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ABSTRACT. In this paper we discuss the derivation of symmetry reductions and 
exact solutions of nonlinear partial differential equations using the classical Lie 
method of infinitesimal transformations, the direct method due to Clarkson and 
Kruskal [22], and the nonclassical method due to Bluman and Cole [11]. In 
particular, we compare and contrast the application of these three methods and 
discuss the relationships among the methods. 

1. Introduction 

Nonlinear phenomena have many important applications in several aspects of physics 
as well as other natural and applied sciences. Essentially all the fundamental equa- 
tions of physics are nonlinear, and, in general, such nonlinear equations often are very 
difficult to solve explicitly. Consequently perturbation, asymptotic, and numerical 
methods often are used, with much success, to obtain approximate solutions of these 
equations; however, there also is much current interest in obtaining exact analytical 
solutions of nonlinear equations. Symmetry group techniques provide one method for 
obtaining such solutions of partial differential equations. These have many mathemat- 
ical and physical applications and are usually obtained either by seeking a solution 
in a special form or, more generally, by exploiting symmetries of the equation. This 
provides a method for obtaining exact and special solutions of a given equation in 
terms of solutions of lower dimensional equations, in particular, ordinary differential 
equations. Furthermore, the methods do not depend upon whether or not the equation 
is "integrable" (in any sense of the word). 

The classical method for finding symmetry reductions of partial differential equa- 
tions is the Lie group method [12,58]. Suppose (x,t) G R2 are the independent 
variables, u G R the dependent variable, and u^(x,i) denotes the set of all the par- 
tial derivatives of order £ of u. To apply the classical method to the general iVth-order 
partial differential equations 

A = A(x,t,tt,uW(a;,t)>...>uW(^*))=0, (1.1) 
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we consider the one-parameter Lie group of infinitesimal transformations in (x, t, u) 
given by 

x = x + e€(x,t,u) + 0(e2), (1.2a) 

i=t + eT(x,t,u) + 0(e2)1 (1.2b) 

u = u + e(i)(x,t,u) + 0(e2) (1.2c) 

where e is the group parameter. Requiring that (1.1) is invariant under this trans- 
formation yields an overdetermined, linear system of equations for the infinitesimals 
£(#, £, u), T(x,t1u), and (j)(x,t,u). The associated Lie algebra of infinitesimal symme- 
tries is the set of vector fields of the form 

Y = £t{x,t,u)dx + T(x,t,u)dt + (j){x,t,u)du (1.3) 

where dx = d/dx, etc. Though this method is entirely algorithmic, it often involves a 
large amount of tedious algebra and auxiliary calculations which can become virtually 
unmanageable if attempted manually, and so symbolic manipulation programs have 
been developed, for example, in MACSYMA, MAPLE, MATHEMATICA, MUMATH, and 
REDUCE, to facilitate the calculations; an excellent survey of the different packages 
presently available and a discussion of their strengths and applications is given by 
Hereman [40]. 

There have been several generalizations of the classical Lie group method for sym- 
metry reductions. Ovsiannikov [64] developed the method of partially invariant solu- 
tions; recently Ondich [63] has shown that this method can be considered as a special 
case of the method of differential constraints introduced by Yanenko [80] and Olver 
and Rosenau [60,61]. Bluman and Cole [11], in their study of symmetry reductions of 
the linear heat equation, proposed the so-called nonclassical method of group-invariant 
solutions; this technique also is known as the "method of conditional symmetries" [46] 
and the "method of partial symmetries of the first type" [75]. In this method, the 
original partial differential equation (1.1) is augmented with the invariant surface con- 
dition 

ip = £(#, t, u)ux + T{X, t, u)ut - <j)(x, t, u) = 0, (1.4) 

which is associated with the vector field (1.3). By requiring that the set of simulta- 
neous solutions of (1.1) and (1.4) are invariant under the transformation (1.2), one 
obtains an overdetermined, nonlinear system of equations, as opposed to a linear sys- 
tem in the classical case, for the infinitesimals £, r, and 0, which appear in both the 
transformations (1.2) and the supplementary condition (1.4). The number of deter- 
mining equations arising in the nonclassical method is smaller than for the classical 
method since there are fewer linearly independent expressions in the derivatives. Since 
all solutions of the classical determining equations necessarily satisfy the nonclassical 
determining equations, the solution set may be larger in the nonclassical case. For 
some equations, such as the Korteweg-deVries equation 

ut + 6uux + uxxx = 0, (1.5) 

which is the prototypical soliton equation solved by Gardner, Greene, Kruskal, and 
Miura [38] using the inverse scattering method, the infinitesimals arising from the 
classical and nonclassical methods coincide. It should be emphasized that the vector 
fields associated with the nonclassical method do not form a vector space, still less a 
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Lie algebra, since the invariant surface condition (1.4) depends upon the particular 
reduction. For example, the sum of two nonclassical symmetry operators is not, in 
general, a symmetry operator at all; similarly, the commutator of two nonclassical 
symmetry operators, or the sum of a classical symmetry operator and a nonclassical 
symmetry operator are not, in general, symmetry operators. 

Subsequently, these methods were generalized further by Olver and Rosenau [60,61] 
to include "weak symmetries" and, even more generally, "side conditions" or "differ- 
ential constraints" (see also Yaiienko [80]). However, their framework appears to be 
too general to be practical, and they concluded that: 

"the unifying theme behind finding special solutions of partial differen- 
tial equations is not, as is commonly supposed, group theory, but rather 
the more analytic subject of overdetermined systems of partial differential 
equations." 

Motivated by the fact that symmetry reductions of the Boussinesq equation (see 
equation (2.1) below) were known that are not obtainable using the classical Lie group 
method [56,60,61,69,70], Clarkson and Kruskal [22] developed a direct, algorithmic 
method for finding symmetry reductions (in the following referred to as the direct 
method), which they used to obtain previously unknown reductions of the Boussinesq 
equation (see §2 for details). The basic idea of the direct method is to seek a solution 
of a partial differential equation such as (1.1) in the form 

u(x, t) = F(x, t, w(z(x, t))) (1.6) 

and require that w{z) satisfy an ordinary differential equation. This imposes condi- 
tions upon F(x,t,w), z(x,t), and their derivatives in the form of an overdetermined 
system of equations whose solution yields the desired reductions. Levi and Winter- 
nitz [46] subsequently gave a group theoretical explanation of these results by showing 
that all the new reductions of the Boussinesq equation could be obtained using the 
nonclassical method of Bluman and Cole [11]. The novel characteristic about the di- 
rect method, in comparison to the others mentioned above, is that it involves no use 
of group theory. We remark that the direct method has certain resemblances to the 
so-called "method of free parameter analysis" [39]; although in the latter method the 
boundary conditions are crucially used in the determination of the reduction whereas 
they are not used in the direct method. Additionally ansatz-based methods for deter- 
mining reductions and exact solutions of partial differential equations have been used 
by Fushchych and co-workers (see [34-36] and the references therein). 

The nonclassical method lay dormant until the papers by Olver and Rosenau [60,61]. 
However, following the development of the direct method, there has been renewed 
interest in the nonclassical method. Recently both methods have been used to generate 
many new symmetry reductions and exact solutions for several physically significant 
partial differential equations, which represents significant and important progress (see 
[20,34,36] and the references therein). At the time of writing, according to BIDS1, 
there have been 117 citations of the paper by Bluman and Cole [11], 18 before 1988 
and 99 since 1989. 

1Bath Information and Data Services ISI database, Science Citation Index 
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Recent generalizations of the direct method include those due to Burde [16,17], 
Galaktionov [37], and Hood [44]. Generalizations of the nonclassical method are dis- 
cussed by Bluman and Shtelen [13], Burde [18], and Olver and Vorob'ev [62]. 

In §2 of this paper, we discuss the application of the classical, direct, and nonclas- 
sical methods to the Boussinesq equation. In §3 we apply the nonclassical method to 
five variants of a shallow water wave equation in particular, comparing the complexity 
of the associated calculations. In §4 we discuss the relationship between the classical, 
direct, and nonclassical methods. 

2. The Boussinesq equation 

In this section, we discuss symmetry reductions of the Boussinesq equation 

A = utt + uuxx -I- u2
x + uxxxx = 0, (2.1) 

which is also a soliton equation solvable by inverse scattering [1,81]. The Boussinesq 
equation arises in several physical applications: propagation of long waves in shallow 
water [14,15,74,78], one-dimensional nonlinear lattice-waves [73,82], vibrations in a 
nonlinear string [81], and ion sound waves in a plasma [71]. 

2.1. Classical Lie method. To apply the classical Lie method to the Boussinesq 
(BQ) equation (2.1), we require that the set S := {ufa^t) : A(^) = 0} of solutions of 
(2.1) is invariant under the transformation (1.2). This yields the determining equa- 
tions, a system of linear, homogeneous PDEs for £, r, and 0, and that is accomplished 
by requiring that pr^4^v(A)|A=o — 0 where pr^v is the fourth prolongation of the 
vector field (1.3) [12,58]. 

Hence, we obtain twelve determining equations for the infinitesimals, which have 
the general solution 

f = ax + /3,        r = 2at + 7,        0 = -2cm (2.2) 

where a, /?, and 7 are arbitrary constants [56,70]. Consequently, there are two canon- 
ical (classical) symmetry reductions (see [20,22] for further details). 

Case 1. a = 0. In this case, we set 7 = 1 and obtain the traveling wave reduction 

u(x,t) = w(z),        z = x — f3t (2.3) 

where w(z) satisfies 

w"" + ww" + (w')2 + /? V = 0 (2.4) 

with ' := d/dz, which is solvable in terms of the first Painleve equation or elliptic 
functions, depending upon the choice of constants of integration. 

Case 2. a = 1. In this case, we set /3 = 7 = 0 and obtain the scaling reduction 

u(x, t) = t-1w{z),        z = x/t1/2 (2.5) 

where w(z) satisfies 

w"" + W + K)2 + \z2™" + \™' + 2w = 0, (2.6) 

which is solvable in terms of the fourth Painleve equation. 
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However, as noted by several authors [56,60,61,69,70], the BQ equation (2.1) also 
possesses the accelerating wave solution 

u(x,t) = w(z) -4/x2t2,        z^x + fit2 (2.7) 

where fj, is an arbitrary constant and w(z) satisfies 

w'" + ww' + 2fjiw = SfjL2z + A 

with A an arbitrary constant, which is solvable in terms of the second Painleve equa- 
tion. Associated infinitesimals for this reduction are £ = 2/it, r = — 1, (j) = 8/i2t, which 
are clearly not a special case of (2.2), with associated vector field v = 2/it9x — dt + 

2.2. Direct method. Clarkson and Kruskal [22] developed the direct method in an 
attempt to understand the symmetry reduction (2.7) and derive it systematically (the 
previous derivations had been by seemingly ad hoc techniques). For the BQ equation 
(2.1), Clarkson and Kruskal [22] showed that it is sufficient to seek a solution in the 
linear form 

u(x, t) = /?(#, t)w(z(x, t)) + a(x, £), (2.8) 

rather than the more general form (1.6). There are two cases to consider, zx ^ 0 and 
zx = 0, though we shall consider only the generic case when zx ^ 0; the case zx = 0 
is discussed in [19,47]. 

In the generic case when zx ^ 0, substituting (2.8) into the BQ equation (2.1) yields 

f3z4
xw"" + (6f3z2

xzxx + 4(3xz
3

x)w"' 

+ [apzl + p(z2
t + %zlx + 4zxzxxx) + 12f3xzxzxx + 6f3xxzl]w" 

-\~ uJ^xxxx ~I   QftxZxxx   i   ^Pxx^xx ~r ^Pxxx^x ~T~ ^^xP^x "i   "(XPxZx 

+ a(3zxx + 2(3tzt+f3ztt]w
f 

+ [Pxxxx + 2axl3x + a(3xx + axx/3 + l3tt]w + (l2z2
xww" 4- I3(4t/3xzx + (3zxx)wwf 

+ (fix2 + PPxx)™2 + I32zl(w')2 + att + aaxx + a2
x + axxxx = 0. (2.9) 

For this to be an ordinary differential equation for w(z), the coefficients must be of 
the form l3z^T(z) (using the coefficient of w,,,, as the normalizing coefficient). This 
requirement generates an overdetermined system of equations for a(xy t), l3(x,t), and 
z(x,t). Solving this yields the generic symmetry reduction of the BQ equation (2.1) 
given by 

u(x,t) = e2(t)w(z)--^^x~ + ^j   ,        z(x,t) = x9(t) + <j>(t)        (2.10) 

where 9(t) and <f)(t) are any solutions of 

g-M        g-M + BT, (2.11) 
A and B are arbitrary constants, and w(z) satisfies 

w"". + ww" + (w')2 + (Az + B)w' + 2Aw = 2(Az + B)2. (2.12) 

Depending upon the choice of the constants, this equation is solvable in terms of the 
first, second, and fourth Painleve equations [22]. 



Z = X + /il*, (2.13a) 

z = x^, (2.13b) 

z = a; + /Z3^2, (2.13c) 

z = xt-\- fat6, (2.13d) 

z = xt-1/2+»5t
3/2, (2.13e) 
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Solving (2.11) yields six canonical types of symmetry reductions: 

u(x,t) = Wi(z), 

u(x, t) = t2W2(z) — x2/t2, 

u{x,t) = Ws(z) — 4/Z3^2, 

u(x, t) = t2wA{z) -(x + &fatb)2/t2, 

u(x,t) = t^w^z) -(x- 3/x5t
2)2/(4t2), 

u(x,t) = ^w6(z)^z^ +/,6p3/2WJ2|j    z = p-V*(t)[x + tom   (2.13f) 

where /ii, nz,...,^ are arbitrary constants, p(t) = p(^ + £o;0,#3) is the Weierstrass 
elliptic function, £(£) ■= ^(^ + ^o;0,^3) is the Weierstrass zeta function, wi{z) and 
W2{z) satisfy an equation equivalent to the first Painleve equation, w^{z) and w^z) 
satisfy an equation equivalent to the second Painleve equation and ^(z), and WQ{Z) 

satisfy an equation equivalent to the fourth Painleve equation. 

2.3. Nonclassical method. In the concluding discussion of [22], Clarkson and 
Kruskal expressed the hope "that a group theoretical explanation of the [direct] 
method will be possible in due course". Levi and Winternitz [46] subsequently gave 
such an explanation of Clarkson and KruskaPs results by showing that all their new 
reductions of the Boussinesq equation could be obtained using the nonclassical method 
of Bluman and Cole [11], as we show in this subsection. Recently Olver [59] has pro- 
vided a proof of the precise relationship between the direct methods which we discuss 
in §4 below (see also [9,68]). 

In the nonclassical method, it is required that the infinitesimal transformation 
(1.2) leaves invariant the set of simultaneous solutions of the BQ equation (2.1) and 
the surface condition (1.4) where £, r, and (j) are the same as in the transformation 
(1.2). That is, we require that the subset of S given by S^ = {u(x,t) : A(u) = 0, 
<if;(u) = 0} be invariant under the transformation (1.2). Thus "nonclassical symme- 
tries" , or "conditional symmetries", of a partial differential equation A are transfor- 
mations that leave only the subset S^ of the solution set 5 of the system invariant. 
Other solutions of A that are not in the subset S^p are not necessarily transformed to 
the set S. 

The usual method of applying the nonclassical method (e.g., as described in [46]), 
to the BQ equation (2.1) involves applying the prolongation pr^v to the system of 
equations given by (2.1) and the invariant surface condition (1.4) and requiring that 
the resulting expressions vanish for u £ 5^,, i.e., 

prWv(A) =0,        pr^vO/O =0. (2.14) 
A=0,V=0 A=0,^=0 

It is easily shown that pr^v^) = —(^uUx + Tuut — <fiu)ip, which vanishes identically 
when '0 = 0, without imposing any conditions upon £, r, and (f>. However, as shown by 
Clarkson and Mansfield [24], this procedure for applying the nonclassical method can 
create difficulties, in particular, in the implementation of symbolic manipulation pro- 
grams. These difficulties often arise for equations such as (2.1) which require the use 
of differential consequences of the invariant surface condition (1.4). In [24], Clarkson 
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and Mansfield proposed an algorithm for calculating the determining equations asso- 
ciated with the nonclassical method which avoids many of the difficulties commonly 
encountered, and we use this algorithm here. 

There are two cases to consider: (i), r ^ 0; and (ii), r = 0 and £ ^ 0. We only 
shall consider the generic case when r ^ 0. 

In the case r ^ 0, we set r = 1, without loss of generality, and then we use the 
invariant surface condition (1.4) to eliminate Uu in (2.1), yielding 

- € [0* + K^x - {€xUx +.€uUl + frxx)] 

+ UUXX + Ux + Ux = o, (2.15) 

which essentially is an ordinary differential equation for u(x) with t a parameter since 
only ^-derivatives of u arise. Now we apply the classical Lie algorithm to this equation, 
i.e., we require that it be invariant under the transformation (1.2) with r = 1, and 
then we use (2.15) to eliminate uxxxx. This yields a system of seven determining 
equations which have solution 

Z = xm+g(t), 

+ 2x 

+ 2/2(t) 

fff(') + /(*)f+4/l(*)fl(*) + 2g(t) 
dt 

+ 2/(*)fl(<) ]} 

(2.16a) 

(2.16b) 

where 

/(<) = 
1    dp 

2p(t) dt' S(*) = 
Ki    dp 

2p(t) dt 
+ KQ  dp 

jp(t) ~dt J    \pf(s)}: ds, 

and p(t) satisfies 

(*) 
f)     =K3P3 + K2 (2.17) 

where K3, K,2, «I, and tto are arbitrary constants (see [20] for details). Equation 
(2.17) is solvable in terms of the Weierstrass elliptic function p(£;0,03) if ^3^2 / 0 
and elementary functions otherwise. Solving (2.17) for p(t) yields the six canonical 
symmetry reductions (2.13) of the BQ equation (2.1) that were derived by Clarkson 
and Kruskal [22] using the direct method, as discussed in the previous section. 

3. Shallow water wave equations 

The shallow water wave (SWW) equation, 

vxxt + OLVvt - f3vxd~lvt -vt-vx = 0 (3.1) 

where (d~1f)(x) = f™ f(y) dy and a and /? are arbitrary nonzero constants, can be 
derived from the classical shallow water theory in the Boussinesq approximation [31]. 
Two special cases of (3.1) have attracted some attention in the literature, namely the 
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cases when a — 2/3 and a — /?. In their seminal paper on soliton theory, Ablowitz, 
Kaup, Newell, and Segur [2] showed that 

Vxxt + 2/3f vt - fivxd^vt -vt-vx = 0 (3.2) 

(which is (3.1) with a = 2/3) is solvable by inverse scattering. Further, they remark 
that (3.2) reduces in the long wave, small amplitude limit to the KdV equation (1.5), 
and they also comment that (3.2) has the desirable properties of the regularized long 
wave (RLW) equation [10,65] 

Vxxt + vvx - vt - vx = 0, (3.3) 

sometimes known as the Benjamin-Bona-Mahoney equation, in that it responds feebly 
to short waves. We note that (3.2) and (3.3) have the same linear dispersion relation 
uj(k) = —k/(l-\-k2) for the complex exponential v(x, t) ~ exp{i[kx-\-uj(k)t]}. However, 
in contrast to (3.2), the RLW equation (3.3) is thought not to be solvable by inverse 
scattering [53]. Subsequently, Hirota and Satsuma [43] studied both (3.1) and (3.2) 
with a = /?, i.e., 

Vxxt + f3vvt - /Svxd^vt - vt - vx = 0, (3.4) 

using Hirota's bi-linear method [42] and obtained iV-soliton solutions for both equa- 
tions. 

The SWW equation (3.1) also was discussed by Hietarinta [41] who showed that it 
can be expressed in Hirota's bi-linear form [42] if and only if either (i) a = /?, when it 
reduces to (3.4), or (ii) a = 2(3, when it reduces to (3.2). Further, the SWW equation 
(3.1) satisfies the necessary conditions of the Painleve tests due to Ablowitz et al. [3,4] 
and Weiss et al. [77] to be completely integrable if and only if either a = f3 or a = 2/? 
(see [25]). These results strongly suggest that the SWW equation (3.1) is completely 
integrable if and only if it has one of the two special forms (3.2) or (3.4), which are 
both known to be solvable by inverse scattering (see [2] and [30], respectively). 

Here we are interested in symmetry reductions and exact solutions of five variants 
of SWW equation (3.1). Since (3.1) contains a nonlocal term, in order to undertake 
symmetry analysis we need to write (3.1) as an analytic equation or system. These 
five variants are 

(i) the scalar equation 

uxxxt + auxuxt + f3utuxx — uxt - uxx = 0, (3.5) 

(ii) the system with two dependent variables 

vxxt + avvt + (3wvx - vt - vx = 0, (3.6a) 

wx = Vf) (3.6b) 

(iii) the system with three dependent variables 

v = ux, (3.7a) 

w = uu (3.7b) 

Vxxt + avvt + (3wvx -'Vt-Vx = 0, (3.7c) 
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(iv) the system derived from a conservation law 

1. 
^x = uxxx + ^(a - (i)u2

x - ux, (3.8a) 

& = Ux - (3utux, (3.8b) 

and (v) a system with two dependent variables only slightly different from the second 
system, but including the dependent variable u, 

vxxt + avvt + Putvx - vt - vx = 0, (3.9a) 

v = ux. (3.9b) 

3.1. Classical symmetries. The number of determining equations obtained by ap- 
plying the classical method to these five systems is given in the following table. 

Equation No. determining equations 
(3.5) 14 linear equations 
(3.6) 20 linear equations 
(3.7) 24 linear equations 
(3.8) 17 linear equations 
(3.9) 17 linear equations 

Solving the associated determining equations in the five cases yields the infinitesi- 
mals 

£ = IJLXX + 112, M, 

*~».+^+^+», *--(s+w)(-i 
02 = -2^i »4). rt     ,      2iJLi{t - x - pu) 

a 

where /xi, ^2, A^a, and ^4 are arbitrary constants and /(£) is an arbitrary function. 
Hence there are two canonical reductions. 

Case 1. fix •=£ 0. In this case, we set /xi = 1, /Z2 = ^3 = /M = 0, and yfer = --^[ln^(t)], 
without loss of generality. Hence, we obtain the reduction 

u{x,t) = g(t)U(z) + ± + -,      w(x,t) = ^W(z) + I, 
pa at p 

1 
«(«,<) = ff2(*)V(z) + -, /3, 

a 
^(x,i) = 5

3(i)$(z)-^C/(z)ff(i)- 
(a + /3)aj 

a 2a2 

where z = ^(t), {/(z) satisfies 

zU"" + 4C/'" + 2a (£/')2 + /3C/C/" + (a + 0)zV'V" = 0, (3.10) 

1 

and V{z), W{z), and $(z) are given by 

V = U',        W = U + zU',        ® = -lzU,"-l(a + l3)z(U')2-^0UU'. 

It is straightforward to show using the algorithm of Ablowitz et al. [4] that (3.10) is of 
Painleve-type, i.e., its solutions have no movable singularities other than poles, only if 
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either (i) a = /? or (ii) a = 2(3. These two special cases of (3.10) are solvable in terms 
of solutions of the third Painleve equation [25]. 

Case 2. /ii = 0. In this case, we set //2 — 1 and jh? = ^|, without loss of generality. 
Hence, we obtain the reduction 

u(x,t) = U(z)+ti3g(t) + -, 

v(x,t) = V(z), 

where z = x — g(t), U(z) satisfies 

ip(x,t) = $(z) + H4g(t) 

(3.11) U"'+^(a + 0)(U'y-(l+Pn3)U' = A, 

with A an arbitrary constant, and V(z), W(z), and <&(z) are given by 

V = U,
i        W = H3-U',        $, = /i4+/3/X3^7,-/3(C/,)2• 

If a + P 7^ 0, then (3.11) is equivalent to the Weierstrass elliptic function equation, 
otherwise it is a linear equation. 

3.2. Nonclassical symmetries. Next we apply the nonclassical method to the five 
systems (3.5)-(3.9) in the canonical case when r ^ 0; we set r = 1 without loss of 
generality. The number of (nonclassical) determining equations and lines of output 
for these five systems is given in the following table. 

No. determining 
Equation Output equations 

(3.5) 67 lines 8 equations [3 linear, 5 nonlinear 
(3.6) 583 lines 11 equations [all nonlinear] 
(3.7) 1136 lines 13 equations [all nonlinear] 
(3.8) 181 lines 15 equations [4 linear, 11 nonlinear] 
(3.9) 166 lines 9 equations [5 linear, 4 nonlinear] 

3.2.1. Equation (3.5). In this case, we obtain a system of 8 determining equations, 
3 linear and 5 nonlinear. It is straightforward to show that there are three cases to 
consider: (i) €x = 0, with a = /?, (ii) &. = 0, with a = -(3, and (iii) £x ^ 0, which 
yields the classical reductions (see [25] for details). 

Case (i). a = (3, £x = 0. In this case, we obtain the infinitesimals 

£ = *>=^iA 
where £ = x + /(£), f(t) is an arbitrary function and P(C) satisfies 

0 + aP2-P = AC + /*i 

(3.12) 

(3.13) 
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with A and fii arbitrary constants (see [25] for details). If A ^ 0, then this equation 
is equivalent to the first Painleve equation; otherwise it is equivalent to the Weier- 
strass elliptic function equation. Thus, solving the characteristic equations yields the 
nonclassical reduction 

u{x91) = p(0 + q{z) + t/a (3.14) 

where £ = x + /(£), z = x — f(t), f(t) is an arbitrary function, F(C) = Pc satisfies 
(3.13), and Q(z) = qf(z) satisfies 

Q" + aQ2-Q = \z + ii2 (3.15) 

where /X2 is an arbitrary constant; A is (effectively) a "separation" constant. 
In particular, if A = /zi = /X2 = 0 (we set a = 1 without loss of generality), then 

equations (3.13) and (3.15) possess the special solutions P(C) = §sech2(^£) and 
Q(z) = |sech2 (|^), respectively. Hence we obtain the exact solution of (3.5) with 
a = /? = 1 given by 

u(x91) = 3 tanh i ^ [x + /(t)] J + 3 tanh j i [x - f(t)] | + *. 

This is one of the simplest, nontrivial family of solutions of (3.5) with a = 0 = 1 
obtainable using this reduction and has a rich variety of qualitative behaviours. This 
is due to the freedom in the choice of the arbitrary function f(t). One can choose 
fi(t) and f2(t) such that \fi(t) — f2(t)\ is exponentially small as t -> — oo, yet fi(t) 
and f2(t) are quite different as t -» +oo. By a judicious choice of /(£), one can obtain 
a plethora of different solutions (see the figures in [25]). We believe these results 
suggest that solving (3.5) with a = /? = 1 numerically could pose some fundamental 
difficulties. An exponentially small change in the initial data yields a fundamentally 
different solution as t —> oo. How can any numerical scheme in current use cope with 
such behavior? 

Case (ii). a = — (3, £x = 0. In this case, we obtain the infinitesimals 

where z = x — f(t) and rj (z) satisfies 

v""-r1" + a[rm"-(r,')2]=Q, (3.16) 

which is not of Painleve type. Then, solving the characteristic equations yields the 
nonclassical reduction 

u(x, t) = U(z) + f(t)ri(z) - t/a (3.17) 

where U(z) satisfies the linear equation 

[/"" + (arj - 1)C7,, - ari'U' = rj'" - r)f. (3.18) 
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3.2.2. System (3.6). Applying the nonclassical method to (3.6) yields a system of 
eleven determining equations, all of which are nonlinear, and the biggest equation has 
166 summands! Solving these equations could be highly intractable manually; how- 
ever using symbolic manipulation programs, in particular diffgrob2 in MAPLE [49], 
the problem becomes more tractable though still non-trivial. We find both classical 
reductions and two nonclassical reductions (which themselves have interesting special 
cases). These two nonclassical reductions arise when /3 = ±a from infinitesimals which 
give the following invariant surface conditions 

> + », = ^(s,C), (3.19a) 

E^-KDWt-i)!^*) (3.19b) 

»-+R)/f- <-£+'<«■ 
where 

and $(#, C) satisfies 

a0$£ ± a6$§Q + $£££ ± $*$££ + 3$$£$00 

± 3$0C$C + $0$c - $c ± $3$000 + 3$2$00C 

± A§2§e®ee ± Z§®o<;s + 5^$0$0C ± $$g =F ®®e + a$2 = 0. (S^O*) 

At first glance, this equation appears to be difficult to solve in full generality; indeed it 
is more complex than the original equation. However, by using the associated invariant 
surface conditions, we can make progress. Remember that in (3.19) the variables v, 
w are dependent rather than independent variables. If we define 

eM = L+£„_i)/£, 

dt 

then (3.19) yield 

ex + et=(l + ^)!*(6>JC). (3-21) 

Case (i). a — —/?. In this case, equation (3.21) is easily solved to give 

e(M) = ?(*),     z = x-f{t). 

Our two earlier variables, 6 and £, now are equivalent to the new variable z defined 
above, so we let $(0,C) = rfiz) (for convenience). The invariant surface conditions 
(3.19) are now in a form that can be solved and give the following reduction 

v{x,t) = V{z) + mrf,        w(x,t) = ftW(z) - /(*)|i/ - I 

where z = x — /(^), rj(z) satisfies (3.16), W(z) = r](z) - V(z), and V(z) satisfies the 
linear equation 

V" + (art - 1)^ - a*iV = rf - rj. (3.22) 

Whilst the reduction holds, r){z) should be pre-determined by the infinitesimals 
or should, in some sense, satisfy (3.20~). To show that this is the case, notice that 
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@(xyt) has the same form as 9, though the former is a dependent and the latter an 
independent variable. We apply the hodograph transformation 

*(0,C) = n-(s,C);     0 = n(s,C), (3.23) 
to equation (3.20"), which implements this role reversal to leave a (large) equation 
for fl(s,£)- Since <I>(0, £) becomes a function of one variable only, we let £ = 5, so 
£1 = D,(s). The large equation for Q, then simplifies enormously to give 

^+and?-d?-aUj   =a (3-24) 

We note that since s = ^ = z = x — /(t), it is not difficult to show that drj/dz = dQ/ds, 
as required. 

Case (ii). a = (3. In this case, the right-hand side of (3.21) is no longer zero but yields 

ftQx + et = 2ftmO. (3-25) 

First, we consider the simplified case when $£ = 0. Again, we apply a hodograph-type 
transformation 

$(0) = 2^,        0 = 2ft(s) + c6. (3.26) 

Thus, (3.20+) becomes 

^r+2afi^ + (ac6-l)^+2a(-J   =0, (3.27) 

which can be integrated twice to yield either the first Painleve equation or the Weier- 
strass elliptic function equation. However, knowing this doesn't appear to make (3.25) 
much easier to solve. To progress, we note, as before, that Q(x, i) has the same form 
as 6. Therefore, from (3.25), the chain rule, and using (3.26), we have 

-4) = dtj 
If dCl/ds = 0, we obtain a classical reduction, whilst assuming that dtt/ds ^ 0 gives 

s = 2/(t) + G(z),       z = x- f(t). (3.29) 

Now we are able to solve the invariant surface conditions (3.19) since our z in (3.29) 
is a characteristic direction in both of equations (3.19). These yield 

v(x,t) = n(s) + Q(z),        w(x,t) = ^[fifa) + H(z)] + - (3.30) 
at a 

where z = x — f(t). Substituting this into (3.6b) gives 

H'(z) + Q'(z) = 2(l-G'(z))^. (3.31) 

There are two possibilities. First, if Gf(z) ^ 1 we divide by 1 — Gf(z) to obtain 

H'(z) + Q'(z)       <Kl 
I-G'(Z)  -2i;-x (3-32) 

where A is a separation constant, since now 5 and z are independent. Putting dVt/ds = 
|A into (3.27) gives Q(s) = 0, a classical reduction.   Second, if G'^z) = 1 then 

§(i* + «-«5)-«>- (^) 



186 CLARKSON, LUDLOW, AND PRIESTLEY 

s = x + f{t) and H'(z) + Q^z) = 0. Integrating this last expression and substituting 
our values of v, w into (3.6) give the reduction 

v(x,t) = P(0 + Q(z),        w(x,t) = |[P(C) - Q(z)] + i (3.33) 

where ^ = a: - /(t), C = x + f(t), and P(C) and Q(z) satisfy (3.13) and (3.15), 
respectively. This is the analogue of reduction (3.14). 

The solution of the general case $ = $(#,£), with $£ ^ 0, follows a path similar 
to the special case we have just considered. We make a slightly different hodograph 
transformation than previously, namely 

$(0, C) = 2[ns + fic],        6 = 2fi(5, C), (3.34) 

which, when using the chain rule, transforms (3.25) to the equation, 

[n8 + nc](^8 + x + 8t-2^\=0. (3.35) 

If Qs + fi£ = 0, then we obtain a classical reduction, whilst if fi5 + f^ ^ 0, then, 
as previously, it can be shown that s is given by (3.29). We now may solve the 
invariant surface conditions (3.19) so that v(x,t) and w(x,t) are given by (3.30), 
which when substituted into (3.6b) give (3.31); though note that now Q, is a function 
of s and £, so that we've differentiated partially with respect to s. If dG/dz = 1, then 
s = C = £+/(£); hence Q, is a function of 5 only, and so this simplifies to the special case 
discussed above. If dG/dz ■=/=■ 1, then we obtain (3.32) since s and f are independent 
of z (again fi is a function of 5 and C). Hence n(s,C) = \\s + M(C). Substituting 
this into the transformed (3.12+) does not help much. However, substituting (3.30) 
with fl(s,C) — \\s-\- Af(C) into (3.6a) and requiring that the resulting equation be 
an ordinary differential equation yields that either v{x,i) is a constant or that we can 
obtain the same reduction as found in the special case above. 

3.2.3. System (3.7). Applying the nonclassical method to (3.7) yields a system of 
13 determining equations, all of which are nonlinear. Prom these one can obtain the 
classical reductions and also two nonclassical reductions. We note that if we apply the 
nonclassical method to equations (3.7a) and (3.7b) individually, we are able to obtain 
explicit expressions for 02 and fe in terms of £ and fa and, significantly, to find that 
£ and 0i are independent of v and w. With this information the nonclassical method 
generates a system of determining equations in £ and <j>i which are equivalent and of 
similar complexity to those of the scalar equation (3.5). 

3.2.4. System (3.8). Applying the nonclassical method to (3.8) yields a system of 15 
determining equations, of which 4 are linear and 11 are nonlinear. Solving these yields 
both classical reductions but only one of the nonclassical reductions. The associated 
infinitesimals yield the nonclassical reduction for (3.8) without recourse to a hodograph 
transformation. 

In the case when a = /?, the infinitesimals are 

C df Jl     _0#*    t1 A     ^.^fo^ OdPMn n 00\fM 
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where A, /ii, and /i2 are arbitrary constants, f(t) is an arbitrary function, £ = x+f(t), 
and P(C) = ^? satisfies (3.13). Hence, we obtain the following nonclassical reduction 

^,    1,(x,t) = ^(z) + ^ - «^ J- ^- - '-^^ - ^2^ tt(a:l t) = p(C) + «(«) + -,    ififa t) = ^z) + -£ - p(0 + (M2 - w)/(*) " A/2(t) 

where 2; = a: — /(t), Q(z) = qf(z) satisfies (3.15), and $(2) = ^(^J - ^(^).. This is the 
analogue of reduction (3.14). 

3.2.5. System (3.9). Applying the nonclassical method to (3.9) yields a system of 
9 determining equations, of which 5 are linear and 4 are nonlinear. Solving these 
yields both classical reductions and two nonclassical reductions. The infinitesimals 
associated with both the a = (3 and a = —/? nonclassical reductions for the system 
(3.9) are obtained without recourse to a hodograph transformation. Further, the 
complexity of the nonclassical determining equations is similar to that for the scalar 
equation (3.5). 

Case (i). a = 0. In this case, the infinitesimals are 

df 0dfdp  1 df<pp 

where £ = x 4- /(£), f(t) is an arbitrary function, and P(C) = g? satisfies (3.13). 
Hence, we obtain the nonclassical reduction 

u(x\t)=p(Q + q(z) + t/a,        v(x,t) = V(z) + P(0 

where z = x — /(£), Q(z) = q'{z) satisfies (3.15), and V(z) = Q(z). This is the 
analogue of reduction (3.14). 

Case (ii). a = -/?. In this case, the infinitesimals are 

where r)(z) satisfies (3.16). Hence, we obtain the following nonclassical reduction 

u{x, t) = U(z) + f{t)ri(z) - t/a,        v(x, t) = V(z) + /(*)*/ 

where z = x — /(t), U(z) satisfies (3.18), and V(z) = U'. This is the analogue of 
reduction (3.17). 

3.3. Discussion. In this section, we have discussed symmetry reductions using the 
classical and nonclassical methods for five variants of a shallow water wave equation, 
namely the scalar equation (3.5) and the systems (3.6)-(3.9). Both methods give 
the same reductions when applied to the system (3.6) as when applied to the scalar 
counterpart (3.5). What is unusual about the calculation for the system (3.6) is 
the large increase in complexity in moving from a scalar equation to this system. 
Whilst for both the system and the scalar equation the determining equations for 
the classical method are of similar complexity (and are all linear), the nonclassical 
method paints quite a different picture. For the system, there are 11 determining 
equations, all nonlinear, which constitute 583 lines of computer generated output. 
Even when we look at the subcase €w = £v = 0, this only reduces to 8 nonlinear 
equations and 117 lines of output. In comparison, the scalar equation (3.5) has only 
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8 determining equations, 3 linear and 5 nonlinear which produce 67 lines of output, 
greatly simplifying the problem at hand. 

Another difficulty we observed was that the reductions obtained using the non- 
classical method arise in a very unusual manner, and one has to use a hodograph 
transformation. Indeed we can establish a set of infinitesimals which would give the 
reduction (3.33) more naturally by working the method of characteristics backwards, 
namely, 

,     df      A     -dfdP      1       (        1\ d /    df\     nfdf\2dP /on/lX 

where £ = x + f(t), f(t) is an arbitrary function, and P(y) satisfies 

d3P     n   „dP     dP /nnw, 

with ci an arbitrary constant. It is straightforward to show that the infinitesimals 
(3.36) satisfy the determining equations arising from the nonclassical method for (3.6) 
if and only if P(() = KQ, a constant. Consequently, we assert that the infinitesimals 
arising from the nonclassical method which give rise to the nonclassical reductions are 
"unnatural." 

The system (3.7) admits both "unnatural" and "natural" infinitesimals for both 
nonclassical reductions; however these could be difficult to find if they were not known 
a priori. 

The system (3.8) admits (natural) infinitesimals which give rise only to one of the 
nonclassical reductions, in the case when a = /3. 

The system (3.9) appears to be the simplest representation of the shallow water 
wave system, and the associated calculations are similar in complexity to the scalar 
equation (3.5). 

We also have applied the direct method due to Clarkson and Kruskal [22] to the five 
equations (3.5)-(3.9) and obtained the same results as with the nonclassical method. 
The direct method is not entirely straightforward, especially for the systems (3.6)- 
(3.9), though the direct method seems to be much easier to implement; details of the 
application of the direct method to (3.6) are given in [67]. 

This raises an important open question as to how one determines a priori the most 
suitable representation, from the point of view of symmetry calculations, of a nonlocal 
equation such as (3.1). 

4. Relationship between classical, direct, and nonclassical methods 

In §2 it was shown that applying the nonclassical method yields all the new symmetry 
reductions of the Boussinesq equation (2.1) that were derived by Clarkson and Kruskal 
[22] using the direct method (see also [46]). Clarkson and Winternitz [29] obtained a 
similar result for the Kadomtsev-Petviashvili (KP) equation 

(ut -h uux + uxxx)x + cr2Uyy = 0,        a2 = ±1, (4.1) 

showing that the direct and nonclassical methods yield the same symmetry reductions 
for (4.1). 

The results in [29,46] suggested that the direct and nonclassical methods were 
equivalent, i.e., they yield the same reductions.   Indeed Clarkson and Kruskal [22] 
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posed the question on the relationship between these two methods in the conclusion 
of their original paper on the direct method. 

This question was investigated by Nucci and Clarkson [57] who applied both the 
direct and nonclassical methods to the Fitzhugh-Nagumo equation 

u* = uxx + u(l - u)(u - a) (4.2) 

where a is an arbitrary parameter, which arises in population genetics [7,8] and models 
the transmission of nerve impulses [32,55]. 

Example 4.1. The Fitzhugh-Nagumo Equation 

Applying the classical Lie method to the Fitzhugh-Nagumo equation (4.2) yields 
the traveling wave solution 

u(x, t) = w(z),        z = fix — At. (4.3) 

Applying the direct method to the Fitzhugh-Nagumo equation (4.2) yields, in addi- 
tion to the traveling wave solution (4.3), the exact solutions of the Fitzhugh-Nagumo 
equation (4.2) expressed in terms of Jacobi elliptic functions for a — —1, a = ^, and 
a — 2. For example, for a = —1, 

u(x,t) = zxds\z\ 2^)> (4-4a) 

z(x,t) = ciexp[-(v^x + 3t)] +C2exp -( - y/2x + 3t)] +C3 (4.4b) 

where ds(z; k) is the Jacobi elliptic function satisfying 

{y/f = rf + (2k2 - l)rj2 + k2{k2 - 1). 

Applying the nonclassical method to the Fitzhugh-Nagumo equation (4.2) yields, in 
addition to the traveling wave solution (4.3) and the elliptic functions solutions (4.4), 
the following exact solution of the Fitzhugh-Nagumo equation (4.2), for a ^ 0, a ^ 1; 

(     . _ aci exp { \ (±\/2ax + aH)} + C2 exp { \ (±y/2x +1)} 

ci exp { \ (±v^ ax 4- a2t)} + C2 exp { \ (±\/2 x +1)} + C3 exp (at) 

where ci, C2, and C3 are arbitrary constants. If a = 0 or a — 1, then similar solutions 
are obtained. 

These results pose the following important open question: "for which partial differ- 
ential equations does the nonclassical method yield more symmetry reductions than 
the direct method?" Furthermore, it remains an open question to determine a priori 
which partial differential equations possess symmetry reductions that are not obtain- 
able using the classical Lie group approach. 

The ansatz u(x,t) = F(x,t,w(z)) with z = z(x,t) used in the direct method 
assumes that the symmetry variable z does not depend upon u. Consequently it is 
implicitly assumed that the ratio of infinitesimals £/T is independent of u. For the 
exact solution (4.5), this ratio of infinitesimals is dependent upon u. However, even if 
the ratio is dependent upon it, this does not guarantee that the associated symmetry 
solution is not obtainable using the direct method [20]. 

Recently Olver [59] (see also [9, 21,68]) has proved the precise relationship be- 
tween the direct and nonclassical methods. The general iVth-order partial differen- 
tial equation (1.1) admits a direct reduction if there exist functions z = z(x,t) and 



190 CLARKSON, LUDLOW, AND PRIESTLEY 

u = U(x, t, w) such that the Clarkson-Kruskal ansatz 

u{x,t) = U(x,t,w(z)) (4.6) 

reduces (1.1) to a single ordinary differential equation for 'w{z). (Note that U is not 
uniquely determined since we can incorporate any functions of the similarity variable 
z into w.) Olver [59] proved the following two theorems. 

Theorem 4.2. There is a one-to-one correspondence between the ansdtze of the direct 
method (4.6) with Uw ^= 0 and the quasi-linear first-order differential constraint 

v(u) = £(#, t)ux + r(x, t)ut = ^(a;, t, u). (4.7) 

Theorem 4.3. The ansatz (4.6) will reduce the partial differential equation (1.1) to a 
single ordinary differential equation for w(z) if and only if the overdetermined system 
of partial differential equations defined by (1.1) and (4.7) is compatible. 

Thus, there is a one-to-one correspondence between direct reductions of the par- 
tial differential equation (1.1) and compatible first-order quasi-linear differential con- 
straints. Solutions of (4.7) are the functions which are invariant under the one- 
parameter group generated by the vector field 

w = f (a?, t)dx + T(X, t)dt + 0(x, t, u)du. (4.8) 

Hence w generates a group of ufibre-preserving transformations" since £ and r are 
independent of u. 

In the direct method, one requires that the ansatz (4.6) reduces the partial dif- 
ferential equation (1.1) to a single ordinary differential equation. In the nonclassical 
method, one requires that the differential constraint (4.7), which requires the solutions 
to be invariant under the group generated by w, be compatible with the original par- 
tial differential equation (1.1) in the sense that the overdetermined system of partial 
differential equations defined by (1.1) and (4.7) has no integrability conditions. The 
general nonclassical method, which allows arbitrary point transformation symmetry 
groups so that £ and r in (4.8) also can depend upon it, is similarly equivalent to the 
more general (though considerably harder to deal with) ansatz 

?z(#, t) = [/(#, £, 'w(z)),        z = z(x, t,u). (4.9) 

Applying the direct method with the ansatz (4.6) does not always find all reductions 
that are obtained using the classical methods, as shown in the following example. 

Example 4.4. 

Consider the equation 

uxuxx - (auux - /?ut)(l - tux)3 = 0 (4.10) 

where a and /? are arbitrary constants. Applying the classical method to this equation 
yields the infinitesimals 

€ = g (Kl + Ks)(x + 2tu) + K4U - K2t + K*, /4 11x ■ 

T = Kst + «4, 0 = KlV* + K2l31'OL 
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where (a + /?)(fti + ^3) = 0 and «i, ^2? • • •»^5 are arbitrary constants. In the special 
case when Ki = K2 = ^3 = ^5 = 0 and /C4 = 1, the invariant surface condition becomes 

uux + 1^ = 0, 

which has solution 

u(X)t) = w{z))        z = x — ut. (4.12) 

Substituting this back into (4.10) yields 

^/[tx;//-(a + /3H = 0. 

For convenience, we set a = f3 = |, and thus we obtain the implicit solution 

u(x, t) = A exp{x — u(x, t)t} + B exp{-£ + u(x, t)t} (4.13) 

where A and B are arbitrary constants, which defines u{x,t) by a transcendental 
function. Applying the direct method with the ansatz (4.6) will not obtain such a 
reduction. 

It is not clear how the direct method, developed by Clarkson and Kruskal [22] 
for finding symmetry reductions of partial differential equations, may be applied to 
equations which contain arbitrary functions such as the nonlinear heat equation 

ut = uxx + f(u) (4.14) 

where f(u) is an arbitrary sufficiently differentiable function and subscripts denote 
partial derivatives. This equation arises in several important physical applications 
including microwave heating (where f(u) is the rate of absorption of microwave en- 
ergy [66,72]), in the theory of chemical reactions (where f(u) is the temperature de- 
pendent reaction rate [5,6,33]), and in mathematical biology (where f(u) represents 
the reaction kinetics in a diffusion process [54], Clarkson and Mansfield [23] used the 
nonclassical method in conjunction with the method of differential Grobner bases [52] 
to find the conditions on f(u) in (4.14) under which symmetries other than the trivial 
spatial and temporal translational symmetries exist and then solved the determining 
equations for the infinitesimals. A complete catalogue of symmetry reductions is given 
in [23] for the nonlinear heat equation (4.14); in particular, a classification of exact 
solutions of (4.14) for f(u) = (u — a)(u — b)(u — c) expressed in terms of the roots a, 
b and c of the cubic is given. 

The use of differential Grobner bases has made the analysis of overdetermined sys- 
tems of partial differential equations, such as those arising as the determining equations 
for classical and nonclassical symmetries, more tractable. Whilst the dif f grob2 [48], 
[49] package needs to be used interactively at present, nevertheless it has proved ef- 
fective in solving such overdetermined systems [23-28,50,51]. 

It appears to be the case that for some partial differential equations, one of the 
direct or nonclassical methods is simpler to apply than the others. One difference 
between the two methods is that the direct method yields the symmetry reduction in 
one step whereas in the nonclassical method, one first solves for the infinitesimals and 
then, given the infinitesimals, one solves the invariant surface condition, which is a 
two-step procedure. 

To conclude, we make some remarks comparing the classical Lie, direct, and non- 
classical methods. 
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• Classical Lie Method. The positive aspects of this method are that the deter- 
mining equations are linear and the associated vector fields have a Lie algebraic 
structure, which has many useful applications. Also there exist several symbolic 
manipulation programs which generate the determining equations; further some 
of these programs also solve the determining equations. However, as we have 
seen, the method does not find all reductions for all partial differential equations. 

• Clarkson-Kruskal Direct Method. This method is more general than the classical 
Lie method, except for implicit reductions, has no associated group framework, 
and one can choose the dimension of the reduced equation. Furthermore, the 
direct method is a one-step procedure. However, the determining equations are 
nonlinear, the associated vector fields have no Lie algebraic structure, and there 
are only limited symbolic manipulation programs available. 

• Bluman-Cole Nonclassical Method. This method is even more general than the 
other two and can be viewed as a modification of the classical theory. As for the 
direct method, the determining equations are nonlinear, the associated vector 
fields have no Lie algebraic structure, and there are only limited symbolic manip- 
ulation programs. In contrast to the direct method, it is a two-step procedure. 
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