painleve list of second order 
differential equations which possess the Painleve property. In the discrete case, 
the equations we consider are three-point rational mappings. The investigation 
of their integrable character is based on the singularity confinement criterion. 
The mappings we obtain belong to three large classes in perfect analogy with 
the continuous case. The first class contains mappings integrable in terms of 
elliptic functions. The second class contains the mappings that can be reduced 
to linear ones. Finally, the third class consists of mappings that define discrete 
transcendents, i.e., the discrete analogs of the Painleve equations. 

1. Introduction 

The integrability of low-order differential equations attracted the attention of late 
nineteenth and early twentieth century mathematicians. Thanks to Painleve and his 
school, considerable progress has been realized in this domain but, somehow, the initial 
impetus gradually disappeared, and the whole integrability business faded out. Then, 
through one of those miracles that do occur in the par excellence rationalistic domain 
of mathematics and physics, the interest in integrability was revived, more than half 
a century later. 

While investigating a model of a lattice with nonlinear interactions, Fermi, Pasta, 
and Ulam (FPU) [10] made an astonishing discovery: instead of energy equipartition 
between the various modes, the system exhibited a recurrent behavior. This indicated 
that some stable structure persisted in the evolution of the system. Several years 
later, Kruskal and Zabusky [43] investigated an equation that could be interpreted as 
a continuous limit of the FPU model and was known to possess a stable solitary-wave 
solution: the Korteweg-deVries (KdV) equation [34]. A new astonishing discovery 
was made at this point: the solitary waves of KdV were stable even when interacting 
among themselves. This led Kruskal and his collaborators to conjecture (and, shortly 
afterwards, to prove) the integrability of the KdV equation [13]. This integrability 
turned out to be of an unusual type. While the integrable partial differential equations 
(PDEs) known at the time were linearizable through a Cole-Hopf transformation, the 
KdV equation was fundamentally different. As discovered by Kruskal et al., it could be 
written as the compatibility condition of an overdetermined linear system. The latter 
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was subsequently called the "Lax pair" [27], a notion which became a cornerstone of 
the modern approach to integrability. The crucial step came with the realization that, 
given the Lax pair, the techniques of inverse scattering (for the reconstruction of the 
potential from scattering data) could be used in order to solve the initial-value problem 
for KdV. This discovery rekindled the interest in integrable systems, an interest that 
has not faded away more than a quarter century later. 

It was natural in this framework of integrable systems to come back to the question 
of the Painleve equations. Painleve [32] had, in fact, studied second-order differential 
equations of the form w" = f(wf

1'w1z) where / is rational in w', algebraic in w, and 
analytic in z, from the point of view of the singularity structure of their solutions. He 
had, with the help of Gambier [12], identified fifty equations the solutions of which 
did not contain movable critical singularities. They have shown that the majority of 
these equations were integrable (or reducible to some other, simpler, equation among 
the fifty). However, six of these equations could not be integrated with the techniques 
available at that time. Painleve's intuition led him to decide that they were integrable 
indeed, defining new transcendents. The derivation of "Lax pairs" for the Painleve 
equations did not take too long. Garnier [14] derived the linear systems that led, as 
compatibility conditions, to the Painleve equations, but did not use them in order to 
integrate the latter. This was done for the first time by Ablowitz and Segur [4], using 
inverse scattering techniques. They have shown in fact that the linearization of the 
Painleve equations can be realized through integrodifferential equations. 

Ablowitz and Segur (in close collaboration with Kruskal) [3], and also Hastings and 
McLeod [22], made another observation. All the reductions of integrable PDEs that 
could be written as second-order ordinary differential equations (ODEs) were members 
of the Painleve-Gambier list. This led naturally to the formulation in collaboration 
with one of us (Ramani) of the ARS conjecture [2]: "Every nonlinear ODE obtained 
by an exact reduction of a nonlinear PDE solvable by inverse scattering techniques is 
of P-type". This means that all its solutions have the Painleve property, i.e., they are 
free of movable critical singularities. They also developed an efficient algorithm for 
the investigation of the Painleve property. This led to a whole branch in the domain 
of integrability [38] and, what is perhaps even more important, it forged a tool, both 
efficient and easy to use, for the study of integrability. 

While continuous systems were in full development, the situation was quite different 
for discrete systems. One of the reasons (perhaps the main one) was that there was, 
at the time, not much "physical" interest in discrete systems. The modeling of the 
various physical phenomena proceeded usually through continuous systems, and on 
those occasions where discrete systems were considered, this was done solely in order 
to study their chaotic behavior. Another, non-negligible, point was the fact that dis- 
crete systems are, a priori, much more difficult to study than continuous ones. (This 
last statement is to be understood in the situation of the 70s and early 80s when the 
tools for the study of discrete systems had not yet been developed). Isolated efforts, 
of course, did lead to very interesting results in the domain of discrete integrability. 
We can mention here the works of Ablowitz and Ladik [1], Hirota [23], and Capel 
and collaborators [35], but, on the whole, those attempts did not manage to create 
an impetus in the right direction. What also was lacking was the equivalent of the 
ARS-Painleve approach: an integrability detector for discrete systems. The latter had 
to wait till the 90s. At that time, by a happy coincidence that occurs frequently in 
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scientific research, the conditions became right for the derivation of a discrete inte- 
grability detector. (Note that "coincidence" is perhaps not the right word. What 
really happens is a collective phenomenon whereby a critical mass is reached and the 
proper impetus is maintained). First, recent work in field theory had turned the in- 
terest towards discrete systems [6]: physicists started realizing that discrete systems 
were more fundamental than continuous ones. Second, integrable discrete systems 
had started appearing [31], replacing the previous scarcity by a body of examples that 
would allow the formulation and testing of conjectures on integrability. It was in this 
context that we proposed [20] the "singularity confinement" method, that has (four 
years later) proven beyond doubt its efficiency as an integrability detector. The prin- 
ciple is in fact simple. In a rational mapping, singularities may appear spontaneously 
due to a particular choice of initial condition. In analogy to the continuous case, we 
call these singularities "movable". Our conjecture states that, in integrable systems, 
these singularities must disappear after a few iterations. This is what is meant by 
"confinement". The implementation of this method has been reviewed in detail in 
[41]. We shall limit ourselves here to probably the most important application of the 
singularity confinement method: the derivation of the discrete Painleve equations. 

As was mentioned above, Painleve and Gambier accomplished the difficult task 
of classifying all the integrable second-order equations of the form w" = f(wf,w,z). 
These equations turned out to be of the utmost usefulness in the study of physical 
problems. It was thus natural to try to establish the analogous results in the case of 
discrete equations. Discrete Painleve equations had already made their appearance in 
the studies related to the Ising model [25, 28], and, in fact, the first reference remarked 
on the relation of the discrete equation obtained and Painleve equations. Similarly, 
in a work of Jimbo, Miwa, and Ueno [26] going back to 1981, a discrete Painleve 
equation appears (it is the "alternate" d-Pi of [11]), but its analogy to the continuous 
Painleve equation was not established. A more recent and unambiguous reference 
to a discrete Painleve equation is made in the work of Brezin and Kazakov [6] who, 
studying a two-dimensional model of quantum gravity, obtained the 'standard' form 
of d-Pj. Shortly afterwards, d-Pn was also obtained [30, 33], and the introduction of 
singularity confinement allowed us to derive [39] the remaining d-Ps up to d-Py. Since 
this first work, many more results have been obtained, and today we can show that 
the whole Painleve-Gambier classification can be retraced in a discrete setting. Before 
proceeding further, we must point out that our approach is not the same as that of 
Painleve and Gambier. Those authors investigated systematically (Painleve with his 
"a-method" while Gambier used Kovalevskaya's approach) second-order ODEs and 
identified those which satisfied the integrability criterion. In our approach, we do not 
implement singularity confinement in the most general discrete system but, rather, 
look for the discrete analogs of the equations of the Painleve-Gambier list. Thus our 
search is guided by the results of the continuous case, and the singularity confinement 
criterion is used in order to ensure integrability of the forms obtained. 

The discrete equivalent to the second-order differential equations of the Painleve 
family we are going to study here is the three-point explicit rational mapping. It 
is clear that this is not the only possibility. However, it is a most natural one and 
as we shall show, it is rich enough to yield the expected results. Before examining 
the three-point case, we shall start with two-point mappings which are equivalent to 
first-order differential equations. 
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2. First-order equations and two-point mappings 

The study of integrable differential equations was initiated by Fuchs who studied first- 
order equations, (algebraic in w: w') the solutions of which have fixed critical points. 
Poincare has shown that these equations either have all their solutions algebraic, or 
are algebraically reducible to a quadrature, or are of Riccati form. If we focus on 
equations explicit in the first derivative, w' = f{w,z), the only first-order equations 
that have what later became known as the Painleve property are 

w' = aw + 6, (2.1) 

w' = -w2 + aw + 6. (2.2) 

It is instructive to analyze the first-order equations in the light of modern singularity 
analysis. Let us start with a first-order equation wf = f(w,z) where / is a polynomial 
in w of degree k. Then the dominant singular behavior of the solutions of the equations 
is w oc (z—zo)~1^k~'1\ Thus, except for the Riccati case k = 2, the singularity presents 
a branching incompatible with the Painleve property. 

What are the discrete equivalents of equations (2.1) and (2.2)? Clearly, the linear 
map 

Xn+l = UXn + b (2.3) 

is the discrete analog of (2.1). In the case of the Riccati equations, the discretization 
of the derivative does not cause any difficulty: a finite difference xn+i — xn suffices. 
The difficulty lies in the discretization of the nonlinear term. To make a long story 
short [40], the only discretization that leads to an integrable mapping is to replace w2 

by xn+ixn. Thus, the discrete Riccati equation is the homographic mapping 

axn + b 
x"+1 = ^Trf- (2-4) 

Using scaling, we can bring (2.4) to the form £n+i— xn = (—x^ + axn + 6)/(l — ajn), 
a form that clearly evokes (2.2). The parallel between the continuous and the discrete 
Riccati equations is perfect. Both are linearizable through a Cole-Hopf transformation. 
Putting w = P/Q, or x = P/Q, allows one to reduce them to a linear equation of 
second order or to a linear three-point mapping, respectively. 

What does singularity confinement tell us about two-point mappings? Let us con- 
sider in general xn+i = f(xnin) where / is rational in xn. As was shown in [40], the 
only form that satisfies the singularity requirement is 

/(a!*'n)=o+?(*.-W* (2-5) 

with positive integers z/fc, provided that for all fc, fik ^ &• Indeed, if xn = Pk at some 
step, then xn+i diverges, xn+2 = a, and xn+s is finite. So the mapping propagates 
without any further difficulty. However, if we consider the "backward" evolution, 
then (2.5) solved for xn in terms of xn+i leads to multideterminacy, and the number 
of preimages grows exponentially with the number of 'backward' iterations. Indeed, 
the only mapping of this form with no growth is just the homographic (2.4). 

The argument of non-proliferation of preimages [21] is essential for the integrability 
of discrete systems. In fact, in every case that we consider, this no-growth criterion 
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is implemented even before one starts examining the possible singularities and their 
confinement. 

3. The second-order (Painleve/Gambier) equations 
and the corresponding three-point mappings 

The aim of this paper is to establish the discrete analog of the Painleve/Gambier 
classification of integrable second-order differential equations. Before embarking upon 
examining the discrete forms, one must establish clearly which are the continuous 
equations one wishes to discretize. The common lore is that there exist 50 canonical 
equations of the form 

wr = f(w\w,z) (3.1) 

(with / rational in w', algebraic in w, and analytic in z) that possess the Painleve 
property. They were first compiled by Gambier [12] and canonized through the book 
of Ince [24]. Recently, Cosgrove [9] raised objections as to the canonical nature of this 
list and, in a work that is (unfortunately) still part of the apocrypha of integrability, 
talked about 74, 81, or even 120 canonical forms. (In fact, Gambier himself has made 
clear that the number of possible forms of the equations of the form (3.1) ranges well 
into the hundreds). So, had it not been for Gambier, we would be faced with a hard 
task. 

Fortunately, in his seminal work, Gambier presented a table of 24 equations that 
he considered as fundamental. In fact, Gambier constructs "... un tableau {t), dont 
il suffit d'indiquer la nature de chaque equation pour en deduire immediatement la 
nature de toutes les equations T et en donner Vintegration effective, ... ". In other 
words, determining the solutions of the 24 equations of his table {t) would allow one 
to find the solutions of all the equations of the larger list (T), which are the 50 listed 
by Ince, and through a homographic transformation of the dependent variable, plus a 
transformation of the independent variable, the solutions of all the equations of form 
(3.1) with the Painleve property. 

Here is the Gambier (t) list, where a, 6, c, d, e are constant, q and r are free 
functions of z, and /n, ^n, and ^n are given functions of q and r: 

w" = 0, (Gl) 

w" = 6™2, (G2) 

w" = 6w2 - 1/24, (G3) 

w" = Gw2 + z, (G4) 

w" = -3ww' -w3 + q{w' + w2), (G5) 

w" = -2ww'. + qw' + q'w, (G6) 

w" = 2w3, (G7) 

w" = 2w3 + aw + 6, (G8) 

w" = 2w3 + zw + a, (G9) 
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w'2 

w" = —,. (G10) 
w 
/2 d 

w" = — + aw2" + bw2 + c + —, (Gil) 

^ = + -(aw2 + 6) + cuf + -, (G12) 
.tu        z      z it; 

/2 / 

w" = — + a— - ^ 4- rtt;^' + r'w2, (G13) 

„'2 ^^2 ^^z «," = f i _ I) «L+,w _ ^2 ^ + j^w2 (G14) 
V      n)   w      H (n + 2)2 n + 2 v      ^ 

w" = (1 - - ) — + (Uw + 4>n- —- J «/ 
\      n)   w      \ nw ) 

^ = ^_ + ^L + 4aw2 + 26w - £-, (G17) 
2if;        2 2K; 

t/;77 = — + -IT- + 4W2 + 2(z2 - a)w - —-, (G18) 
2w        2 v ;        2^;' v       ; 

." = 4^, (G19) 

w" = w'2 (-L + -J—) + (W- 1)2 (aw + h.)+cw + J^, (G21) 
\2w     w — lj \ w) w — 1 

w   = ^    ( T" + 7    - — + ^ 2      ( aw + - ) + c- + —*—r-Z,    (G22) \2t(;     w — lj      z z*       \ wj        z w — \ 

w" = w'   [—+  + 
w     w — 1     w — a 

+ w{w-l){w-a)(b+^+ (_ "^3 + ^ "       ), (G23) 
c d e 

w2     (w — I)2     (w — a)2 

\iy     ty — 1     w — zj \z     z — 1     w — zj 

+ «^(0_-+c^ + ti&zi.).       (G24) 
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First, let us remark that two of these equations, namely (Gl) and (G6) are just the 
derivatives of the equations we encountered at first-order. Equation (Gl) is obviously 
the derivative of a linear equation, and (G6) is the derivative of a Riccati equation. 

The remaining equations can be regrouped into three classes corresponding to the 
method of integration. The first class contains equations (2, 3, 7, 8, 10, 11, 16, 17, 19, 
20, 21, 23). They are integrable through quadratures in terms of elliptic functions, 
and the generic equation of this class is equation (G23). The second class contains 
equations (5, 13, 14, 15) that can be linearized. All of them are generalizations of the 
Riccati equation in some sense, and equation (G15) which is due to Gambier is the 
generic one of this class. Finally, the third class (4, 9, 12, 18, 22, 24) corresponds to the 
transcendental equations of Painleve, Pi to Pyi. These equations are not integrable 
through quadratures, nor are they reducible to a linear differential system. Rather, 
their integration is obtained through 1ST techniques which reduce them to linear 
integrodifferential equations. The generic equation is Pvi (G24): it can be reduced to 
the other transcendents through the appropriate limits. 

Let us now turn to the discrete forms of these equations. Concerning the derivatives 
of the linear and Riccati equations, the discrete form is straightforward. We find, after 
several simplifications in the case of the discrete Riccati equation 

xn-\-l + ^n-l = a&n + &j (3-2) 

. &n—l^n—1 /0 0\ 
#n+l = #71-1 + a>n • {o.d) 

xn 

The remaining three classes have their discrete equivalent in perfect analogy to the 
continuous result. Let us examine the class of equations solvable in terms of elliptic 
functions first. 

3.1. The elliptic-solutions mappings. The elliptic-solutions mappings have been 
analyzed in [36] where the general form has been given. The QRT form we are going 
to work with is 

where the fas are quartic polynomials obtained in the following way. First, one defines 
two symmetric matrices AQ and Ai of the form 

(Oii    Pi    TA 

ft    e;    Ci (3-5) 
7<    Ci    ViJ 

and the vector X = (x2    x    l)   .  We obtain next V = AQX and W = AiX and 

compute F = (/i    /2    fo)  through F = V x W. 
Clearly, replacing AQ? AI by two independent linear combinations of AQ, AI will 

leave the final result unchanged. It then always is possible to take ai = 0, and we, 
generically, can put ao=l. (Non-generic cases, of course, may exist corresponding 
to ao=0). Moreover, we always can take //o=0 and, generically, (JLI=1. Thus, from 
the 12 parameters that were present in the QRT parametrization, only 8 survive at 
this stage. Next, from the form of the mapping, it is clear that it is invariant under 
homographic transformations of x. Since a homographic transformation has three 
free parameters, one expects that their use will further help to simplify the mapping 
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by fixing three of the 8 remaining QRT parameters, bringing the result down to 5. 
These transformations tend to be particularly intricate if performed directly. However, 
singularity confinement can be of great help at this point. As we have explained in [40] 
(see also [37]), the conditions for the appearance of a singularity of the QRT mapping 
(3.4) is 

/i(«(4))/3(*(i))-/22(^(0) = 0. (3.6) 

This means that there exist 8 zeroes ajW's of (3.6) that lead to a singularity (loss of 
a degree of freedom). If xn = tfW, then xn+i is independent of xn-i and its value is 
given by 

M-hW-MW) (37) 

The confinement of the singularity, with the assumption of a generic behavior, is 
realized in a single step. This means (since the QRT mapping, being integrable, must 
be confining) that each of the yW's calculated above is one of the roots x^ in order 
to lead to an indeterminate form 0/0 and recovery of the lost degree of freedom. 
Thus, a;M gives y^ through (3.7), which is equal to x^ for some j. It turns out 
that the specific form of the QRT map ensures that y^ is precisely x^\ Thus, the 
8 roots of (3.6) are grouped into four pairs. One enters the singularity through a?M 
and exits through, say, x^+4:\ Once the roots are assigned in pairs, one can perform 
the homographic transformation to bring three of the roots (say x^, x^2\ and x^) 
to the values 0, 1, and oo respectively. Putting 

x - x& a?(2) - xM 

does just that. In fact, it is possible to go further and express all the parameters of 
the QRT mapping in terms of the remaining sc^'s. As we have verified in [37], the 
specific QRT mapping is the only one of the form (3.4) with the polynomials /^s of 
degree less than 6 that satisfies the singularity confinement criterion. We are not going 
to go through this analysis, nor give the cumbersome final expressions. It is perhaps 
more interesting to display a case of the QRT mapping which goes over to (G23) in 
the continuous limit {e —> 0). The corresponding matrices are: 

A0 =        0        eo       Co       ,        Ai =    1    -2(a +1)    a (3.8) 

with eo = 2(e2(e + d + c + b(a2 + a + 1)) - 1) and Co = -e2{e + ad + 
(a + l)(c + ab)). Although not singled out as a distinct equation in Gambler's list, 
one case is particularly interesting since it leads to a very simple expression. Taking 
6 = c=:d = e = 0in (G23) leads to the equation w" = wf2(^ + ^ + ^). We can 
easily show that the discrete form of this equation is just 

gB+1 + *,_! - 2*n = 
(a;"+1 - *»)<*" - X^ (J- + -JL- + -J-) .     (3.9) 

■" V •£«.      Xn      1      x<n.     a I 
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As was shown in [36], the QRT mapping is integrable. Its first integral is given by the 
correspondence 

(ao + Kai)xl+1xl + (fo + Kp^Xn+^nixn+i + xn) 

+ (70 + -KriXsn+i + xl) + (eo + Ke^Xn+^n 

+ (Co + KCi)(xn+1 + a:n) + (/io + K/n) = 0 (3.10) 

where K is the integration constant. Expression (3.10) further can be parametrized in 
terms of elliptic functions [5]. This means that the solution of (3.10) is just a sampling 
of an elliptic function over a discretized mesh, i.e., the solution is essentially the same 
in the continuous and discrete cases. As we shall see in what follows, this will not be 
the case for the remaining Painleve-Gambier mappings. 

Once the generic mapping corresponding to (G23) is derived, it is easy to obtain 
the nongeneric forms corresponding to the remaining equations of this class. We shall 
not go into this elementary exercise, but rather proceed to the second class, that of 
linearizable mappings. 

3.2. The linearizable mappings. In [40], we have presented a generalization of 
the QRT mapping that makes possible the description of linearizable mappings. This 
generalization reads 

MXn) - Xn-lf2(Xn) ,„ - - x 
a:n+1 = f («. \—^ T7Z~\ W'11' U\xn) - Xn-ij3(Xn) 

where the fas are polynomials in x and with coefficients that depend explicitly on n. In 
fact, just as in the case of the Painleve-Gambier equations, the linearizable mappings 
are the only ones for which the n-dependence is not strictly fixed but, rather, can be 
written in terms of free functions. 

Instead of analyzing (3.11) in its full generality, we shall limit ourselves to the forms 
that are the discrete analogs of the linearizable equations of the Gambier list. The 
generic mapping of this kind, corresponding to Gambier's equation (G15), is given by 
the coupling of a mapping #n+i homographic in xn (discrete Riccati equation) with 
coefficients linear in yn 

axn+1xnyn + pXn+xXn + 7#n+i2/n + Sxnyn + exn + CVn + Vxn+1 + 0 = 0      (3.12) 

with a discrete Riccati equation for yn 

Vn+i = ;—• (3.13) 

Eliminating y between (3.12) and (3.13), we find for x a mapping of the form (3.11) 
with fis quadratic in xn. (However, this mapping is not the most general one of this 
form.) Since the fas are quadratic the singularity condition 

/i(s(i))/3(*(i)) " Mx^Mx®) = 0 (3.14) 

has four roots a^1), x^2\ x^\ and x^ at each n. As explained in [17], due to the 
cascade-Riccati structure of the mapping, the basic singularity pattern corresponding 
to this equation is the following. When x becomes x^ at step n, the mapping loses 
one degree of freedom and recovers it at the very next step through the value x^ 
at step n + 1. The same applies to the pair x^ and x^4K These are not the only 
singularities of the mapping. But they will suffice in order to give the general form. 
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Next, we use the invariance of (3.12) under a homographic transformation at each n 
and assign to three of the Xi specific values, say, a^1) = 0, x^ = 1, and x^ = oo. 

We find that the two singularity patterns {0,1} and {^(3),oo} are realized only if 
the mapping has the form (taking generically 77 = 1) 

f3xn+ixn + xn+1 - 1 + xn 2—- = 0. (3.15) 
72/n + l 

Using the homographic freedom for y, we can bring (3.15) to the form 

x„+1 = i^. (3.16) 

This is precisely the form studied in [17] where we analyzed the Gambier mapping 

2/n+1 = „  J-I ' (3.17a) 

dxnyn + cr 
xn+i = —  (3.17b) 

1 — axn 

where a = 0 or 1. The coefficients, a(n), 6(n), c(n), and (i(n) are not all free. They are 
constrained by the singularity confinement requirement related to singularity patterns 
where one first encounters x^ and, N steps later, x^ or one first encounters x^ 
and, N' steps later, x^\ 

We shall not go into these technical details here. It suffices to say that equation 
(3.17) is indeed the discrete form of Gambler's equation. Like the latter, it is built 
up from two Riccati equations in cascade, and indeed its continuous limit is equation 
(G15). Just as (G5, G13, G14) can be obtained as special limits of the Gambier 
equation (G15), in the same way, their discrete analogs are obtained from (3.17). Let 
us start with (G5). Taking a = b = 0 (together with cr = 1), we find 

= Xn-id(n - l)(c(n - l)d(n)a;n + 1) + xn - 1 
n+1 xn-id(n - 1) + xn - 1 

Putting u = — 1 + 1/x we obtain 

Un_i = un+1(pun + q) + r 

where r = c(n — l)d(n)d(n — 1), p = d(n — 1) — 1, and q = d(n — 1)(1 + c(n)d(n — 1)). 
The mapping (3.19) is precisely the one obtained in [40] where we investigated the 3- 
point mappings linearizable through a Cole-Hopf-like transformation. The remaining 
two discrete equations are obtained in a straightforward way. In the continuous case, 
they correspond to one of the two Riccati equations becoming linear. Equation (G13) 
is in fact a derivative of the Riccati equation (but different from (G6)). In the discrete 
case, we find the system (where, because we now have an extra freedom, b can be 
scaled to 1) 

S/n+i = Vn + c, (3.20a) 

dxnyn + G ,r>r>™\ 
Xn+i = -.———, (3.20b) 

J.       CLXfi 

or an equivalent form in terms of x alone. 
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The discrete equivalent of equation (G14) corresponds to taking a = 0, in which 
case (3.20b) becomes linear in 1/x: 

yn+i = b-^, (3.21a) 

Zn+i      dyn\xnJ' 

Thus we have established a discrete equivalent for each of the equations of the lin- 
earizable class. 

3.3. The discrete Painleve equations. As we explained in the introduction, it 
was the discovery of the discrete analogs of the Painleve transcendental equations that 
spurred the activity around integrable discrete systems. The first discrete Painleve 
equation to be acknowledged as such is d-Pj in the form 

xn+1 + xn_i + xn = ha (3.22) 

where z = an + /?, and a is a constant. The second transcendent d-Pn made its 
appearance shortly afterwards [30] 

Xn+i +ffn-l =   1 ^    2   ■ (3.23) 

It is interesting to rewrite (3.23) so as to make the discretization of the second deriv- 
ative appear explicitly on the left-hand side [15]. We find 

2x5 + zxn + a , 
xn+1 + Xn-x - 2xn =     "   _   y    . (3.24) 

l     xn 

One recognizes in the numerator of the right-hand side the non-derivative part of Pn. 
Thus the continuous limit of (3.24) is obtained by putting x = ew, and letting e go 
to zero. In fact, d-Pj can be written in an analogous way, using a redefinition of x 
and z. (For the continuous limit to exist, we must take a ^ 0, which can be scaled to 
a = —6). We find in this case (with x —> 1 — x) 

xn+i + xn-i - 2xn = —-2- . (3.25) 
i     xn 

The higher discrete Ps were obtained in this same way. The idea is to start from the 
QRT mapping, which can be rewritten as 

/3(Zn)#n+lZn-l - /2(a?n)(^n+l + ^n-l) + /l(^n) = 0 (3.26) 

and obtain information on the form of the /;s, based on the continuous limit. In fact, 
introducing the lattice parameter e, we have 

xn+1 + Xn-! = 2x + eV + 0(e4), 

Xn+iXn-! = x2 + 62(xx" - x'2) + 0{eA), (3.27) 

and the continuous limit of (3.26) will come out as 

x"=,Mx)
fMx>2 + g{X). (3.28) 
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Thus, when we aim at a specific d-P, we start by choosing the fas in such a way as to 
get fo(x)l(xfs(x) — /2(x)) to coincide with the factor multiplying xf  in the continuous 
analog of the desired equation. 

We have thus obtained for d-Pm 

„      ^ ab(xn - p)(xn - q) 
xn+1xn-1=   iXn_a){Xn_b) (3-29) 

where p = po\n, q = qo^1, and a, b are constants. Let us point out that this form of 
d-Pm corresponds to a Pni obtained from (G12) through the transformation of the 
independent variable z —> Z = ez] this transformation allows us to eliminate the term 
linear in w'. (The same transformation will be used in the case of d-Py.) As we have 
shown in [16], the discrete form (G12) also can be derived directly. It corresponds to 
a system of two two-point mappings 

_ z(n)yn + a 

z(n - l/2)xn + b 
Vn + Vn-l = — 2^71 • (3-30) 

For d-Piv and d-Py, we can give analogous expressions (a, 6, c are constants) 

Oc+i + xn)(xn + xB-i) = ^ ~ o2)^ ~P, (3.31) 

(Xn+lXn - iKx^ - 1) = P*(*n-a)(X  -l/a)(x  -b)(Xn-m_       (3 32) 

In the case of d-Py, the continuous limit of (3.32) is not (G22), but rather a more sym- 
metric form obtained from (G22) through a transformation of the dependent variable 
u = ^j (in addition to the transformation of the independent variable we mentioned 

above). In this case, the coefficient of uf2 is |(^3i + ^x)- 
Just as in the continuous case, the d-Ps above are organized in a coalescence cascade 

in the form: 

d-Pv -> {d-Piv,d-Piii} -> d-Pn -> d-Pj. 

Contrary to the continuous case, the canonical forms of the d-Ps are not unique. 
Several possible forms do exist for each equation, all of them having the appropri- 
ate continuous limit. Each of these equations, of course, has all the analogs of the 
properties that characterize the corresponding continuous equation. These properties 
have been the object of intense study these last few years. In particular, the discrete 
Painleve equations [18] 

• form coalescence cascades, 
• possess Lax pairs, 
• have solutions related through Backlund and Miura transformations, 
• have particular solutions in terms of special functions or rational solutions for 

special values of their parameters. These solutions can be written in terms of 
Casorati determinants, and 

• can be cast into bilinear forms. 
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And now we come to the crucial question of d-Pvi- Clearly a non-autonomous three- 
point mapping of the QRT type must exist, having Pyi as its continuous limit. It would 
be just the deautonomization of the generic mapping (3.4) presented above. (This is 
expected to be true in particular in view of our remark in Section 3.1, concerning the 
fact that the only autonomous mapping of the form (3.4) obtained through singularity 
confinement was the QRT one.) Still, the computations leading to an explicit form 
of the coefficients are prohibitively cumbersome, and we cannot give the precise form 
of d-Pvi- We shall content ourselves here to a plausibility argument based on the 
structure of the singularities of the known d-Ps. For the d-Ps presented above, we 
have the following singularity patterns. 

The discrete d-Py has 8 singularities x^,... ,a;^ and oo (double). They are 
organized as follows: x^ goes over to x^ in one step, and vice versa, which we 
will simply denote as {x^^x^}, {x^2\x^}, and similarly {x^,x^}, {x^\x^}. 
(Clearly these singularities correspond to a, 1/a, 6, 1/6, that appear in the numerator 
of the left-hand side of (3.32), and the fact that x^ = l/x^\ x^ = 1/x^ is 
an extra integrability requirement.) Finally, the remaining two finite singularities 
(to be identified with p, q in the denominator) follow the pattern {x^\oo,x^} and 
{x(6\oo,x^}. For d-Piv, we have the same structure. The 8 singularities are now 
identified in the following way: x^1' = a, x^ = —a, x^ = b, x^4' = —b, x^ = c — z, 
x^ = — c — z, and oo (double). For d-Pni, the fas are cubic and the singularities are 
a^1),... ,#(4), oo (double), and 0 (double), where the rcW's must be identified with 
the quantities a, 6, c, d that appear in the equation. The singularity patterns are 
{^1),oo,^2)}, {^2),oo,^1)}, {a:<3>,0,a;<4>}, and {x(4\0,xW}. In the case of d-Pn, 
we have /3=0, /i and /g quadratic, and thus in principle only four singularities, x^, 
x(2\ and oo (double). The x^, x^ are traditionally set to ±1, and we obtain the 
patterns {l,oo, — 1} and {—l,oo, 1}. Finally, for d-Pi, the singularities are 0 and oo, 
(both double). We obtain the singular pattern {0, oo, oo, 0}. 

The discrete Pyi, since it is the analog of Pyi, i.e., the generic and most symmetric 
among the Painleve equations, would be expected to have 8 distinct singularities (three 
of which can be taken equal to 0, 1, and oo). In analogy to the autonomous case, we 
expect its singularity patterns to be {x^.x^}, {x^2\x^}, {x^3\x^}, {x^^x^}, 
{x^\x^}, {x^\x^}, {x^\x^}, {x(8\xW}. (In Section 3.1, we have paired the 
singularities in a slightly different way, {x^, x^4)}, but, clearly, this is just a question 
of renaming.) Still, as explained above, the explicit implementation of the confinement 
conditions leads to equations for the x^(n) in terms of the a^2)(no) and x^(no + 1) 
in an explicit way. This system of equations, however, is much more complicated than 
Pyi itself, and no explicit solutions are yet available. 

This completes our list of mappings that are the discrete equivalent of the Painleve- 
Gambier equations. 

4.  Conclusion and perspectives 

In this paper, we have tried to establish the equivalent of the Gambier classification 
for discrete systems in the form of three-point mappings. As we have shown in the 
previous sections, the parallel is perfect (although differences between discrete and 
continuous systems do exist). Thus, examples of mappings can be presented for all 
three integrable classes:  integrable through quadratures, linearizable, and Painleve 
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transcendents. The study of the properties of these discrete equations and of their 
solutions as well as the problem of their classification define whole new directions of 
research which we have just started exploring. 

Several questions remain open at this moment concerning the discrete analogs of 
integrable differential equations. In this study, we have limited ourselves to equations 
of the first and second order explicit in the highest derivative. However, there exists a 
class of equations where the highest derivative enters through some power larger than 
one: the Briot-Bouquet first-order equations [24] (w,)n = f(w, z) and the equations 
studied by Bureau and Cosgrove [7] at second order of the form (w")n = f(w\w,z). 
Their discrete analogs have never been studied (at least to the authors' knowledge). 
Even without resorting to nonlinearities of the highest derivative, equations in the form 
of a system of two two-point mappings have not been studied in any generality. Their 
study is all the more interesting (and difficult) since several examples of integrable 
mappings xn+i = f(xniynrn), yn+i = g(xn,yn,n) do exist [11]. Moreover, the guide 
of the continuous limit does not exist here, since the study of continuous systems 
wf = f(w,u,z), u' = g(w,u,z) is far from complete. The same is true for third-order 
equations w,n = f(wn,w',w,z). The study of the corresponding 4-point mappings 
is only schematic at this moment, although it is of a considerable interest: in fact, 
in [29], Nijhoff has shown that a natural form of a q—deformed d-Pj is the 4-point 
equation 

a -nt 2        \        (n)q + OLqn      (n - l)q + aq71'1 

f3q n(xn+1 - q2xn-.2) = q±-^ ^ ^  (4.1) 
xn Xn—\ 

where (n)q = (qn — l)/(q— 1). The discrete analog of higher-order equations also would 
be of great interest since it would allow us to obtain discrete forms for well-known 
integrable hamiltonian systems [42]. 

Moving away from the purely discrete systems, one encounters further interesting 
problems. The domain of differential-difference equations has only been touched upon 
in our work in [19]. Still, this first study revealed the existence of the delay-differential 
equivalents to the Painleve equations. Here also, there exist several possibilities com- 
bining higher order derivatives with higher order mappings. We expect the equations 
that will result from such studies (and the ones mentioned in the previous paragraphs) 
to be much richer than the ones discovered one century ago by Painleve and Gambier. 
It would be even more satisfactory if they turned out to have the vast domain of 
physical applications that the Painleve equations enjoy today. 

Acknowledgements. The authors wish to express their gratitude to all who have 
assisted them over the years in exploring the new world of discrete integrable systems 
either through direct collaboration or through discussions and exchange of correspon- 
dence: M. J. Ablowitz, F. Bureau, H. Capel, P. Clarkson, B. Dorizzi, A. Fokas, J. 
Hietarinta, R. Hirota, N. Joshi, K. Kajiwara, G. Karra, Y. Kosmann-Schwarzbach, 
M. D. Kruskal, D. Levi, B. McCoy, J-M. Maillard, I. Moreira, U. Mugan, F. Nijhoff, 
Y. Ohta, V. Papageorgiou, G. Rollet, J. Satsuma, J-M. Strelcyn, K. M. Tamizhmani, 
and P. Winternitz. 



210 GRAMMATICOS AND RAMANI 

References 

1. M. J. Ablowitz and J. Ladik, Nonlinear differential-difference equations, J. Math. Phys. 16 
(1975), 598-603. 

2. M. J. Ablowitz, A. Ramani, and H. Segur, Nonlinear evolution equations and ordinary differential 
equations of Painleve-type, Lett. Nuov. Cim. 23 (1978), 333-338. 

3. M. J. Ablowitz and H. Segur, Asymptotic solutions of the Korteweg-de Vries equation, Stud. 
Appl. Math. 57 (1977), 13-44. 

4.  , Exact linearization of Painleve transcendents, Phys. Rev. Lett. 38 (1977), 1103-1106. 
5. R. J. Baxter, Exactly Solvable Models in Statistical Mechanics, Academic Press, London, 1982. 
6. E. Brezin and V. A. Kazakov, Exactly solvable field theories of closed strings, Phys. Lett. 236B 

(1990), 144-149. 
7. F. Bureau, Equations differentielles du second ordre en Y et du second degre en Y dont Vintegrale 

est a points critiques fixes, Ann. di Math. 91 (1972), 163-172. 
8. C. M. Cosgrove, All binomial-type Painleve equations of the second order and degree three or 

higher, Stud. Appl. Math. 90 (1993), 119-187. 
9.  , Corrections and annotations to Ince's Chapter 14- 

10. E. Fermi, J. Pasta, and S. Ulam, Studies of nonlinear problems, Los Alamos report LA1940 
(1955). 

11. A. S. Fokas, B. Grammaticos, and A. Ramani, From continuous to discrete Painleve equations, 
J. Math. Anal, and Appl. 180 (1993), 342-360. 

12. B. Gambier, Sur les equations differentielles du second ordre et du premier degre dont Vintegrale 
est a points critiques fixes, Acta Math. 33 (1910), 1-55. 

13. C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Method for solving the Korteweg- 
de Vries equation, Phys. Rev. Lett. 19 (1967), 1095-1097. 

14. R. Garnier, Sur les equations differentielles du troisieme ordre dont Vintegrale generale est uni- 
forme et sur une classe d'equations nouvelles d'ordres superieurs dont Vintegrale generale a ses 
points critiques fixes, Ann. Scl. Ec. Norm. Sup. 29 (1912), 1-126. 

15. B. Grammaticos and B. Dorizzi, Integrable discrete systems and numerical integrators, J. Math. 
Comp. in Sim. 37 (1994), 341-352. 

16. B. Grammaticos, F. W. Nijhoff, V. Papageorgiou, A. Ramani, and J. Satsuma, Linearization and 
solution of the discrete Painleve-III equation, Phys. Lett. A185 (1994), 446-452. 

17. B. Grammaticos and A. Ramani, The Gambier mapping, Physica A223 (1995), 125-136. 
18.  , Discrete Painleve equations: derivation and properties, NATO ASI C413 (1993), 299- 

313. 
19. B. Grammaticos, A. Ramani, and I. C. Moreira, Delay differential equations and the Painleve 

transcendents, Physica A196 (1993), 574-590. 
20. B. Grammaticos, A. Ramani, and V. G. Papageorgiou, Do integrable mappings have the Painleve 

property?, Phys. Rev. Lett. 67 (1991), 1825-1828. 
21. B. Grammaticos, A. Ramani, and K. M. Tamizhmani, Nonproliferation of preimages in integrable 

mappings, Jour. Phys. A27 (1994), 559-566. 
22. S. P. Hastings and J. B. McLeod, A boundary-value problem associated with the second Painleve 

transcendent and the Korteweg-de Vries equation, Arch. Rat. Mech. Anal. 73 (1980), 31-51. 
23. R. Hirota, Discrete analogue of a generalized Toda equation, J. Phys. Soc. Jpn 50 (1981), 3785- 

3791. 
24. E. L. Ince, Ordinary differential equations, Dover, New York, 1956. 
25. M. Jimbo and T. Miwa, A study of holonomic fields, Proc. Japan Acad. 56A (1980), 405-410. 
26. M. Jimbo, T. Miwa, and K. Ueno, Monodromy preserving deformation of linear ordinary differ- 

ential equations, Physica D2 (1981), 306-352. 
27. P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure and 

Appl. Math 21 (1968), 467-490. 
28. B. M. McCoy and F. Y. Wu, Nonlinear partial difference equations for the two-dimensional Ising 

model, Phys. Rev. Lett. 45 (1980), 675-679. 
29. F. W. Nijhoff, On a q-deformation of the discrete Painleve I equation and q-orthogonal polyno- 

mials, Lett. Math. Phys. 30 (1994), 327-336. 



THE PAINLEVE-GAMBIER CLASSIFICATION FOR DISCRETE SYSTEMS 211 

30. F. W. Nijhoff and V. G. Papageorgiou, Similarity reductions of integrable lattices and discrete 
analogues of the Painleve-II equation, Phys. Lett. 153A (1991), 337-343. 

31. F. W. Nijhoff, V. Papageorgiou, and H. W. Capel, Integrable time-discrete systems: lattices and 
mappings, Springer Lect. Notes in Math. 1510 (1992), 312-325. 

32. P. Painleve, Sur les equations differentielles du second ordre et d'ordre superieur dont Vintegrale 
generale est uniforme, Acta Math. 25 (1902), 1-85. 

33. V. Periwal and D. Shevitz, Unitary-matrix models as exactly solvable strings theories, Phys. Rev. 
Lett. 64 (1990), 1326-1329. 

34. Proceedings of the centennial KdV conference, Acta Applic. Math. 39 (1995). 
35. G. R. W. Quispel, F. W. Nijhoff, H. W. Capel, and J. van der Linden, Linear integral equations 

and nonlinear differential-difference equations, Physica A125 (1984), 344-380. 
36. G. R. W. Quispel, J. A. G. Roberts, and C. J. Thompson, Integrable mappings and soliton 

equations, Physica D34 (1989), 183-192. 
37. A. Ramani and B. Grammaticos, The hunting for the d-Pyj, in preparation. 
38. A. Ramani, B. Grammaticos, and A. Bountis, The Painleve property and singularity analysis of 

integrable and non-integrable systems, Phys Rep 180 (1989), 159-245. 
39. A. Ramani, B. Grammaticos, and J. Hietarinta, Discrete versions of the Painleve equations, 

Phys. Rev. Lett. 67 (1991), 1829-1832. 
40. A. Ramani, B. Grammaticos, and G. Karra, Linearizable mappings, Physica A181 (1992), 115- 

127. 
41. A. Ramani, B. Grammaticos, and V. G. Papageorgiou, Singularity confinement, CRM Proc. and 

Lect. Notes 9 (1996), 303-318. 
42. Yu. B. Suris, Discrete-time analogs of some nonlinear oscillators in the inverse-square potential, 

Jour. Phys. A27 (1994), 8161-8170. 
43. N. J. Zabusky and M. D. Kruskal, Interaction of solitons in a collisionless plasma and the 

recurrence of initial states, Phys. Rev. Lett. 15 (1965), 240-243. 

LPN, UNIVERSITE PARIS VII, TOUR 24-14, bkME ETAGE, 75251 PARIS, FRANCE 

CPT, ECOLE POLYTECHNIQUE, CNRS, UPR 14, 91128 PALAISEAU, FRANCE 




