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POISSON KERNEL FOR THE ASSOCIATED CONTINUOUS 

g-ULTRASPHERICAL POLYNOMIALS 

Mizan Rahman and Qazi M. Tariq 

ABSTRACT. The bilinear generating function (the Poisson kernel) for the associ- 
ated continuous qr-ultraspherical polynomials, first studied by Bustoz and Ismail 
and later generalized by Ismail and Rahman, is obtained, essentially as a product 
of a 2<t>ii a 302, and a 4<j>3 basic hypergeometric series. Some related generating 
functions also are given. 

1. Introduction 

The continuous g-ultraspherical polynomials, Cn(x;p | g), introduced by Rogers [18, 
19, 20], can be defined by the generating function 

where 0 < q < 1, x = cos0 (0 < 6 < TT), \t\ < 1, and 
oo 

j=o 

k 

(ai> a2,...»ofc; 9)00 = JJ(aj; 9)00; (1-2) 
J=l 

see [7]. Setting (3 = 0 in (1.1), one obtains the generating function for the continuous 
g-Hermite polynomials Hn(x \ q) = (q; q)nCn(x; 0 | q): 

E00  Hn(x | q) n      1  (     . 

n=0   (q;q)n (teM,te-i6',q)oo K ' ) 

where the shifted factorial (a;g)n is defined by 

(a;g)o = l, 

(a;^= (S^^na-^"1)        - = 1.2,... . (1.4) 
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78 RAHMAN AND TARIQ 

As a g-extension of Mehler's famous bilinear generating function for the classical 
Hermite polynomials, 

n=0 

Hn{x)Hn{y) ft\n 

ni (D'-a-^-'-pC^V-/^}-     ^ 
see [21, Problem 23] and [22], Rogers [17] found the following extension of (1.5) for 
the g-Hermite polynomials: 

n=0 

Hn(x\ q)Hn(y\ q) fn = ft2;g)oo  

(«;«)» \(teW+<P)M-$+*);q)oo\2 
(1.6) 

x = cos0, y = cosy?, \t\ < 1. The extension of (1.5) to g-ultraspherical polynomials 
was found by Gasper and Rahman [8]: 

oo 

Pt(x,y;0\q):=^2hnCn(x;(3 \ q)Cn(y;/3 | q)tn 

71=0 

(q,Pq',q)oo 
2K(j3,l3t*;q)e 

{I3tei6+i^,l3tei6-i^]q)c 

(teie+iv,teie-iv;q)c 

x sW7(Pt2/q; p/q, teie+^, te"^"^, te^"^, te'^^ ; g, /3g)5 

/?, t assumed real, where 

hn = 
(q,(32;q)oo   (l-pqn)U'iq)n 

STr^,^;^ (l-/?)(/32;^ 

is the normalizing constant in the orthogonality relation 

(1.7) 

(1.8) 

JVCn(cose;0 I g)Cm(coS0;/3 | q)Wp(cos0 \ q)dO = ^n (1.9) 

with 
(  2i9     -2*0      \ 

^(COSg|g)=(^,^-^;g). 
(1.10) 

see [7] and [3], and QW? is a special case of a very-well-poised basic hypergeometric 
series: 

2mW2m-l{0' 5 ^1, 02, ... , a2m-3 5 ^ ^) 

f"     a, ^\/^J —q\f^"> ai, 02,..., a2m-3 
:= 2m^2m-l       /- r- . , , i  q,z 

. va>, -ya, qa/ai, qa/az,  -, qa/azm-z 
(i.ii) 

where the symbol on the right-hand side is a special case of a basic hypergeometric 
series defined by 

r+l (j)r 

ai,a2,...,ar+i 

&l,&2j.-->&r 
; g,s -E (ai... ar+i; g)^   fc 

■z 
^ (0,&i,...,6r;a)fc 

(1.12) 
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where 
j 

(ai,..., aj ; q)k = JJ(af; q)k] 
2=1 

see [7] for conditions of convergence and other properties of these series. One can see 
that the Poisson kernel in (1.7) reduces to (1.6) when f3 = 0, except for a constant 
factor. Formula (1.7) is admittedly more complicated than (1.6), but it does exhibit 
one of the basic properties of the Poisson kernel, namely, the positivity in some domain 
of P and t. The importance of positivity of these bilinear sums in Fourier analysis 
was pointed out by many authors, see, for example, Askey [1]. But there is renewed 
interest in Poisson kernels of orthogonal polynomials for a different reason. Wiener 
[23] showed in 1933 how the classical topic of Fourier integrals could be approached 
from the point of view of classical orthogonal polynomials, in particular, by using 
Mehler's formula (1.5). One can show that the expression on the right-hand side 
of (1.5) approaches a multiple of exptyxy), the usual kernel of Fourier transform, as 
t -)■ i on the unit circle. This was suggested by Askey as a suitable starting point 
for a systematic ^-extension of Fourier Analysis, which resulted in a number of recent 
publications [2, 4, 15]. It turns out that the most important piece of information that 
one needs from the Poisson kernel is the location of poles in the complex t-plane, as far 
as the Fourier transformation is concerned. One can see that the poles of the kernel 
in (1.7) are exactly the same as those of the simpler kernel in (1.6). Calculations 
with more general systems of polynomials, starting with the 2-parameter continuous 
g-Jacobi polynomials [9] up to the 4-parameter Askey-Wilson polynomials [16] reveal 
that this phenomenon persists through the entire Askey-Wilson family. Let us recall 
that the Askey-Wilson polynomials are defined by [3] 

ao, ac, aa 
pn(x;a,&,c,d | q) = 4</>3 

x = cos0, which satisfy an orthogonality relation similar to (1.9) if max(|a|, |6|, |c|, |d|) 
< 1. Note that Cn(x;f3 \ q) is a special case of (1.13) (except for a constant factor) 
that corresponds to setting a = vT^j & = V^? c = — y/fi, d = —y/fiq; see [3, 5, 7]. In 
this paper, we wish to generalize (1.7) in a different direction. Recall that Cn(x;/3 | q) 
satisfies the three-term recurrence relation 

1 _ an+l 1 _ /^n-l 
2xCn(x■,l3\q) = -j-^Cn^x■,/3\q)+    ^^   Cn-i(s;/? \q) (1.14) 

with C_i(#;/3 | q) = 0, Co(x;/3 | q) = 1, — 1 < x < 1. Bustoz and Ismail [6] 
introduced an association parameter a and studied the properties of the associated 
g-ultraspherical polynomial C%(x;/3 \ q) that satisfies the recurrence relation 

2xCZ(x;(3 | q) = -j-JL—C^*;/* | q) +    1 _ ^qn+a   C%-i(xi0 I q)    (1.15) 

with C^^x^P | q) = 0, Cff (x\fi \ q) = 1. They found a measure d/i(x) with respect 
to which the orthogonality relation 

/. 

1 1   _   /W*       ((&„OL . 

CZ{x',fi\ q)CZ(x;0 | q)Mx) = 1 ^ fqf+n ^j^QanSm,n (1.16) 
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holds.  By a straightforward manipulation of the recurrence relation (1.15), Bustoz 
and Ismail [6] also found the generating function 

Gnx;f3\q):=J2CZ(x;0\q)tn 

71=0 

(1 - 2xt +12) 
392 

0teie,0te-ie 

qtei0,qte-ie, 

,Q 
q,q" (1.17) 

In Section 4, we will find an alternative form of (1.17), as well as a few other 
generating functions. In Section 5, we will compute some bilinear generating functions. 
The main result of this paper that follows from (5.1) and (5.5) is 

K?(,x,v;/3\ q) := f) (1
(1 _^) iCl I ^ ftg"")"^ (s; P I q)C^y;P | q) 

n=0 
./3g«)   (/3V;?)n 

= (i -/30"1 {i?(aj,») -^^(s.y)} (1.18) 

where 

i?(*,i/) (1-9°) ,a\2 
(«a+1;?)c 

(1 - e-2ie)(l - 2ytq-aeie + t2g-2ae2i9) (pqc<;q)c 

X2<I>1 

X3<t>2 

X4<t>3 

I  qe 

+ (9- 

-2i0 ; q,q 

-aei(9+<p) ptq-ae%W>, ptq—e-i—r', q -a   i(6-<p) 

1-aMO-v) 5  9,9" 

(3e2i6, (3, tq-^6^, tg-ae*(fl-v) 

qe2i0,ptq-aei(e+'l'),(3tq-aei(e-'fi)' 

-o). 

q,q 

(1.19) 

Note that iff is a multiple of the Poisson kernel for C%(x; /3 | #). This shows that the 
poles are only slightly shifted by a factor of qa, but otherwise remains the same as in 
(1.7). Unfortunately, we were unable to simplify (1.19) to a form where the positivity 
would become obvious as it is in (1.7). It is only in the case when a = 0 that the two 
403 series in (1.19) combine to an 8^7 which is what we have in (1.7), but otherwise 
the computation seems quite difficult. 

In deriving the formulas mentioned above, our main tool has been the generating 
function (1.17) as well as the following moment representation of C%(x; /? | #): 

/oo 

-oo 

(1.20) 
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where v is a step function whose jumps occur at the points qkel6 and qke~ie, k = 
0,1, — The jumps are 

*<,*.,,,.,_ (L^r*-,* 
■,q,qa 

(l-e-2tf)^L   qe-2ie 

v (Qe'2i0/0,q/0;q)k^2^k 
{q,qe2ie;q)k 

&*?)*, (1.21) 

with di/{(ike"%9 ;/?,#) the same as (1.21) and with 0 replaced by —6. We prove this 
important result in Section 3. The idea of this moment representation of orthogonal 
polynomials is not new. Karlin [13] used such a representation to study the sign 
regularity of determinants of classical orthogonal polynomials. Carlitz and Al-Salam 
used them in the 1960s (see the references in [11] and [12]). Ismail and Stanton 
[11] constructed several moment representations explicitly with special emphasis on 
the Al-Salam-Chihara and continuous g-ultraspherical polynomials. Implicit use of 
moment representations of the continuous g-ultraspherical polynomials was also there 
in formulas (7.4.4) and (7.4.7) of [7]. The derivation of (1.20) and (1.21) was facilitated 
by an alternate form of the polynomial solution of the three-term recurrence relation 
for the associated Askey-Wilson polynomials found in [10]. We carry out this alternate 
derivation in Section 2. In Section 6, we will give the q -¥ 1 limit of formulas (1.18) 
and (1.19), as well as the explicit form of the associated ultraspherical polynomials. 

2. The associated Askey-Wilson polynomials 

In [10], Ismail and Rahman found a representation of the associated Askey-Wilson 
polynomials, p^x; a, 6, c, d), as a linear combination of the two linearly independent 
solutions of the three-term recurrence relation 

2xp^ {x; a, 6, c, d) = ,4n+ap£+1 (x; a, 6, c, d) 

+ £n+aPn(z 5 a, bi c> d) + Cn+aPS-lfc 5 &, &, C, d), (2.1) 

p"i(x;a,6,c,d) = 0 and PQ{X;a,6,c,d) = 1, namely, 

(a6ga+n, acqa+n, adq^71, bcdq^^jz ; q)^   a *+<* 

x gWrfed/zq; b/z, c/z, d/z, abcdqa+n~1, q~a~n ; q, qz/a) 

(2.2) 

and 

Sa+n(z',a,b,c,d) 

(abcdq2a+2n, bzqa+n+1, czqa+n+1, d^a+n+1, bcdzqa+n ; q)^       n+a 

{bcqa+n, bdqa+n, cdqa+n, g«+n+1, bedzq2"*2"*1; q)oo 

x zW7(bcdzq2(*+2n ; 6cga+n, 6d^+n, cd^+n, qa+n+1,qz/a; g,a«)      (2.3) 
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where z = e%B, x = cos 0, and 

_! (1 - q6q*)(l - ac^)(l - a^)(l - abcd^-1) 
a     a (1 - abcdq2"-1)^ - abcdq2") ' l     j 

(1 - tag^Xl - ftdg^-^q - cdg0'-1)^ - q«) 
a (l-abcdq^-l){l-abcdq^-2) ' ^     ' 

Ba = a + a~1-i4a-C,
a. (2.6) 

One can show by using Bailey's transformation formula [7, 111.(37)] for very-well- 
poised 8^7 series that rQ;+n(z; a, 6, c, d) is a linear combination of Sa+^z; a, 6, c, d) and 
5Q:4.n(z~1; a, 6, c, d) with coefficients independent of n. But, of course, sa4.n(z; a, 6, c, d) 
and sa+n(z~1 ;a,6, c, d) are also independent solutions of (2.1) as long as 0 < 6 < TT, 

so one might seek a representation of the form 

p"(x; a, 6, c, d) = Lasa+n(z; a, 6, c, d) + MQ:sQ;+n(2;~1; a, 6, c, d). (2.7) 

The initial conditions then fix the coefficient La and Ma: 

p%(x;a,b,c,d) 

_ sa+n(z',a,b,c,d)sa-i(z~1 ;a,b,c,d) - gQ+n(z~1 ]a,b,c,d)sa-i(z;a,b,c,d) 
sa(^;a,6, c, d)sa-i(z~1 ;a, 6, c,d) — Sa^-1 ;a,b,c,d)sa_i(2:;.a,fc,c,d) 

(2.8) 

Using (2.1) and an argument similar to the one used in [10], we can show that 

{sa(z; a, 6, c, d)5Q;_i(^_1; a, 6, c, d) — SaOz-1; ^ 6, c, d)sQ:_i(z; a, 6, c, d)} 

(6c9
a-1,6d9a-1,cdga-1

>«
a;?)oo 

(abqa, acq*, adqa, abcdq*"1; gjoo 

a1-2" {az^a/z')q)c 

(1 - abcdq*«-2) (qz29 q/z2 . ^^ (^ _ ^-i)' (2.9) 

which is just the Casorati determinant of (2.1). Using the transformation formula [7, 
111(23)] and substituting (2.9) in (2.8), we obtain 

Pn^a,b,c,d)={1_abcdq2a_2) 

{aqa/z, bqa/z, cqa/z, dqa/z, azqa+n+1,bzqa+n+1; q)^ 
(abqa, acqa, adqa, bcqa+n, bdqa+n, cdqa+n ; q)^ 

(c2;ga+"+1, dzga+"+1, abcdqa+n-1; q)^    (az)n 

X (ga-HH-l, ga+l/z2) 22ga+n+2 . ^^        Q _ ^-2) 

x 8W7 (if/z2 ; g/az, g/62, g/cz, g/dz, gQ ; g, abcdqa~2) 

x 8W7(zV+n+1; ^/a, Z9/6, «g/c, zq/d, qa+n+1; 9, o6cdga+n-1) 

+ *<—J-2-1. (2.10) 

This is the form that will enable us to represent C%{x;fi \ q) as the moment of a 
probability measure. 
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3. Associated q-ultraspherical polynomials as moments 

Using the quadratic transformation formula [7, (3.4.7)], we have 

8W7{t
2qx ; tq/a, tqi/a, -tq/a, -tq* /a, qx ; q, a4^"1) 

(atq^aWqKiqU 

r ^ IJI 

01 -291 
qt I a , qja 

ftaV1 (3.1) 

see also [14]. 
Setting 6 = 092, c = -a, d = -aq* in (2.10), using (3.1), and simplifying the 

coefficient, we obtain 

p" (a;; a, 092,-0,-09*) 
^_l-aV-1(<iV+n;9)oo 

l-z-2    (9«+»+i 59)00 

'q/a2z2,q/a2 

X2^1 
9/^2 

ff.oV-1 

X201 
92 /a ,9/0 

; 9,aV+n 

9^2 

+ 2;- z-1. (3.2) 

Comparing (1.15) with (2.1) for these special values of parameters b, c, d, we find that 

C%{x;o2 I 9) = S0a^
;.gJwQ"X(g5a,09*.-a,-09*). 

(«°+i;9) 
(3-3) 

So, from (3.2) and (3.3), we have 

C«(x;o^|9) = 
(9a+1;9)oo (i-^-2) 

qz2/a2,q/a2 

291 
qja z ,q/a 

dl*2 ^aV"1 

X201 
^2 

q,a4qa+n 

+ z<—tz'1. 

If we use [7, 111.(3)] on the first 2^1 series of the right-hand side, we get 

(l-aa) [a2/z2,a2 

n{X',a    |<?J = Tj —2\z     201 . 
v1 -z    ) L    q/z 

(3.4) 

2     5 9.9 

X201 

+ z<^ 

qz I a , qjar 

qz2 9,o49a+" 

Since 

lm(l-9a)2^i 
a->0+ 

o2/z2,a2 

/ 2    ; ^ 
(a?/z*, a? iq)^ 
(Q,Q/z2 10)00 

(3.5) 

(3.6) 

one can see that (3.5) is a generalization of [7, (7.4.4)] as well as of the formula (5.11) 
of [11]. Replacing a by /?2, we find that (1.20) follows from (3.5). 
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4. Some generating functions for C%(x\fi \ q) 

Formula (3.5) is obviously the most convenient form for deriving generating functions 
for C%{x; /3 | q). For example, it is easy to see that for any A 

(A; q)nl n_  (l-O (A*t;(7)c 
20 (l-z-2)  (^t;^ 

qz2/(3,q/p,zt 

qz2
1Xzt 

I3/Z
2
,I3 

q/z 

; <?,/?V 

2    5 9.9 

(4.1) 

Assume that |t| < 1. Setting A = q, we get an alternative form of (1.17): 

G?(x't0\q) = (l-qa) \0/z2,l3 
(l-z-*){l-zt) 2V1 

. q/z 
2 ; 9,9 

r„~2 

X3^2 
qz2/(3,q/f3,zt 

2„a 
2   ,    ; 9,^9' 

gz ,qzt 

+ z <—> z~ -i (4.2) 

On the other hand, transforming the second 2^1 series on the right-hand side of (3.5) 
by [7, 111.(3)], we get 

Cn(^;a    1^1-^-2 (02^^ . -\     Z     201 

X201 

(f32q"+n;q)< 

P/z2,(3 

q/z 2    5 ^9 

L   qz 2    
5 ^9 

ct+n+l 

(4.3) 

Hence, 

f^ilhK^ltf.. -&--!!)_ L*~M 
n=0 (Pfltin (i~^-2)(i-^)(/3V;^c 

X201 

X 302 

/   2     '   0>3 

2     ^ 1 Q'Q' qz ,qzt 

^-1 

,Q:+1 

(4.4) 
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More generally, 

v^ (\qa+1;q)nra,   .R , nMn _  (l-ga) (g"+1;9)co(A^;g) 

^0 (9, /32^; «)„ 0B
 ^' ^'9;   ~ (i - ^2) (/52^; 9)00 (**;«). 

ff/*2 ; 

CO 

X201 ^r 

X302 
. qz2,\zt 

Q,Q 
.a+l 

+ J2; ^—)► 2;  x. 

It also follows from (3.5) that 

n=0 ^ 

(l-g« 
Ufc 2^1 

\P/z2,(3          1 
L «/^          J 

X3^2 
rgz2//3,g//3,^                  1 

2         ,          1  HiP  H 
qz ,qzt 

+ Z4—> z-1, ife = 0,1,. 

85 

(4.5) 

(4.6) 

5. Some bilinear generating functions for C%(x;P \ q) 

In this section, we shall compute a few bilinear generating functions.  First, let us 
consider the simplest one: 

£?Cx,y) := £ TR2j
q\n{tq-a)nC^x-J \ q)C^y^\ q), (5.1) 

n=0 ^ q    ' q)n 

which is symmetric in x and y where x = cos6,y = cos</?, 0 < d, <p < TT, e*8 = 21, and 
eiv = Z2. By assuming \tq~a\ < 1 and using (4.3) in (5.1), we find that 

Ta(    s     (l-gQ) (ga+1;g)oo  , \PI&P. „  „ 

£ M|i^g(-+i)* f;^^-^*)"^^; /31 ?) 
fc=0 («, 9^; «)* n=0 

+ 2:1 ^—> zl (5.2) 

However, by (1.17), 

n=0 

X302 
g, Ptz^-vj*, ptz^-^e-1* 

Ltzxq* k-a+ljv ^Ziqk-ot+le-iv q,<i (5.3) 
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and so the sum over k in (5.2) is 

„ {ptz1q-
aei*,ptzlq-

ae-i* ; g)j+fc   (teig-ae<y, teig-ae-^ ; g)fc 

(tzxg-^e^, teig-^e-'*1; q)j+k+i {ptz1<ra&t',pt*\<raeriv ; ?)* 

(l-cf) 
(1 - 2ytziq-a + zft2q-2a) ^2ST3^2 

q,Ptziq-aeiv,0tziq-ae-iv 

tz1q-
a+1ei*,tz1q-

a+1e-iv ; <7,<r 

X403 
/3, /SzJ, tziq-Be*, tz1q-

ae-iv 

—a-—zip      *   * qzi^tziq-ve^^tz^e-** 
(5.4) 

Hence, 

L-fx«) = (l-9")2 (g-+1;g)c 
*{  'V)      (1 - z-2)(l - 2ytz1q-<* + Z^2g-2a) (/32ga . q)c 

X3<t>2 

X4^3 

+ Z! 

q,l3tzxq-aei'f',(}tzlq-
ae-i'(' 

tziq-a+1e^\tz1q-
a+1e-iv '' ' 

gZi2,0tz1q-
aeiv, I3tz1q-

ae-i'' 
9,9 

(5.5) 

This leads to the expression (1.18) for the Poisson kernel for C%(y; /3 | q). Note that the 
moment representation of C%(y; f3 \ q) also enables us to compute the non-symmetric 
kernel 

MfixMbh) := f; {^;.!iB(«g-a)nCg(a;;ig | «)C^(w;/8i | g) 
n=0 (f32qa;q)n 

(l-q-) a\2 
(qa+1;q)c 

(1 - z-2)(l - 2»t«ig-« + ^i2g-2«) (^2gQ ; g)c 

•0/4,0 
X201 

X3<?!>2 

X4^3 

/   2     ;  q>q 

g,i9iteig-0ei*'>j81tzig-ae-t*' 

L tzig-^+Wzig-^e""'* 
; g.flT 

/3,/3^,<ziel¥,g-a,tzie-^g up   — a 

Lgat,j9iteie,*,g-a,/3iteie-,*'g' —icp—ct q,q 

+ Z! .-1 (5.6) 

Observe that the 403 series in (5.5) is balanced, but the one in (5.6) is not unless 
Pf = p2. (5.3) may be seen as an extension of (5.5) of [11]. 
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Finally, use of (3.5) and (1.17) gives 
00 (1 — aa)2 

X201        . 2   ; q,q 

87 

71=0 

X302 

X403 

!   9,9" 

+ 21 

; 9,9 

(5.7) 

6. Some limiting formulas 

We will compute the q ->• 1 limits of formulas (3.4) and (5.5). We believe that these 
formulas are new. 

It is clear from the expressions on the right-hand side of (3.4) and (5.5) that one 
cannot take the term-by-term limits. One has to do some transformations of the q- 
series involved in these formulas. Using (III. 1) and (III. 3) of [7], in that order, we 
find that 

4>i 291 
q/0z2,q/0 

q/z2 5 q,Pzq' 
i2„Q-l 

and 

2<f>l 
qz2/(3,q/0 

q,M 
2 „a+n 

(P<r,l3/zi;q)eo 
(Pqa-\q/zZ;q)c 

(I3q<*+n+\0z2;q)c 

4>i -291 
qot,q/P 

fa -291 

L M 

a+n+1,q/f3 

! q,?/*? 

N a+n+1 ; qrfz1 

(6.1) 

(6.2) 
qz- j        {02qa+n,qz2\q)c 

These two formulas along with the definition of the g-gamma function [7, (1.10.1)] 
give 

r«(r. n* I „\ -    rg(a + l)rg(2A + a + n)    (^gA, f/z2 ; q)« 
nl   ,(Z   |gJ"rg(a + A)r,(a + n + A + l)   (qz2,q/z2 ^q)^   (1 - z"2) 

X2^1 
g-,^ 

L   4 
-i 

a+A ; g,9 I* 
A 7^2 

2^1 

a+n+1   ^1-A 

^a+n+l+A ; 4,2V 

+ 2 ^ > Z 

where it is assumed that Re(A) > 0 and a > 0. 
So the associated ultraspherical polynomials have the representation: 

r(a + l)r(2A + a + n)   22-2V(n+1>' 

(6.3) 

C*>a(x) = 
r(a + A)r(a + n + A+l) 22(sin(9)2A-1 

+ 0 

"a, 1 — A 

a + A   ' 
; e -2z0 

2^1 
a + n + 1,1 — A 

a+n+l+A 
„2i0 

(6.4) 
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For convergence on the unit circle of the two Gaussian series on the right-hand side 
we need the stronger condition Re(A) > |. One can rewrite (6.4) in the form 

C^a(x) = 
-2A r(a + l)r(2A + a + n)       22 

r(a + A)r(a + n + X + 1) (sin^)2^-1 

which is a generalization of [21, (4.9.22)] to which it reduces when a = 0. In order to 
find the q -» 1 limit of Lf(x,y), we do not use the final formula (5.5); rather we use 
the intermediate formula (5.2). First, by [7, (111.1)] 

2^1 
0/4,0 
9/4 .2 ; QiQ {qa,q/zf;q)0o 

2^1 

Now, the series over k in (5.2) is 

E(*i*9ra)ncS(»;/j|?).2& r/5«i./3 

n=0 
2    5^9 

9^1 

,01+71+1 

(I3qa+\f3zl,q)c 

(qa+1,q4;q)oo   ^A0qa+1;q)n E (5a+1;9)n (^-^^(y^U) 

X201 

ra=0 

rqa+n+1,q/P 2 

We now substitute (6.5) and (6.6) into (5.2) and replace /3 by qx to get 

T*U ,A -    rg(a + l)rg(2A + a)   (^gA, qx/zf ; g)^     _     2 ^ 
Lt{X'y)-Tq(a + X)rq(a + X + l)   («^,«f/z?;«)oo  (        '  ' 

X201 
r«0',«1-A 

^a+A L   q 

,V (ga+1;g)n 
X Z^ /^a+A+l . 

; g,9AAi 

r   a+n+1  ^1-A 

n=0 ;<?)n L   g1 a+A+n+l 

+ «1- Sf1, 

for Re(A) > 0, Re(a) > 0. We now take the limit to obtain 

(6.6) 

q, zlqx 

(6.7) 

,.      Tal     .        r(a + l)r(2A + a)       22-2A     eie    _ 
ghm Lt {z,v) = r(a + A)r(a + A + 1)(sine)2A-i^ ^ ; e -2i6 

^Ja + l)^    ,,      A)     ,      Ta + n + l, 

n=0 

+ 9 <—> -fl. 

a, 1 — A 

a + A 

a + n + 1,1 — A 

+ A   ; 
o2^ 

(6.8) 

To ensure convergence of the two 2F1 series on the right-hand side, we assume, as 
before, that Re(A) > |. 
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We now shall express the series over n on the right-hand side of (6.8) as a double 
integral. First, by Euler's integral representation [7, (1.11.10)], we have 

r(a + n + l)r(A) 
F1 

a + n + l,l-A 

a+n+l+A   ' ; e 220 

r(a + 1 + n + A) 

0<6><7r, n = 0,l,. 

Since 

and, by [6, (3.13)], 

_^_ = a /   va+k-1dvt       Re(a) > 0, 

cna(y) = E TTzC^MCl-^y), 
k=0 

a + k 

(6.9) 

(6.10) 

(6.11) 

we find that 

r(a + l)      ^      (a+l)n      ,.  iflvn^A.a/.A   p 
r(a + l + A)^(a + A + l)n

(ie  > C*   (2/)2Fl 
n=0 

a + n+1,1 — A 
220 

a+n+l+A   ' 

^    oo n N 

x] 5;(uteW)BEc,»-*(»)c,*~x(w>* \dudv 
^ n=0 fc=0 ^ 

= Wi\ [   [ "0(1" ^^^i - tte2*)*-1*0'-^! - 2^eie + n2i2e2ie)-A 
1 (^) Vo Jo 

x (1 - 2uvtye10 + uzvH*e™)x-ldudv, (6.12) 

where the last line has been obtained by using the well-known generating function of 
the ultraspherical polynomials. Thus, we get 

ar(2A + q)       22 -2A       AO 

\\m_ L?(x,y) - T{a + A)r(A) ^^SA.! 2. T^T2Fl 
a,l-A 

; e -2i0 

_ a + A   ' 

x  r rtt0(l-u)A-1(l-t£e2W)A-V-1(l-2ut|/cw+t*2t2e2^)-A 

^o t/o 

x (1 - 2uvtycw + tt2i;2t2e2W)A-1dt4di; 

+ <9^->-0, (6.13) 

with |t| < 1. Using (6.13), one can easily find the limit of K^(x,y). 
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