
Methods and Applications of Analysis © 1997 International Press 
4 (2) 1997, pp. 134-140 ISSN 1073-2772 

A DERIVATION OF GARDNER'S EQUATION 

Robert M. Miura 

Dedicated to Martin D. Kruskal on the occasion of his 70th birthday 
and to Clifford S. Gardner who made it look easy. 

ABSTRACT. During the early studies of the Korteweg-deVries (KdV) equation, 
C. S. Gardner introduced the nonlinear evolution equation 

wt — 6(w + e2w2)wx + Wxxx = 0 

in his proof of the existence of an infinite number of conservation laws. Gardner's 
equation can be obtained via a Galilean transformation of the modified Korteweg- 
de Vries equation and its solution can be related directly to the solution of the 
Korteweg-deVries equation. Here Gardner's equation is shown to arise naturally 
as an approximation to the class of quasilinear partial differential equations 

F2(yt',5)ytt = G2(yx]S)yxx + S2H(yt,yx]S)yXXXXi S2 < 1 

where F, G, and H are O(l) and have polynomial approximations in 6. The 
derivation uses a modification of the Riemann invariants for the associated second- 
order equation, i.e., with (5 = 0, and requires setting one of the modified Riemann 
invariants equal to zero at the initial time. A physical example in this class 
of equations is the continuous approximation of the anharmonic lattice equa- 
tions. Subsequently, Gardner's equation has been derived in studies of surface 
and internal waves in fluid mechanics when quadratic and cubic nonlinearities are 
comparable. 

1. Introduction 

In the summer of 1953, at the Los Alamos Scientific Laboratory, Fermi, Pasta, and 
Ulam (FPU) began a series of numerical experiments on nonlinear problems using 
the newly built electronic computer called MANIAC. This work culminated in their 
report [2], cf. [15]. Initially, the problem under study was to determine the "rate of 
approach to the equipartition of energy among the various degrees of freedom" of a 
nonlinear continuous string. If we let y(x, t) denote the longitudinal displacement of 
the position on the string which in equilibrium is situated at #, then the equation of 
motion is given by 

c^ytt = [1 + Sn(yx)]yxx (1.1) 

where subscripts denote partial differentiations with respect to t and x, c is the linear 
wave speed, 5 is a measure of the relative magnitude of the nonlinearity, and n specifies 
the nonlinearity. Equation (1.1) was discretized by FPU [2] for the case n = yx, and 
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they solved the discrete equations numerically over many periods of the linearized 
oscillations. While following the energy distribution in the various linear modes of 
vibration, they observed near-recurrence behavior, i.e., the initial energy originally 
contained in the lowest mode of vibration flowed into other modes of vibration, but 
then almost completely returned to the first mode. 

On the other hand, Zabusky [16] solved the equation exactly using the hodograph 
transformation. The important qualitative feature revealed was that the solution could 
become multivalued and, therefore, was unacceptable as a solution to the physical 
problem. This is clear since nonlinear hyperbolic partial differential equations can 
have characteristics of the same family crossing each other. 

The contradiction between the numerical and exact results was resolved by Kruskal 
and Zabusky [6, 7, 17] who showed that the discretized version of (1.1) used by FPU [2] 
actually approximated a fourth-order quasilinear partial differential equation given by 

h2 

c 2ytt = (1 + Sn(yx))yxx + — yxxxx (1.2) 

where h is the spatial discretization distance. 
Introduce the Riemann invariants for (1.1) (see Section 2 for the general case) 

±{±c-1» + jfl'"(l + M«))1/2<k}- (1-3) 
For n = yx, (1.3) can be inverted approximately for yt and yx in terms of r+ — r~ and 
r+ + r~, respectively. In this case, (1.2) is approximated to 0(S2) and 0(Sh2) by 

^T^(r++r-W = 0. (1.4) 

For the periodic initial-value problem, by choosing special initial data, r+(x,0) = 0, 
and assuming r~(£,0) has zero mean, one can show that r+(x,t) = 0(S2) (Zabusky 
[17]). Then translating to a uniformly moving frame of reference with speed c and 
changing variables to u = —6r~, r = \/353/2ct/h, and £ = 2VS5x yields the Korte- 
weg-deVries (KdV) equation 

UT — 6UU£ + U£££ = 0. (1.5) 

Subsequently, various researchers have discovered many important properties of this 
equation and its solutions, e.g., solitons and an explanation of the recurrence phenom- 
enon (see Miura [11] for a survey of results and references). 

One of the first properties discovered by Miura et al. [12] was the existence of an 
infinite number of conservation laws. The simple elegant proof presented in [12] is due 
to Gardner and uses his equation 

wT — 6(w + e2w2)w£ + w^ = 0. (1.6) 

Gardner's equation can be obtained by a Galilean transformation applied to the mod- 
ified Korteweg-deVries equation [12]. 

Since then, Gardner's equation has been derived in various studies to describe sur- 
face and internal waves in fluid mechanics ([3, 4, 5, 9, 10]). These derivations are 
based on the argument that in these applications, the quadratic and cubic nonlinear- 
ities are of comparable "significance." Chow [1] and Marchant and Smyth [8] derived 
an "extended Korteweg-deVries" equation which includes higher-order nonlinearities 

c-'rt T l + ij(r+ + r-) 
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as well as a fifth-order spatial derivative term. Under a special scaling and ignoring 
the higher-order dispersion terms [8], this is reduced to Gardner's equation. 

In this paper, Gardner's equation is shown to represent an approximation to the 
class of quasilinear partial differential equations 

F2(Vti 8)Vu = G2(yx] S)yxx + 62H(ytl yx; 5)yxxxx,        S2 < 1, (1.7) 

using modifications of the Riemann invariants for the associated second-order equa- 
tion, i.e., with 5 = 0. Properties of Gardner's equation and its solutions follow from 
properties of the modified Korteweg-de Vries equation using a Galilean transforma- 
tion [12]. 

2. Approximation using modified Riemann invariants 

The reduced second-order form of (1.7), i.e., with 5 = 0, has the Riemann invariants, 
r1*1, given by 

r* 

so that 

= -|±yo   F(p;8)dp + J     G(q;5)dq (2.1) 

pyx pyt 

r+ + r- = /     G(g; S)dq,        r+ - r" = /    F{q\ 8)dq, (2.2) 
JO Jo 

which satisfy 

rtT^4ri = 0 (2.3) 

(see Kruskal and Zabusky [7]). 
For the more general equation (1.7) treated here, the procedure of Kruskal and 

Zabusky [10] is followed. Thus (1.7) becomes 

±     G(yx]S)  ±     62H(yuyx;5) 
r* T F(yt;6)r*T     2F(yt;S)    yxxxx "U' [2A) 

The coefficients F, G, and H are assumed to depend on 5yt and 5yx and to have 
asymptotic approximations (obtained by simple Taylor series) given by 

F(p; 6) = F0 + SFip + 82F2p
2 + 0{5% (2.5) 

G(q; 8) = G0 + Sdq + S2G2q2 + 0(5% (2.6) 

H(p,q;6) = Ho + 0(6), (2.7) 

where Fi, Gi, and if^, i = 0, 1, 2, are constants and FQ ^ 0, Go ^ 0, HQ ^ 0. The 
definitions of ^ and (2.5)-(2.7) yield the approximations 

r+ + r- = Goyx + S-^yl + 0(62), (2.8) 
Zip 

r+-r- = Foj/t + ^i2/t
2 + 0(«52). (2.9) 
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Solving recursively for yt and yx yields 

Vx 

yt = 

-Go ^   +r )  +0(O' 

Fo ^o 
f>Fl /„+     „-\2  , n^2\ (r+-r-)2 + 0(<52). 
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(2.10) 

(2.11) 

Substituting (2.10) and (2.11) into (2.4) and expanding for small 5 using (2.5)-(2.7) 
results in 

l + <5 |i(r+ + r-)-j|(r+-r-) rt TF0{ 
+ 62 ^GoG^- G\ (r+ + r_)2 + 3F2 -2F0F2 {r+ _ r_)2 

- ^(r+ + r-)(r+ - r")] }r± T ^(-+ +»-)«. + 0(<53) = 0.    (2.12) 

Here all terms through 0(62) have been kept. 
The difficulty in simplifying (2.12) further is the mixed occurrences of r+ and r~. 

To overcome this difficulty, an idea due to Tang and Tappert [14] is used. Introduce 
new dependent variables as modifications of the Riemann invariants (2.1), namely 

Thus 

(2.13) 

u+ + u~ =r+ + r~ +0(52),        u+-w   = r+ - r" (2.14) 

Recursive solution of (2.13) for r± yields 

r±=u±-S-^(u+ + u-)xx + 0(S*). 

Also, the leading-order terms from (2.12) and (2.14)-(2.15) yield 

(u+ + u-)t = ^{u+-u-)x + 0{5). 

Thus (2.12) is approximated through 0(52) by 

_PHo_ ±    =n 
I    nrp s~i   Uxxx        V 

+ B1u-) + 52 

(2.15) 

(2.16) 

A2(u+)2 + B2{u-)2 + C2U+u- y* 
(2.17) 
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AI
-GI Fr "'-Gl + Fg' 

A2 = 

B2 = 

€2 = 

_ 2G0G2 - Gl     2FQF2 - 3F?     FjGi 
2Gt 2Ft F0

2G§' 

_ 2G0G2 - G?     2F0F2 - Zff r  Fid 
+ ■ 2Gi 2F* FgGZ' 

_ 2G0G2 — Gi     2^0-^2 "■ 3i^i 

Gi + 
Ft 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

These two evolution equations for nr*1 are first-order in time and third-order in x and 
form a coupled system of nonlinear dispersive equations. With the specified scalings, 
the solutions ^ should be accurate up to 0(53). 

3. Reduction to Gardner's equation 

Finally, reduction of (2.17) to Gardner's equation follows from: 

Theorem. //tr^Xjt) are classical solutions of (2.17), w*1 and u~ are bounded, and 
IA

+
(#,0) = 0, —00 < x < +00, with bounded energy at time t, defined by 

/oo 

[u+OM)]2^ < 00, 
-00 

then u+(x,t) = 0 and u (x,t) satisfies Gardner's equation 

-Go -\2 1 + SBiu~ + 5zB2{u-) - ,   ^gp    _ 
Ux + 2F0G0

Uxx = 0. 

(3.1) 

(3.2) 

Proof. A standard energy argument is used; namely, multiply (2.17) for u+ by u+ and 
integrate over — oo < x < oo with u^ and their derivatives going to zero as |a;| —> oo 
to obtain 

\irju+{x,t)]2dx= 1 dE{t) 
2 dt 

(3.3) 

= -^ £ [f Bi + <52 {B2U- + ^2W
+)] {u+fuZdx. 

Then since for any t, there is some constant M > 0 such that 

Go 
F0 

-Bi + 82 ( B2U- + (sa^ + iGau+J   «" <\M, -00 < a; < 00, (3.4) 

there is the inequality 
d4<ME 
at 

(3.5) 

(3.6) 

with solution 

E{t) < E(0)eMt. 

Now u+(x, 0) = 0 implies £"(0) = 0, so that E(t) = 0 for all t > 0. Prom continuity of 
u+ in x, this implies u"^(x,t) = 0 for all —00 < x < 00, 0 < t. Thus the equation for 
u~ becomes (3.2). 
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To transform (3.2) into a standard form of Gardner's equation, introduce the new 
variables 

SGQBI     .      Go . (    v 

^wm&*-^ (3-7) 

65 i^o S2 \/—3HoB2 

w = ^-u , (3.9) 

then (3.2) becomes 

wT - 6(w + e2w2)w^ + w#t = 0. (3.10) 

Gardner's equation is related to the Korteweg-de Vries equation (1.5) by the identi- 
fication 

u = w + ew^ + e w , (3.11) 

so that 
0 = ur — 6^1^^ + u^ 

= (! + £— + 2£2^)[^r - 6(ti; + e2w2)wf: + ti;^]. (3.12) 

D 
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