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ABSTRACT. In the first part of this paper, Noether's theorem and the scale invari- 
ance of the nonlinear Schrodinger (NLS) equation are used to derive a modified 
conservation law for the NLS equation. When used with a soliton solution and 
applied to the perturbed NLS equation, this modified conservation law is shown 
to lead naturally to the perturbation equation for a soliton's phase (in a manner 
similar to the way in which the other, more familiar, conservation laws lead to 
perturbation equations for a soliton's amplitude, velocity, and position.) Thus, 
all four of the perturbation equations for the soliton parameters can be obtained 
directly from conservation laws. These perturbation equations then are applied 
to an example for which determining phase behavior is important: the parametric 
amplification of solitons in an optical fiber. The perturbation equations are shown 
to provide a good approximation to the full perturbed soliton dynamics. 

1. Introduction 

The nonlinear Schrodinger (NLS) equation governs pulse propagation in a polarization- 
preserving, nonlinear optical fiber when the carrier wavelength is such that anomalous 
linear group-velocity dispersion is present [2,14]. In dimensionless form, the NLS 
equation is 

,du      1 d2u     ,   l9 , 
^ + 2^ + lw|2« = 0- (1-1) 

Here u is the complex-valued envelope of the pulse, t physically represents the nor- 
malized spatial variable along the length of the fiber, and x is the normalized reduced 
time (i.e., shifted to be in a frame of reference which moves with the group velocity of 
the pulse). We write x and t in the NLS equation (1.1) in the standard mathematical, 
rather than optical, notational convention [28,31], even though we will discuss the 
implications of the results for optical applications. (For such optical applications, we 
can make the replacements t -> Z and x -» T to make the physical interpretation 
more apparent.) 
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The NLS equation has the well-known soliton solution 

u = r)sechr)(x -XQ- Vt) ei^-v^t+iVx+i^ 

= 7]sechrj(x - XQ - Vt) ehitf+v^t+iVix-xo-vv+iiv+Vxo) ^^ 

where 77, XQ, V, and (p are constants. (If the reference frame has been chosen to be 
centered on the soliton, however, then at least initially XQ = 0 and V = 0.) There is 
currently substantial interest in optical solitons due to their potential for application 
in high-speed optical communication systems [15]. Solitons are ideal candidates as 
optical 'bits' since they are relatively robust under most types of perturbations, and 
because solitons with different velocities pass through or interact with one another 
elastically [22,32]. 

2. Noether's theorem, invariances and conservation laws 

Noether's theorem [11,31] states that a conservation law is associated with each in- 
variance of a partial differential equation (or more correctly, with each invariance of 
the PDE's Lagrangian). Specifically, recall that if one has a functional 

J[u]= /  F{x,u,Vu)dx, (2.1) 
Jn 

and the transformation 

v(y) = *(£, w, Vu; e) = u + eij) + • • • =u + &u, (2.2) 

y = ®(x:u, Vu]e) = x + e(j)-\ =x-\-6x, (2.3) 

yields 

J[v] = J[u], (2.4) 

then the functional is invariant under the transformation. 
By direct calculation, one finds 

J[v] - J[u] =       [Fu- (FUxi )Xi] (Su - uXj5xj) dx 
Jn 

+ /   [Fu.XSu-Uv.Sxfi + FSxA    dx + -'- (2.5) 
Jn Xi 

where summation notation is assumed (repeated indices are summed). This result 
also generalizes to vector dependent variables u merely by varying each component 
separately and then adding the individual results together to get the total variation. 
The first integral on the right-hand side vanishes since the term in the brackets is 
the Euler relation associated with the Lagrangian, and that vanishes for a stationary 
solution, i.e., 

Fu-{FUxi)Xi=Q. (2.6) 

Since J[v] = J[u] and the region TZ is in principal arbitrary, we have 

[FUxi (Su - Ux.Sxj) + FSxi]^ = 0, (2.7) 
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or equivalently, upon using Su = e:^ and Sx = £</>, 

■fa. [FuXi (tl> - uXj ft) + Ffr] = 0. (2.8) 

To apply this to the NLS equation specifically, one starts with the Lagrangian 

1   f00 

L=- [i(u*ut - uuj) - \ux\2 + \u\4] dx (2.9) 
^ J-oo 

and the functional 

J[u] = f L dt = ff F dx dt. (2.10) 

Here xi = x and X2 = t, and one varies u and u* independently [27]. Under the 
transformation u —> u + eif) + • • •, u* —> u* + e^* + * * •» ^ —*• ^ + £0 + • • •, and 
t -^ t + 6:(9 + • • •, (2.8) becomes 

jt [Fut W - ^x^ - ut0) + FuJ (V^* - <</> - tijfl) + F9] 

+ fa[FuA'<l>-ux<t>-ut6) + FK{r-u*x<t>-u*te) + F4>\=Q. (2.11) 

In addition, when integrated with respect to #, this becomes 
j     poo 

jt J     [Fut ty - ux<j> - ut0) + Fttt. {r - <<!> - u*te) + Fe}dx = Q, (2.12) 

which is one of the standard forms for a conservation law [1,31]. 
The various invariances of the NLS equation now can be used to generate the 

corresponding conservation laws. The first invariance is with respect to phase: the 
transformation u —>• el£u (and u* -> e~ieu*) leaves both the NLS equation and the 
Lagrangian unchanged. For small £, this gives if) = iu (and -0* = — m*), </> = 0, and 
0 = 0, which yields 

dtl_J \u\2dx = Q. (2.13) 
-CX) 

Next, the NLS equation is invariant with respect to translations in space and time. 
The former means invariance when x -> x — XQ, in which case -0 = 0, 6 = 0, and <t)—l, 
giving 

^y      2(^tia-uu*)dx = 0-; (2.14) 

the latter means invariance when t —± t — to, whence ^ = 0, 0 = 0, and 0 = 1, giving 

jl     (K|2-H4)^ = 0. (2.15) 

These conservation laws are identified with conservation of mass (or photon number, 
in the case of optical solitons), momentum, and energy [19,21]. When used for soliton 
perturbation theory (as described in Section 3), however, these conservation laws give 
information about only two of the soliton parameters, namely the soliton amplitude 
77 and frequency shift or velocity V\ no information about the other parameters XQ 

and (p is provided, since each of the above conservation laws is phase and translation 
invariant. Note that the result obtained from the energy conservation law (2.15) for 
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77 and V is consistent with the results obtained from the other two conservation laws, 
so no additional information is obtained from it. 

The NLS equation and its Lagrangian are also Galilean invariant, however, which 
means that if u(x,t) is a solution, then so is u{x — ei,i)ei£&~i£ tl2. This is equivalent 
to the transformation 

x = x + et,    i = t,    u = ei£{b-i£2i/2u. (2.16) 

Thus, ip = ixu, (j) = £, and 0 = 0, giving 

ny^ + t-(u*ux - uul)] dx = 0, (2.17) 

or equivalently, 
/oo Z*00 i 

x\u\2dx= -(uu*-u*ux)dx. (2.18) 
-00 ^Z—00 ^ 

Note that this is not the standard form for a conservation law, in that the right-hand- 
side is non-zero. As a result, it will be called a modified conservation law because of the 
similarity with the definition of a modified (or generalized) eigenvector or eigenfunction 
[10]. It will be shown shortly that this modified conservation law gives an equation 
for the soliton position XQ (i.e., the center of mass). 

The previous three conservation laws for the NLS equation are well-known [12]. 
The NLS equation has one more conservation law, however, one that comes about due 
to scale invariance. The NLS is scale invariant because if u(x, t) is a solution, then so 
is 

-(:■?)■ <219» 
The Lagrangian is not scale invariant, however. Under the transformation 

u(x,t) -> au(-, -A (2.20) 

we have 

J[u] -> aJ[u]. (2.21) 

Noether's theorem does not directly apply to this situation, but it can be easily 
modified. Since J[v] = aJ[u], equivalently, 

J[v] = J[u] + (a - l)J[u]. (2.22) 

In addition to the terms in (2.11) resulting from the changes in u, x, and t, there is 
now an extra term from the term proportional to (a — 1) on the right-hand side of 
(2.22). If a = 1 + e, (2.11) then becomes 

9 [FUt & - ux(j> - utO) + Fu; (r - <()> - v*e) + F0] dt 

+ iL [F«* ^ - u^ - "t0) + FK W - <<l> - <*) + ^ = F' (2-23) dx 
where ^ = % (j) = —x, and 0 = —2t. Equivalently, in integrated form this is 

dt 

/OO nOO 

[FUt (V- - Ux</> - ute) + Fu; (ip* - u*x<t> - u*e) + F9]dx= F dx   (2.24) 
-co J — oo 
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and (2.24) thus gives the additional modified conservation law 

i   f00 d   f00 i 3   f00 

- /     (uui - u*ut) dx - — I      nX{uu*x - u*ux) dx — -- I     {\ux\2 - \u\A) dx. 
^ J-oo at J_00 2 2 J_00 

(2.25) 

It will be shown in the next section that this modified conservation law (which does 
not appear to be widely known) provides an equation for the soliton phase (p. 

Note that when the solution u is symmetric about x = 0, the second term on 
the left-hand side of the above equation vanishes, and (2.25) can be interpreted as 
the result of multiplying the NLS equation by u*, taking the imaginary part, and 
integrating. This basic procedure was used by Fauve and Thual [9]; however, they did 
not point out the more general form or its connection with the scale invariance of the 
NLS equation. 

3.  Soliton perturbation theory using the conservation laws 

The conservation laws (2.13) and (2.14) and modified conservation laws (2.18) and 
(2.25) form the basis for a perturbation theory analysis of the four soliton parameters 
(77, V, #0, an(l <f)' Such an analysis is relevant when additional terms, represented by 
f(x,t), appear in the NLS equation to give 

du      i d2u     ..  .9 /rt _ 

In this case, by direct calculation, the conservation laws are modified and become 
J     /»oo poo 

^- \u\*dx = 2n        u*fdx, (3.2) 
dt J-00 J-00 

rl        Z*00    ,,' /»00 

Jtj     ^(uu*x-u*ux)dx^-2^l     u*Jdx, (3.3) 

J      poo poo     • pOO 

— /     x\u\2 dx = -^(uul - u*ux) dx + 23l        xu*f dx,    and (3.4) 

/OO J       pOO      - 

(uut — u*Ut) dx — — I      -x(uu*x — u*ux) dx = 
-00 dt y.oo 2 

0       pOO /•OO 

-«/     (|tix|2-H4)dar+29 /     (u*+xu*x)fdx. (3.5) 
^ J —OO J—OO 

The additional term f(x,t) produces two kinds of effects on the solution u\ it 
perturbs the soliton parameters, and it also generates a small amount of dispersive 
radiation. To first order, these two effects do not interact with one another, and 
therefore the changes in the soliton parameters can be evaluated by substituting the 
soliton shape (1.2) into the various conservation laws [19]. (In some cases, the effect 
of the dispersive radiation can be evaluated with an associated field [7,12]). Rather 
than (1.2), however, it is a bit more convenient to use the slightly different soliton 
solution 

u = r) sech r)(x - £) c<"(*-0+w = 77 sech C ei(T (3.6) 

where, for convenience, we have defined 

C = »?(s-0 (3.7) 

-00 

i 
2 
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and 

(7 = «(a!-O + 0=-C + 0- (3.8) 
V 

When this is substituted into the conservation laws (3.2)-(3.5), one obtains the 
following equations for the soliton parameters: 

dr] poo 

at   * 

dt-^J_ 

oo 
oo 

/oo 

sechCe-^fdt, (3.9) 
-OO 

sechCtanhCe-^/dC, (3.10) 

^i = K+\u [^ CsechCe-iafdC (3.11) 
at r)z    J_00 

^ = K£ + hr?-K*y+lci /"(l-CtanhOsechCe-^/dC. (3.12) 
at        at     2 rj   J..^ 

These perturbation equations are identical with those obtained by using the inverse 
scattering transform [1,17,19,25,28]. 

An alternative interpretation of the above soliton perturbation theory is as a special 
case of collective coordinates [13]. Essentially, when one substitutes a trial function 
with arbitrary time-dependent parameters in the Lagrangian, one obtains ordinary 
differential equations for those parameters [4-6]. The form of the trial function used 
in the Lagrangian can be more general than that of the soliton solution [29] (sometimes 
a more general form gives a better approximation [30]), but when the soliton solution 
is used as a trial function, (3.9)-(3.12) are obtained. Since it has been shown here 
that all of the soliton perturbation equations arise from conservation laws associated 
with invariances of the NLS Lagrangian, it is not surprising that a direct derivation 
of ODEs from the same Lagrangian using the collective coordinate approach yield 
exactly the same equations. 

4. An application to soliton control using phase-sensitive amplification 

One application where the phase evolution is particularly important is the control of 
optical solitons using phase-sensitive parametric amplification [23,24,26]. (A mathe- 
matically similar fluid-mechanical problem is the parametric driving of surface waves 
[8,20].) In the case of optical solitons, the perturbing term / in (3.1) is 

f = -'yu + 9eivtu* (4-l) 

where 7 is the linear loss in the fiber, g is parametric gain from the amplifier, and 
v is a detuning parameter (i.e., the rate of phase advance of the amplifier relative 
to the NLS carrier). The phase-sensitive amplification usually arises from discrete, 
periodically-spaced (or lumped) amplifiers. The above equation arises when the loss 
and amplification are relatively weak [8,26]. When the loss and gain are strong, a 
different evolution equation is obtained [23,24]. 

In general the parametric gain g can vary, as is the case when the amplifier is driven 
by a modulated or mode-locked pump laser. Here this will be modeled by assuming 

g = go(l + f3coswx). (4.2) 
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(Recall that in the optical fiber application being considered here, x represents the 
normalized reduced time, measured across the soliton profile, while t represents dis- 
tance along the fiber.) When the perturbation equations (3.9)-(3.12) are used, one 
obtains 

^ = -2777 + 250^1 (— ) cos2$ 

+ 9oPv Fl[
l^J!l)cos(^-2^) + F1       COS (1 

V   »?   / 
w£ + 2$) 

-^ = -g^Fi ( — ) cos 2$ 

+ So/fy 

dt 
= /c_5oir3f^sin2$ 

n    \v J 
9ol 
277 

F3 f<^^l\ sinK _ M) + ^ (^±^] sin(^ + 2$) 

(4.3) 

2K\ 

~F2 f^^A cos K _ 24) _ F2 ('^l^ cos (We + 2$) ,   (4.4) 

(4.5) 

and 

dt eft      2 
sin 2^ 

^(^sinM-^-n^ 2K sinK + 2$).     (4.6) 

Here 2$ = 2$ - i4 and 

Fi(fc) = fc7r/sinh(A;7r/2) = 2F(k), 

F2(k) = fcF(fc), 

F3(fc) = -2F,(fe), 

F4(ib) = F(k) - kF'ik). 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

It also is useful to consider the above equations when K, is small since they simplify 
considerably: 

-y- w -2777 + 2po^cos2$ + 2gof3riF1(uj/r))cos(u)€)cos2$, 
dt 
dK 
~dt 

dt 
d$ 

-2goK, cos 2$ + #0/^7^2(^/77) sin (o;^) sin 2$, 

K — 
7r2£o 
Sry2 Ksin2$ - —F3(uj/rj) sin(«;£) cos2^,    and 

— n-rj1 ---go sin 2$ - gvpF^u/rj) cos (a;^) sin 2$. 
at       2 2 

(4.11) 

(4.12) 

(4.13) 

(4.14) 
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When /3 = 0 (the case of no gain modulation), it is easy to see that a steady state 
occurs when K = 0 and 

cos 2$ .= 7/30, 

rj2 = i/ + 27tan.2$. 

(4.15) 

(4.16) 

Note this reproduces the exact solution of the parametrically-driven NLS equation 
[8,26]. The steady-state value of £ is arbitrary; this is to be expected since when 
(3 = 0, the equation is translation invariant. (But if /c = 0 initially then it remains 
zero, and £ retains its initial value.) Two solutions therefore are found (corresponding 
to the two possible values of $; the sign of rj is ignored); the larger of these solutions 
is stable while the smaller is unstable [8,9]. 

1.010 

1.008 - 

1.000 
200.0 

FIGURE 1. A comparison of the solution of the NLS equation plus 
parametric driving (solid line) with the solution of the perturbation 
equations, (4.3)-(4.6) (dotted line) in the case of no gain modulation 
(/? = 0). The curves plotted are for the time evolution of the soliton 
amplitude 77; in the case of the full NLS solution 77 was determined 
from its integral definition, !/M2 ^x' ■^ere ^ := ^ and 9o = 0.5001. 
The initial values of 77, AC, and $ were 1.0, 0.0, and 0.0, respectively. 

In Figure 1, we compare the solution of the parametrically-driven NLS equation, 
(3.1) with perturbation / given by (4.1), with the solution of the perturbation equa- 
tions, (4.3)-(4.6). Note that for these particular values of 7 and go, the agreement 
between the two solutions is very good. For these parameter values, the oscillation is 
overdamped. Figure 2 gives another example with different values of 7 and go, which 
also shows excellent agreement. For these parameters, a damped oscillation results. 

The best agreement between the solution of the approximate equations (4.3)-(4.6) 
and the solution of the perturbed NLS equation is found when the difference between 7 
and go is small, so that the steady-state value of the angle $ is small. In particular, it 
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1.00 
100.0 

FIGURE 2. A second example of the comparison between the solution 
of the NLS equation plus parametric driving (solid line) with the 
solution of the perturbation equations, (4.3)-(4.6) (dotted line) in 
the case of no gain modulation. Here 7 = 0.1, go = 0.102034, and the 
initial value of $ was 0.1. 

appears that for good agreement, the steady-state value of $ should be small compared 
with 7 and go. The cases represented in Figures 1 and 2 both satisfy this condition. 
In Figure 3, a case where the steady-state value of $ is not small in comparison with 
7 and #0 is shown. Now the approximate equations give good agreement for short and 
long times, but the transient is not properly resolved. 

In Figure 3, the parameter rj is calculated from the full NLS solution in two different 
ways, both by integrating \u\2 and from the maximum of \u\. If the solution has a 
hyperbolic secant shape, then these two results will be the same. Since they do not 
agree in Figure 3, this means that during the transient evolution the pulse shape 
deviates from the fixed hyperbolic secant shape assumed in deriving the approximate 
equations. These shape deformations can be interpreted as resulting from the second- 
order coupling between the discrete eigenmodes associated with the soliton and the 
continuous spectrum [18]. 

A linearized analysis about the steady-state solution [26] suggests that the lin- 
earized eigenfunctions and eigenvalues are significantly perturbed when $ is not small 
in comparison with 7 and c/o- This also is consistent with Figure 3, since the decay 
rates found in the full NLS solution and the approximate equations are different (which 
in essence use the unperturbed eigenfunctions and eigenvalues since the approximate 
equations assume an unperturbed hyperbolic secant shape). Determining these per- 
turbed eigenfunctions and eigenvalues (in general, this must be done numerically) 
should shed some light upon the pulse reshaping that is occurring. Alternatively, it 
is possible to use variational methods (i.e., more general collective coordinates) or 
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FIGURE 3. A third example of the comparison between the solution 
of the NLS equation plus parametric driving (solid and dashed lines) 
with the solution of the perturbation equations, (4.3)-(4.6) (dotted 
line) in the case of no gain modulation. The value of 77 in the full 
solution was determined both from its integral definition (solid line) 
and from the maximum of \u\ (dashed line). Here 7 = 0.25, #0 = 0.26, 
and the initial value of <I> was 0.1. 

moments of the conservation laws to incorporate some shape changes into the ap- 
proximate evolution equations [3,16,29]. These additional studies are currently in 
progress. 

When gain modulation is present (/? > 0), the perturbed NLS equation is no longer 
translationally invariant, and obtaining steady-state solutions now also requires that 
u;£ = TVK (at least when the perturbation is small). The perturbation equations (4.3)- 
(4.6) predict that when the difference between g® and 7 is small compared with #0 (so 
that $ is small) the even n solutions are stable, while the odd n solutions are unstable. 
(The precise expression is somewhat complicated to write down, but can be obtained 
in a straightforward manner from (4.3)-(4.6).) This means that a perturbed soliton 
becomes locked to the pattern produced by the modulated gain, and in particular the 
pulses move to positions of maximum gain. 

Figure 4 shows a comparison of the position £ calculated from both the solution of 
parametrically-driven NLS equation and the solution of the perturbation equations, 
(4.3)-(4.6). The two solutions are in good agreement, and for these parameters the 
pulse position £ = 0 is stable. Figure 5 compares the results for the pulse frequency 
shift, /c, and Figure 6 compares the results for the pulse amplitude, 77. 

Note that there is now some discrepancy between the two calculated values of the 
steady-state value of 77. This appears to be due to pulse shaping (or deformation) 
caused by the modulated gain. As mentioned previously, since the perturbation so- 
lution fixes the shape of the pulse to be a hyperbolic secant, no such adjustment of 
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50.0 

FIGURE 4. Comparison of the solution of pulse position £ calculated 
from the NLS equation plus parametric driving (solid line) with the 
solution calculated from the perturbation equations, (4.3)-(4.6), (dot- 
ted line). The two solutions are in good agreement, and both show 
that the position £ = 0 is stable. Here 7 = 0.5, go = 0.5, 0 = 0.2, 
and u = 2.0. The initial values of 77, ft, £, and $ were 1, 0, 0.5, and 
0.25, respectively. 

shape is possible in the approximate solution. Such pulse reshaping is expected when 
modulated gain is used, particularly when the modulation period (here 27r/uj = TT) is 
comparable to the pulse width. This reshaping can be seen directly if one compares 
the two final steady-states, as shown in Figure 7. Here the smaller gain in the vicinity 
of x = ±7r causes the tails of the pulse to be reduced relative to the ideal hyper- 
bolic secant shape. Nevertheless, even with this pulse reshaping the predictions the 
approximate equations make for the pulse position £ and frequency shift K are quite 
good. 

5. Conclusions 

Noether's theorem and the scale invariance of the nonlinear Schrodinger (NLS) equa- 
tion have been used to derive a modified conservation law for the NLS equation, and 
this conservation was shown to lead naturally to the perturbation equation for a soli- 
ton's phase which previously has only been obtained via inverse scattering theory. 
When combined with three other known conservation laws, the result is that all four 
perturbation equations for a soliton's parameters (amplitude, phase, position, and 
frequency shift) can be obtained directly from conservation laws. 
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50.0 20.0 30.0 

t 
FIGURE 5. Comparison of the solution of pulse frequency shift K, 

calculated from the NLS equation plus parametric driving (solid 
line) with the solution calculated from the perturbation equations, 
Eqs. (4.3)-(4.6), (dotted line). The parameters are the same as in 
Figure 4. 

50.0 

FIGURE 6. Comparison of the solution of pulse amplitude 77 calcu- 
lated from the NLS equation plus parametric driving (solid line) with 
the solution calculated from the perturbation equations, Eqs. (4.3)- 
(4.6), (dotted line). The parameters are the same as in Figure 4. 
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FIGURE 7. Comparison of the final steady-state solution profiles ob- 
tained from the NLS equation plus parametric driving (solid line) 
and from the perturbation equations, Eqs. (4.3)-(4.6), (dotted line), 
showing a slight amount of pulse reshaping. The parameters are the 
same as in Figure 4. 

In addition, the perturbation equations have been applied to an example for which 
determining phase behavior is important, namely the parametric amplification of soli- 
tons in an optical fiber. The perturbation equations were shown to provide a good 
approximation to the full perturbed soliton dynamics in a number of cases. Of par- 
ticular interest is the case when gain modulation is present, since in this case the 
perturbed NLS equation is no longer translationally invariant, and a soliton locks sta- 
bly to one of the maxima of the gain profile. This behavior has been proposed as a 
method for stabilizing solitons stored in an optical fiber memory loop against timing 
fluctuations [26]. 

One potential drawback of the soliton perturbation theory is that pulse reshaping 
or deformation is not included in the approximations that are made. Such reshaping 
is clearly present when the NLS equation is parametrically perturbed. As a result, 
careful comparisons need to be made between the approximate equations and full 
numerical solutions in order to determine the range of parameter values over which the 
perturbation equations give reasonable results. In addition, further work is necessary 
to explore possible methods for including the effects of such pulse reshaping in the 
approximate evolution equations. 
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