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INFORMATION ENTROPY OF CLASSICAL ORTHOGONAL POLYNOMIALS 

AND THEIR APPLICATION TO THE HARMONIC OSCILLATOR AND 

COULOMB POTENTIALS 

Jesiis S. Dehesa, Walter Van Assche, and Rafael J. Yanez 

ABSTRACT. The information entropy is explicitly obtained for the harmonic oscil- 
lator and the hydrogen atom (Coulomb potential) in D dimensions (D = 1,2,3). 
It is shown how these entropies are related to entropies involving classical orthog- 
onal polynomials and the physical interpretation of this information entropy is 
given. 

1. Introduction 

The Schrodinger equation in D dimensions with radially symmetric potential V is 
given in atomic units by 

(-\v2 + V{r)y = Eil> 

where 

r^Tx) 
i=i 

For the harmonic oscillator, the potential is 

V{r) = ±A2r2, 

and for the hydrogen atom, we use the Coulomb potential 

V{r) = -I. 

The information entropy for these physical systems is given by 

Sp = - f p{?)\ogp{f)dr (1.1) 

in the position space where p(f) = |^(r )|2 is the density corresponding to the wave 
function ^{r) and 

S7 = -j7(p)logj(p)dp (1.2) 
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in the momentum space where ^(p) = |^(p)|2 is the density corresponding to the 
wave function ^{p), which is the Fourier transform of ^(r). 

These two entropies have allowed Bialynicki-Birula and Mycielski [6] to find a new 
and stronger version of the Heisenberg uncertainty relation. For a quantum mechanical 
system in D dimensions, this uncertainty relation is 

Sp + S7>£>(l + log7r), (1.3) 

which expresses in a quantitative way the property that it is impossible to get precise 
information of such a system in both position and momentum space: high values of Sp 
are associated with low values of 57, and vice versa. To get some idea of the restriction 
this gives to the systems under consideration, one would require good estimates and 
bounds for the entropies, such as those given in [1]. For the fundamental quantum 
mechanical systems considered in this paper, i.e., the harmonic oscillator and the 
hydrogen atom, the entropies are in terms of classical orthogonal polynomials. They 
can be expressed by means of integrals of the form 

/ 
pl{x)\ogp2

n(x)dii(x) (1.4) 

where Pn{x) are orthogonal polynomials with respect to a measure /i. The orthogonal 
polynomials that appear are the Gegenbauer polynomials, the Laguerre polynomials, 
and the Hermite polynomials. Since quite a lot is known for these special functions, 
one hopes to be able to find a relatively simple closed expression for integrals of the 
form (1.4). We show how the entropy (1.4) is related to the logarithmic potential of 
the measure p^(x) d^iix) and give a simple recursive relation for these logarithmic po- 
tentials for Gegenbauer polynomials, Laguerre polynomials, and Hermite polynomials. 
These results extend the work in [19] and [3]. The analysis of entropy integrals (1.4) 
for weights on (—00,00) is given in [18], and the asymptotic behaviour for general 
orthogonal polynomials is given in [2, 4]. 

2. The D-dimensional harmonic oscillator 

For the harmonic oscillator in D dimensions, the potential is 

V{r) = |A2r2 (2.1) 

where 

Thus the Schrodinger equation for the jD-dimensional (D > 2) harmonic oscillator 
becomes 

f   1 f d2      (D-l) d      A2\     1,2 21   , 

("2 W + ~^~dTr + 1?) + 2Xr J^ = ^^ 
with A2 the non-radial part of the operator. Here n is the principal quantum number, 
I is the angular quantum number, and the [ij are integers satisfying 

I = Mi > /42 > • • • > VD-I 
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with fiD-i = \Tn\. It is known [5] that 

A2y^(nD) = i(i + D - 2)yz,Ai(nD) 

where yi)/x(f2£)) are the hyperspherical harmonics defined by 

lUn*) = ^.^^ 11 C^^icose^ismOjr^ (2.2) 

with iVi>M the normalization constant 

AT2 = 2ir TT    ^^^ + ^'+1 + ^^Qj' + /xJ+1)(2aJ + ^ + ^J^1 "" 1)! 

Z,M       ^ /ii rK' + Mi+i + l)(Mi - Mi+i)!(aj + VjKtej + 2^+1 - 1)! * 

Here 2aj = D — j — 1, C^(t) is the Gegenbauer polynomial of degree n and parameter 
A and the angles 0i, 62, ..., 0D-2) 0 are given by 

#1 = r sin ^i sin ^2 * * * sin 0D-2 COS ^, 

0:2 = r sin 0i sin 62 • • • sin 0D-2 sin 0, 

£3 = r sin 0i sin 02 * * * cos 0D-2? 

XD-I = r sin 0i cos 02) 

xD = r cos 0i, 

with 0 < Oj < TT (j = 1,2,..., £> - 2) and 0 < 0 < 27r. 
Separating variables by assuming the form of the wave function 

gives the equation 

f   l/d2      (£>-l)d      i(f + g-2)\     1,2,1 „     _p    j. 

With some substitutions and changes of variables, we then obtain the normalized 
solution 

where n = 0,1,2,... and / = 0,1,2,..., which corresponds with the energy 

Enj = \(2n + l + D/2). 

If we take the Fourier transform of the wave function ipn,i,ti, then we obtain the 
wave function in the momentum space 

IUMGO = ("I)" (T^+l + D/2))     Ple-pl2X^l+D,2tflWAnD).    (2.4) 

Here and in the wave function ipuj^i we have uscd the Laguerre polynomial L%(t). 
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3. The entropy for the harmonic oscillator 

The densities in position space and momentum space are, respectively, 

The information entropies in the position space and momentum space then are 
defined as 

Sp = -     p(r) logp(f) df,        57 = - / 7(p) log7(p) dp, 

with 

df = r^'"1 dr dnD,    dnD = (  JJ sill2aj ^ d^ ) ^• 
V i=i / 

For the £)-dimensional (D > 2) harmonic oscillator we then obtain the following 
expressions for the entropies. 

GROUND STATE: this is the state with the smallest energy (#0,0 = A.D/2) 

„n D^     X     D 

S^llogATT+l, 

S° + S° = £>(! +log TT). 

ARBITRARY STATES: if the quantum numbers n, I, n are arbitrary, then 

sn^ = -** (r(n+f^/2)) " WTTTmih + h) 

-/3 + « + 2n+y-^logA (3.3) 

and 

where 

-73 + i + 2n + y + ^logA (3.4) 

i1=ri?-i+D/2e-tiogi? (i|r1+i>/2(*))2 *, 

/2 = jf00 ^-i+^e-* (Ljr1+D/2w)2 log (ijr1+I,/2(*))2 *, 

Js = /^(^I'logiy^^)!2^^- 
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Consequently, we easily obtain 

- 2/3 + 21 + 4n + JD. 

For the harmonic oscillator in one dimension, we only have one quantum number 
n and no angular part in the Schrodinger equation. The wave functions are now in 
terms of Hermite polynomials, and the corresponding densities are [7] 

^ = \fl^e~Xx2H^x^ (3-5) 

7(p) = -J—e-r2/xH2
n(p/V\). (3.6) 

vA7r2nn! 

For the ground state n = 0, we thus find 

S^IlogTr+i-ilogA, 

5° = ilog7r+i + ilogA, 

and for the first excited state n — 1, 

Sj = -ilogi-i + C + 21og2-|logA, 

^ = --log--- + C + 21og2 + -logA 

where C = 0.5772156649... is Euler's constant. For arbitrary states n, we have 

S; = log (V^2nni) + n + i - (V^2"n!) -1 J4 - | log A, (3.7) 

£? = log (v/^n!) + n + i - (v^:2nn!)_114 + \ log A (3.8) 

where 

fl2(s)logfl2(a;) e- dar. 
-OO 

For the harmonic oscillator in two dimensions, we have two quantum numbers n 
and /. The ground state has the usual entropies, and the first excited state n = 0,1 = 1 
has the entropies 

S^-logA + logTr + C+l, 

S^logA + logTr + C + l, 

with C being Euler's constant.   For arbitrary states n, Z, the entropies involve the 
integrals Ii and 12, given above, associated with the Laguerre polynomial Ll

n(t). 
Finally for the harmonic oscillator in three dimensions, we have three quantum 

numbers n, Z, m. For the ground state, we have the usual simple expressions. The first 
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excited states n = 0,1 = 1 have the entropies 

'5p
0'1'0 = -^logA+5log7r + log2 + C+i, 

5°-1'0 = | log A + | logTr + log2 + C + i, 

^--flogA + llog^ + C + l, 

S^'^^logA + llogTr + C+l 

where again C is Euler's constant. For arbitrary states, we need to take the integral 
Is into consideration. In three dimensions for m > 0, this integral is 

h = J\Yi,m^s)\2iog\Yl,m(n3)\2dns 

where P/71^) are Legendre functions.   If we use the relationship with Gegenbauer 
polynomials 

(1 - f2)-m/2m,2m _     m+1/2 

("^    (2^)! P'  W-C/-m    (*). 

this integral becomes 

T      1nrA^ + l)a-m)!\      /(2; + l)a-m)![(2m)!]2\ /(2m)!\ 
73 = l0g {    4*(l + m)\    ) + {   2*»+i(/ + m)!H)>   J (75 + ^ + 2^{^J 
with 

/s=y1 [ort1/2(*)]2(i - i2)m iog(i - *2r *, 

/6=/1
i[c^1/2(*)]2(i-*2riog[cri1/2(*)]2^ 

In the case that m < 0, it suffices [7] to substitute m for |m|. 

4. The hydrogen atom 

The usual way to describe the hydrogen atom is by means of the radially symmetric 
Coulomb potential 

V(r) = -i>        r
2 = f>?. (4.1) 

The wave functions in position space are given in atomic units [13] by 

W) = N^e-^ir/XYL^-Ar/mA^D) (4.2) 
where Nn,i are normalizing constants given by 

N       y-onf     (n-l-iy-     V/2 
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with 

n = n+^-,        A=-. 

The quantum numbers n = 1,2,3,... and I = 0,1,..., n — 1 correspond to the energy 

The associated probability density then is 

P{r) = W)? = ^.e-'V/A)2' [^-+£rV/A)]2 |^,,(nz>)|2. (4.3) 
By using a generalization of the method used by Fock [5], we find that the wave 

function in momentum space is 

v/2(p2+p2)(D+l)/2- 

where p2 = —2En = ry"2. If we use the known relationship between the hyperspherical 
harmonics in a (D + l)-dimensional space and those in a D-dimensional space, the 
wave function also is equal to 

*v) - «M (rp^^ccgr»" (£%$) n^o)   (4.4, 
where C%(t) is a Gegenbauer polynomial, 77 has the same meaning as in the position 
space, and 

1/2 
_(D+l)/2 

*$) =     K, 77^<™M«Yn-uAtoD+l) 

ith this the corresponding density becomes 

in = tfw? _ <,(1+^,w, [cnt5
c_r"'2 (iz^)]" pi,^)!- 

(4.5) 

5. The entropy for the hydrogen atom 

The information entropy in position space thus becomes 

5p = - / p(f)logp(f)df 

= - log JV^ + A^CJi - 21J2 - J3) - J4 (5.1) 

where 
(n + i + J-l)!       (n + f + 2?-2)l     (n + Z + D-S)! 

1 (n-i-1)! (n-Z-2)!     +     (n-l-3)!    ' 
poo 

J2= /    ^+1c-*logt[Lg(t)]2*, 
Jo 

poo 

Jz=        «a+1e-*[£g(<)]2log[^(*)]aA, 
JO 
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with k = n — I — 1 and a = 21 + D — 2. In momentum space, we find 

57 = - / 7(p) log7(p) dp 

K2 

= - log tf* ! + (2Z + Z? + 1) log2 - -^L_[ZJ5 + (23 + 1) J6 + J7] - J4   (5.2) 

where 

js=y1 (i - i?r-i/2tog(i -12) [cm]2 dt, 

j6 = j\i - ty-v^i+1) iog(i +1) [cm? dt, 

j7=J\i -12)-1/2 icmfiogicm2, 

with k = n-l-landi> = l + (D- l)/2. 
For the Coulomb potential in one dimension, we have 

V(*) = -ij. (5.3) 

The ground state has a degenerate energy So = —oo, and thus some care has to be 
taken in analysing this state. The wave function in position space is most appropriately 
given [11] by 

^(x) = a-1/2e-l*l/c\        a -> 0. (5.4) 

By taking the Fourier transform, we obtain the wave function in the momentum space 

[2    a1/2 

V TT 1 4- arp^ 

The entropies for a > 0 thus are given by 

5p = l + logal    57 = -loga + logJ + 41og2-2; (5.6) 

hence 

5p + 57 = log|+41og2-l, 

independent of a. The wave functions for the other states are [11] 

V'even(x) = ^e-W"^^^^), (5.7) 

Vodd(x) = ^e-^xLl^Mxl/n) (5.8) 

where ipeven(x) is the wave function for even states and ipodd(x) for odd states.  In 
momentum space, the wave functions are [8] 

/o"   /z:^±2in arctan(np) 

;    i+nv (5•9, 
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with n = 1,2,3,— The state n has the energy En = —1/n2. The densities in 
position and momentum space thus are 

p(x) = V^l/V [^_1(2|x|/n)]2 , (5.10) 
To 
0 n 

7(p) = ^(l + nV)2' ^^ 
with corresponding entropies 

Sp = 31ogn + log2 + 3n - —(J2 + J3/2), (5.12) 

^ = ^^-^71 + 3^2-2 (5.13) 

where 

J2=/    ^e-Mog^L^^)]2^, 
Jo 

/•OO 

J3=        t'e-^Li^tfloglLi^t)]2 dt. 
Jo 

The entropies for the Coulomb potential in two and three dimensions easily can be 
obtained from the general expressions obtained above by putting D = 2 and D = 3, 
respectively. 

6. Entropy for orthogonal polynomials 

Prom the previous sections, we see that the information entropies Sp and 57 for the 
harmonic oscillator and the Coulomb potential are in terms of entropy integrals of the 
form 

En = Jplix) \0gpl(x)dfl(x) (6.1) 

where pn (n = 0,1,2,3,...) are orthogonal polynomials with respect to a positive 
measure JU on the real line. The polynomials of interest are the Gegenbauer poly- 
nomials (for Je and J7), the Laguerre polynomials (for I2 and J3), and the Hermite 
polynomials (for 14). In a more general setting, we will study, in the remainder of 
this section, entropy integrals of the form (6.1) for orthogonal polynomials on the real 
line. In the next section, we will restrict attention to the Gegenbauer polynomials. In 
Section 8, the Laguerre and the Hermite polynomials are treated. 

If pn (n = 0,1,2,...) are orthogonal polynomials on the real line, then their zeros 
xj,n 0' = I5 2,..., n) are all real and simple. We then can write Pn(x) = kn 11^=1 (^ _ 

%j,n), with kn the leading coefficient of pn, to find 
n 

logPn(^) = 2 log kn + 2 ^ log \X - Xj^nl 
i=l 

so that 

En = 2logkn / pl(x)dfi(x) + 2^2    pl(x)log\x - xjtn\dfi(x). 
J j=i J 
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If /x is a probability measure, then 

U(z] n) = / log d^(a;) 

is known as the logarithmic potential of the measure /i [14, p. 164]. Consider the zero 
distribution for pn, i.e., the discrete measure 

1   n 

which has mass 1/n at each zero of pn. Obviously log|pn(z)| = logfcn — nU(z;fin). 
If the polynomials are orthonormal, then the leading coefficient usually is denoted by 
7n, and we then have 

En = 21og7n - 2n[u(x-1iin)p2
n(x) d^x). (6.2) 

The double integral 

/<,,,)=// log u—^! d^(x)dl/^) 

is known as the mutual energy of the two measures // and i/ [14, p. 168], and when 
fj, — v, then /(//, /x) = /(/i) is the (logarithmic) energy of /x. If we define for the 
orthonormal polynomial pn the probability measure vn by 

dvn{x) =pl(x)dfi(x), 

then this gives us a relation between the mutual energy of /zn and i/n and the entropy 

En = 21og7n - 2n/(/zn,z/n). (6.3) 

The two measures give interesting information about the polynomial pn and its zeros; 
in particular, fin has all its mass in the neighbourhood of the zeros of pn, whereas z/n 

has little mass in the neighborhood of the zeros. 
For a large class of orthogonal polynomials (the class M(1,0) defined in [12]), it is 

known that both measures /xn and un converge weakly to the measure /io given by 

,    /  x      1      dx 
dfio{x) =  , -1<Z<1, 

TT V 1 — X2 

[16, Thm. 2] and that Irnin^oo jn/n = 2; hence for orthonormal polynomials in M(l, 0), 
such as the Jacobi polynomials, one expects En ~ 2nlog2-2n/(//o)5 and since /(/io) = 
log2, this gives En/n -4- 0 and indicates that the terms 21og7n and 2nl(fin,un) are 
of the same order. 

By using Fubini's theorem, we can write (6.2) or (6.3) as 
n 

En = 21og7n - 2^C7(xJ>;z/n), (6.4) 

which is in terms of the logarithmic potential 

U(z; vn) = Jp2
n(x) log i^j- M*) (6-5) 
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of the measure z/n. If we restrict attention to the case where the measure ji is supported 
on the interval [--1,1], then /^o can be identified with the equilibrium measure on [—1,1] 
which minimizes the energy I(fj,) over all probability measures supported on [—1,1]. 
The logarithmic potential U(Z;IJLO) is the constant equal to log 2 on [—1,1] [17, §1.1 
and 1.3]. Furthermore, for any other measures on [—1,1], one has 

min   U(z;iJb) < I(/io) = log2 <   max   U(z',n), 
;z€[-l,l] «€[-l,l] 

which shows that U(z\ vn) oscillates around log 2 for z G [— 1,1]. To find the extrema, 
we consider 

d_ 
dz 

u{*Vn) = i L tiv>los irbf ^=£ Pf^ Mx)- 
For z G (—1,1), this integral must be considered as a Cauchy principal value integral. 
It can be written as 

f &&M*) = f Pn{x)Pn{x)-p;{z)d»{x) + Vn{z) f ^Mx). 
J_i x — Z J_i x — Z J_i x — z 

Now |jpn(a:) — Pn(z)]/{x — z) is a polynomial in x of degree less than n; hence by 
orthogonality 

/ 
1 ^ d^x) - -Pn(z)qn(z) 

_1 x — z 

where qn{z) = Jpn(x)/(z — x) dii(x) is the function of the second kind [17, p. 159]. 
It follows that the extrema of [/(z;z/n) are given by the zeros of pn and qn. To see 
whether we are dealing with minima or maxima, we consider the second derivative 

d2 

and at the zeros of pn, this gives 

d2 

Consider the associated polynomials 

(1)   /   x f Pn(z) - Pn(x)        , ( VV-Az) = J  z_x        d/i(x) = Pn(z)qo(z) - qn(z). 

Then at the zeros of pn, this gives Pnlifaj,*) = -qn(xj,n), so that -Pnixj^qnixj^) = 

Pn-i(x3,n)Pn(xj,n), and this is a positive quantity because the zeros of pn and p^li 
interlace. Hence, the zeros of pn are all local minima for U(z]i/n). This means, by 
formula (6.4), that in order to compute En we need to take a sum of the logarithmic 
potential U(z] vn) evaluated at its local minima. For this reason, we will investigate 
the logarithmic potential U{z\ vn) in detail for Gegenbauer polynomials (Section 7) 
and for Laguerre and Hermite polynomials (Section 8). 
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7. Logarithmic potentials for Gegenbauer polynomials 

Gegenbauer polynomials (ultraspherical polynomials) are symmetric Jacobi polyno- 
mials. They are denoted by Cn(x), with A > —1/2 and satisfy the orthogonality [15, 
§4.7] 

i £ qfrxawa - xv-s *=S^ffw      <«> 
Observe that the polynomials C^ are not orthonormal, and that the orthogonality 
measure is not yet normalized to a probability measure. 

Gegenbauer polynomials have some useful properties, and by differentiation, one 
can go from polynomials with parameter A to polynomials with parameter Ail. To 
go from A to A 4-1, one uses 

(C^x)y = 2XC^1
1(x), (7.2) 

and to go from A to A — 1, we can use 

(1 - x^-^ix) = - (2xf^((1" *)X+hc£l(x))'> ^ 
which follows from Rodrigues' formula. If we want to use probability measures, then 
we use 

/ J1-x)     dx=   r(A + i)  ' 
so that 

V7rl(A+2J 

is a probability density on [—1,1]. The orthonormal polynomials for this probability 
measure are given by 

\l/2 
n!)      <#(*), (7.5) PXn(*)=(^ 

rW     „t\       „X, 
r(n + 2A) 

and thus 

/   p^(x)p^(x)wx(x) dx = 5m,n. 

Since the weight function is symmetric, it follows that the Gegenbauer polynomials 
of even degree are even functions, whereas the Gegenbauer polynomials of odd degree 
are odd functions. Finally, from 

one can immediately read off the leading coefficient. 
In this section, our interest is the logarithmic potential 

V*(t) = - fjCfo)]2 log \x -t\(l- s2)*-* dx, (7.7) 
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which is related to the logarithmic potential U(t] vn), defined in (6.5), by 

u(t.v ) - v^t) - n + A    r(2A)     nir(A + l)     A 

= -      \Pn(x)]2 log \x - t|u;A(a;) dx. 

Taking into account that the leading coefficient of the orthonormal polynomial p„ is 

_   2"r(A + n + l)r(2A) 
ln~   r(A + l)r(n + 2A) ' u'o; 

a precise knowledge of the function V* at the zeros of C^ would allow us to compute 
the entropy for Gegenbauer polynomials by means of (6.4). 

Let us first consider the special cases A = 0 and A = 1. For A -> 0, we have 

hm\c^(x) = -Tn(x),        n^O 

where Tn are the Chebyshev polynomials of the first kind. For A = 1 we have 

Cl(x) = Un(x), 

where Un are the Chebyshev polynomials of the second kind.  If x, t £ [—1,1], then 
one can find 0, ^ G [0, TT] such that x = cos 0 and t = cos 0. One then has 

\x — t\ = |cos0 — COS0| 

Therefore, 

= I|e^_e^| |e^-e-^| 

log \x - t\ = log \ + log |e** - ei0\ + log |e^ - c'^l 

Use the Fourier series [10, p. 38] 

cos ky 

fc=i 

to find that, for x ^ t, 

^E2^ = _log|l_e^        0<V<27r, 

.        .     .     1     v-^ cos kid — 9)     v-^ cos k((f) + 9) log|z-f|=log--£ J2 1  
OO 1 1 

= log--25;-Tfc(x)rfc(t). (7.9) 
*-!* 

If we set 

<«»>-JSi^',-<,>—I^^W"!-^ 
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then by (7.9), we have for -1 < t < 1 

V2(t) = log2 1 f1 TZ(x)^L= + 2Jr?fU1 Tlix^ix)-^ 
^ J-i \J\-x1        ~ 3 K J_Y VI -: 

Using simple trigonometry and Tn{x) = cosnO for x = cos6, we have 

TZ(x) = ±[T2n(x) + l], 

and by the orthogonality of the Chebyshev polynomials of the first kind 

dx 
- f   Tn(x)Tm(x) 

VT 
= 5m>n,        n,m>l. 

This gives 

so that 

?.J1TZ(x)Tj(x)-J?= = l5j,2n, 
VT 

V°(t) = log2 + %^,        -1< t < 1, n > 1. (7.10) 
2n 

In a similar way, we have for A = 1 

and if we use 

VKt) = -V^(t) = -- f   U^xWl-xHog \x -1\ dx, 
TT TT J_1 

TZ+1(x) + (l-x2)UZ(x) = l, (7.11) 

then this gives 

Vn(t) = ~j\l- T^X)] log \X - t\ dx 

so that 

]vr^x> 
= 21og2-V;0

+1W, 

V;1W = log2-^±^,        -l<i<l,n>0. (7.12) 

Observe that (7.10) and (7.12) indeed show that these logarithmic potentials oscillate 
around the value log 2 when t e [—1,1], as was explained in the previous section. 

For other values of the parameter A, the computation becomes more complicated. 
There is, however, an interesting extension of Euler's identity (7.11) for Gegenbauer 
polynomials, which was obtained by Dette [9, p.570]: 

[ ^(x)]2 + (1 -x2) [C£l(x)}2 = g ^ [CiW}2 ■ (7-13) 
j=0 
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If we multiply both sides of this identity by (1 - x2)A~* log \x " *l and then integrate 
over [-1,1], then we obtain 

(^)2 v« w+^ <*>=£ ^r ^(t)- (7-14) 
j=o 

This is a linear recurrence relation which allows the computation of the logarithmic 
potential V^(t) whenever V£,Vf,..., V* are known. In particular, this recurrence 
allows us to obtain the logarithmic potentials V*(t) for integer values of the parameter 
A by using the explicit formulas (7.10) and (7.12) for the Chebyshev polynomials. A 
closed expression is not easily obtained, but the recurrence can be used effectively if 
A is not large. For A = 2, this gives 

T>2/^       i      o   ,   n + 1 ^271+4CO U2n+2(t) 1 (7 i c\ 
VZ(t) = log2 + ^3"^pT " („ + !)(„+ 3) + (» + l)(n + 3)- (7-15) 

Observe that since |Tn(i)| < 1 and |l7n(t)| < n + 1 for every t e [-1,1], we have 
V£(*) = log2 + 0(l/n) uniformly on [-1,1]. 

For the entropy E*, we need to evaluate the logarithmic potential at the zeros 
of the Gegenbauer polynomial C*. For the Chebyshev polynomials, we have that 
Tnix^n) = 0 implies T2n(xiin) = -1, so that V^x^) = log2 - ^. The entropy, 
given by (6.4), therefore is equal to 

££ = 1-1012,        n>l, 

confirming our result in [19]. For Chebyshev polynomials of the second kind, we have 
that Un(xs,n) = 0 implies ^^(XJ,™) = 1, so that V^(xj>n) = log2 - ^. By using 
(6.4), this then gives for the entropy 

Ei = 
n 

Jn     n+l' 

also confirming our result in [19]. 
The recurrence (7.14) still can be simplified. By using (7.3), we find 

"  [C^x)]2\og\x-t\(l-x2)x-^dx 
l-i 

2A 

s: 
n(2A 

Integration by parts and (7.2) then give 

[<#(x)]2lQg|a;-t|(l-a;2)A-*<fc 

\-^ f1 C*(x)log\x-t\d((l-x2)x+lC^l(x)). 
+ n) J-i 

L 
1 

-1 

2X_f1C^l(x)^(x){i_x2)X+idx 

+ n)n,/_1 x-t 

(^;/_1
iKi;w]'lo6|,-t|(l-x^i«- 

ight-hand side can be computed since b^ 

C>(x)-C>W=2AcaM+gn_2M 

~ (2A 

+ 

The first term on the right-hand side can be computed since by (7.6) 

x — t 
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where gn-2 is some polynomial of degree at most n — 2, and thus by (7.1) 

L 1 X — t 

2A r1 

-(l-x2)x+3dx 

= ^ J^ [C^Kx)]2(l - x2)x+l dx - C^t)Qit\{t) 

where 
rl C>i{x)i Qn(t)=   [     ^(l-X^-ldx 

J-l  t-x 

is the Gegenbauer function of the second kind. This means that 

Vn [t) - (2A + n)n^-1 W + (2A + n)nQ"-l(*)C"(i) " ^M^TA)F(A)^- 

(7.16) 

For the normalized potential V*, this recurrence is 

V*(t) - V^(t) - i + 2(» + A)r(2A)(n - l)ir(A + 1) cx(t)cx+i(i) 
KW-Vn-iW     n+   0Fr(n + 2A + l)r(A + l/2)  CnWQ»-iW- 

If we use (7.16) in (7.14), then we can eliminate V^i(t) and obtain a recurrence 
relation for V^(t). This gives 

We can get rid of the sum on the right-hand side by taking the first difference on each 
side of the equation, giving 

n(n + \)V*(t) = (A + n - 1)(2A + n - l)^!^) 

(7.17) 

This is a non-homogeneous first-order recurrence relation. The general solution of the 
homogeneous equation is 

A   (2A)W 

(n H- X)n\ 

where A is independent of n. If we look for a solution of the form 

then 

irr(2A)   /I 1 A       1      N\ 

22AAr2(A)Vn + A     * friHk + X)))' 
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8, Logarithmic potentials for Hermite and Laguerre polynomials 

In a similar way, one can obtain recursive formulas for the logarithmic potentials 
involving squares of Hermite and Laguerre polynomials. For Hermite polynomials, we 
define 

/00 2 
Hl(x)log\x-t\e-x dx. 

-OO 

Recall that [15, p. 106] 

H'n{x) = 2nHn-1{x)i (8.1) 

and from Rodrigues's formula, we also have 

(e-*2tfn-i(z))' = -e-x2Hn{x); (8.2) 

hence using (8.2), we have 

/OO 2 

Hn(x)log\x-t\d(e-x Hn-^x)). 
-OO. 

Now use integration by parts and (8.1) to find 

Vn(t) = 2nVn-1(t)- I™ e-jHn{x)H    i{x) ^ 
J — OO X t 

The last integral can be written as 

f a"*2 H^)HnMx) dx =   /- e^Hn{xfn-M-Hn-,{t) dx 

J—oo %      t J—oo x      t 

J-oo X-t 

and by orthogonality, we thus have 

y.oo x-t 

where Quit) is the Hermite function of the second kind 

Qn(t)= r e-*a^-dx. 
J —OO t X 

This gives the recursion 

Vn(t) = 2nVr
n-i(t) + #n_i(*)Qn(*). (8.3) 

For the normalized weight function w(x) = 7r~1/2e~x , the orthonormal Hermite poly- 
nomials are Pn(x) = (2nn!)~1/2ifn(a;), so that for the normalized potential, we have 

Vn(Jt) :=-—j^ e-*2pl(x) log \x -t\dx = ^—Vn®, 

and the recurrence relation becomes 

Vn(t) = Vn-l(t) + 2^^ir„-l(t)Q„(*). (8.4) 
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For Laguerre polynomials 

f™e-VXW(x)£W(x)dx = r(n +J + ^ Sm,n, 

we define 
poo 

VZ(t) = - /    [L^(x)]2 log |a; - t^c-* dx. 
./o 

Now we have 

(L^(x)y = -L^1
1\x), (8.5) 

and from Rodrigues' formula 

e-*x"LW(x) = i(e-^"+14a_+
1
1)(a;))

, (8.6) 
To 

(see [15, pp. 101-102]). Integration by parts using (8.6) then gives 

V:(t) = -- /    4«)(x)log|x-t|d(e-^+14Q_+
1
1)(a;)) 71 Jo 

i   r00 

+ire-,x^ev'w4°'(x) 
n Jo ^ - t 

where we used (8.5) in the first integral on the right. Now 

JO x — t JQ x — t 
poo T{CL+1),   s 

+ LW (t) /    e-^-+1 ^-1   W cfa, 
JO x — t 

and since 

^)(x)-LWft)_       lr(a+l)M,p        ,      . 

where Pn_2 is a polynomial in z of degree at most n — 2 with coefficients depending 
on £, we have by orthogonality 

where 

0 *-^ ^0 

is the Laguerre function of the second kind. This gives 

nVZ{t) = V^{t) - r(n + ° + 1) - 4Q) WQK1^*). (8-7) 
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For the normalized weight function wa(x) = xae~x/T(a + 1), the orthonormal poly- 

nomials are Pn{%) = (—l)n\/n!/(a + l)nLn(x). Hence for the normalized potential, 
we have 

1 poo I 

hence the recurrence becomes 

vf(t) = vz$(t) -1 - r^Va + i)^^^-^^- (8-8) 

9.  Conclusion 

In this paper, we have shown how the entropy of some classical orthogonal polynomi- 
als plays a role in some problems related to the harmonic oscillator and the Coulomb 
potential (hydrogen atom). We showed how this entropy for orthogonal polynomials 
is related to the distribution of zeros and to the mutual energy and logarithmic poten- 
tial of some measures involving the zeros of the orthogonal polynomials. We analyzed 
the Gegenbauer polynomials, the Laguerre polynomials, and the Hermite polynomi- 
als in some detail. We obtained some closed formulas for the logarithmic energy of 
Chebyshev polynomials and showed how to obtain logarithmic potentials for measures 
p^x) dfi(x) recursively. 
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