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EXPONENTIALLY CONVERGENT LINEAR RATIONAL INTERPOLATION 

BETWEEN EQUIDISTANT (AND OTHER) POINTS 

Jean-Paul Berrut and Hans D. Mittelmann 

ABSTRACT. In [2] we used rational functions with a fixed denominator, i.e., inde- 
pendent of the interpolated function, to construct interpolating linear projections 
with slowly increasing Lebesgue constants for arbitrary interpolation points. Their 
drawback was the relatively slow convergence of the interpolant as the number of 
points increases. In the present work, we demonstrate how the convergence can 
be dramatically improved by limiting the degree of the denominator. 

1. Introduction 

In the numerical solution of many kinds of equations, one writes the unknown(s) as 
linear interpolants, introduces the latter into the equations and determines the values 
at the interpolation points by solving the resulting discretized equation(s). The error 
of the approximation then is bounded by a multiple of the error of the interpolant to 
the exact (unknown) solution of the problem. 

Many interpolation schemes are linear projections, and their accuracy can be mea- 
sured by the following classical theorem [6, p. 24]: 

Theorem 1.1. Let B be a finite-dimensional linear subspace of a normed linear space 
A, and let P be a linear projection from A to B. Let f be fixed in A and d* the 
distance 

d*:=min||/-&|| 

of f to its best approximation in B. 
Then the error of the approximation P/ to f satisfies the bound 

||/-p/||<[i + ||p||K. (i.i) 

||P|| is called the Lebesgue constant of the projection. The theorem implies that 
any linear projection with relatively small Lebesgue constant onto a linear subspace 
that approximates A well will approximate any function in A almost as well. 

Here the spaces B will be interpolation spaces. Let XQ, #1, ..., XN be N + 1 
distinct points (nodes) in some interval [a, 6] C R, and fk := /(^fc)? k = 0, ...,iV, 
the values of the interpolated function / at the nodes.   Since we want to measure 
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the interpolation error in the maximum norm, we take A := C[a, 6]. In view of the 
linearity, our interpolant can be written as 

N 

P/ = £A4(S) 
fc=0 

where lk{x) is the projection of any function g^ with gk(%j) = bkj- In exactly the 
same way as in the special case of the polynomial, the norm of P : A \-* B then can 
be seen to be [6, p. 41] 

N 

||P||=AN:= max£l40r)|. (1.2) 
a-x- k=0 

The constant AJV is attained, i.e., there are functions whose norm is amplified by A^v 
in the projection. As usual in this context [7, p.88], we will consider triangular arrays 
of interpolation points where each row contains the points corresponding to a value of 
N. 

In the case B = VN, the space of all polynomials of degree < N, many exact values 
and precise bounds for AN are known, see, e.g., [7] and [9]. If one can choose the 
interpolation points in such a way that, once transferred to the circle with diameter 

I b—a b—a they are nearly equidistant, then [—1,1] by the application 0 = arccos  ^ 

AJV growing with N as slowly as ~ In N 4- C can be attained. Moreover, in general, 
e.g., for equidistant or randomly chosen points with uniform distribution on [a, 6], AJV 

grows exponentially [10]. Polynomial interpolation between such nodes therefore is 
useless for solving equations. 

To circumvent this difficulty, we have suggested in [1, 2] to use linear rational inter- 
polation instead of polynomial interpolation, that is, to replace the fixed denominator 
1 of the polynomial by a denominator that depends on the interpolation points (but 
still not on the interpolated function). In this way, the linearity of the interpolation 
process with respect to the interpolated functions is preserved. It is natural to choose 
the fixed denominator such that the corresponding Lebesgue constant ||P|| is mini- 
mal, as we did in [1, 2]. The extensive numerical results of the latter work lead us 
to the following "conjecture": there exists a constant C such that, for "almost all" 
interpolation points arising in practice, the Lebesgue constant of the above optimal 
linear rational interpolation grows asymptotically as AN < C • In iV. 

The factor containing the Lebesgue constant in the error bound (1.1) therefore does 
not grow significantly with JV. On the other hand, the disappointing approximation 
results of [2] for large N show that the quality of the best approximation with the 
corresponding fixed denominator q must be poor. At the end of that work, we spec- 
ulated that "interpolation with a fixed denominator of arbitrary degree (that is, N 
in most cases) does not leave enough latitude for the numerator to give a good best 
approximation to /." One possibility to improve on this is to limit the degree of q. We 
show in the following how to obtain much faster convergence of linear rational inter- 
polants by adding linear degree-decreasing side conditions to the Lebesgue constant 
minimizing optimization problem. A very interesting work in this context is [9] in 
which it is shown that best rational approximation on [-1,1] is essentially not better 
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than best polynomial approximation for those functions which for R > 1 are analytic 
and bounded in the ellipse ER with foci at +1, — 1 and sum of semi-axes equal to R. 

2. Fast convergence of best approximations by rational 
approximants with fixed denominators 

Let Vm denote the vector space of all polynomials of degree < m and let 7£mn be the 
set of all rational functions with numerator degree m and denominator degree n. 

We will consider a sequence of polynomials gn, one for every natural number N 
(the number of interpolation points minus 1 in the following sections), with qn GVm 
n = n(iV). Let m := ra(iV) := N — n(iV), and suppose that m -> oo as iV -> oo. 

For every fixed iV, the set BN of all r e UNU with common denominator qn is a 
vector space of dimension iV + 1. To every / € C[a,fe], therefore, there exists a best 
approximation r^n of / in BN [6, p.6], and we have the following theorem. 

Theorem 2.1. Let N, m, n be as above and f G C[a,&]. Then, as N —> oo, the 
best approximation r^n of f in BN converges toward f at least as fast as the best 
approximation to f in Vm. 

Proof Let p^ be the best approximation to / in Vm- The conclusion obviously 
follows from the fact that p^ = PmQn/qn is a candidate for the best approximation to 
fmBN. □ 

Since the best approximation converges at least as fast as interpolation between 
Cebysev points, this result provides bounds for the convergence of r^n toward /, e.g., 
if / £ Ck[a, 6], then ||r^n — /||oo = 0(m~k), and if / is analytic within an ellipse with 
half-axes Ka + a"1) and Ka-oT1), a > 1, then ||r^n-/||oo = 0(a-m) [5, p. 224]. 
In the latter case, one thus has quadratic convergence when doubling m. 

In order to use these encouraging results in conjunction with Theorem 1.1, we must 
choose the sequence of polynomials qn in such a way that the Lebesgue constant of 
interpolation in BN increases with N much slower than ||r^n — /|| decreases. The 
numerical results in [2] demonstrate that a small Lebesgue constant is almost always 
possible with n — N, i.e., with no limitation on the degree of the denominator, but 
at the cost of an unsatisfactory approximation. At the other extreme, the best ap- 
proximation by a polynomial (n = 0) is very precise, but the interpolation between 
arbitrary points, as measured by its AJV, is disastrous. Our goal is to decrease n from 
N as much as possible to improve the precision of the interpolation, while keeping the 
Lebesgue constant small. If the latter grows with N much slower than exponentially, 
say polynomially, then the interpolation of an analytic / converges exponentially. 

3. Lebesgue constant minimizing linear rational interpolation 
with limited denominator degree 

In view of its many advantages for the solution of the optimization problem (guar- 
anteed interpolation, signs of the coefficients given a priori, small modulus of these 
coefficients allowing a search for them in a small hypercube), we chose in [1, 2] to use 
the barycentric representation of rational interpolants: 
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Every rational interpolant in T^jviv can be written this way with certain Uk s (Lemma 2.1 
in [2]). These weights determine the (unreduced) denominator as 

N N 

qN(x) = £(x)^2 
X — Xk i{x)~Yi!<x-xti- 

fc=0 ^ 2=0 

The Lebesgue constant of the interpolation with r G BN then is [2] 

Uk 
N N 

AM=  sup El^Wh  sup £ X-Xk 

a<x<bk=Q a<x<b N 
^bk=o Efc=i 

Uk 

X- Xk 

We now will limit the degree of the denominator of r^ and denote the resulting 

rational in UNN by r^. As has been shown in [3], m = N — n conditions, which 
guarantee that the degree of qn is successively < N — 1, N — 2,... , n, are given by 
^2k=o x^Uk = 0, j = 0,..., N — n — 1. Therefore, the matrix of the linear constraints 
is made up of the first N — n rows of the transposed Vandermonde corresponding to 
the Xk s: 

A:= 

XQ 

XQ 

N-n-1 
c0 

1 

Xl 

JV-n-1 

XN 

bN 

N-n-1 
lN 

k^h 

We therefore solve the following minimization problem with simple bounds and side 
conditions: 

...     A(ti) minimize A}^ 

with respect to the i/fc, k ^ z, subject to 

m < Uk < M, 

and 

Au = 0,        u := [MO,WI,... ,UN]
T

. (3.1) 

i is the index of any one of the weights (which are determined only up to a constant); 
Ui is kept fixed during the optimization process. 

We solved the problem numerically using the same method as in [2]. We will denote 
the resulting optimal coefficients by u*. 

As N becomes large, the norm of the pseudoinverse of A becomes large, and the 
constraints (3.1) ill-conditioned. For that reason, we also have implemented a method 
using the coefficients in the canonical representation of rj^: 

PN(X) 
rNn (x) = (3.2) 

One observes from the proof of Theorem 2.1 in [2] that Uk = WkQui^k) where Wk = 

1/ Yl7=o,j4k(xk ~ xj)- Thus, for given n and ak s, the qn(%k) can be evaluated using 
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Horner's method, and from these the ^s can be obtained by multiplication with 
Wk- In contrast to the constrained optimization problem of minimizing the Lebesgue 
constant with respect to the Uk s and subject to the constraints (3.1), one now solves 
an unconstrained problem with the coefficients a^ as variables, automatically ensuring 
that the denominator polynomial has degree n. 

To illustrate Theorem 2.1, we also have computed for each optimal denominator 
g* the best approximation r*Nn to / in i?^, the set of all r e 7£jVn with common 
denominator g*. Theorem 1.1 implies 

Corollary 3.1. The error of the approximation to f by the linear rational interpolant 

ii/-r<£>ii<[i+Aar>].<c. 
r^J satisfies 

where d** is given by 

<. = ll/-^nll=   nun 
PN€VN 

*      PN 

We have computed d** in the numerical experiments reported in §4.   For that 
purpose, we have again used the equivalent barycentric form 

d** = min 
{Vk} 

"u 1 v^iV Uk 
2^k=o' 

-Vk 

X — Xk 

i.e., we have determined the values yk of r^n at the x^s. 

4. Numerical experience 

Results such as those presented in the previous sections, while theoretically correct, 
may not always be achieved to a degree desirable in practical applications. As is 
typical, also in the problem under investigation, a tradeoff may be expected. Specif- 
ically, the first factor containing the Lebesgue constant in the estimate (1.1) may be 
expected to increase for decreasing denominator degree n while a growing number 
N — n of degrees of freedom in r^vn would allow for a better approximation to /, 
thereby reducing the size of the second factor. The question is how low the minimum 
of the product of these factors dips for a given N. Due to this tradeoff, a dramatically 
improved approximation may not be expected if n is chosen lightly. However, when 
a substantial gain in difficult cases can be achieved compared with polynomial or the 
Lebesgue constant minimizing linear rational interpolation of [2], the slight additional 
effort of having the additional linear constraints (3.1) will have been worthwhile. 

In the following, we denote by /3 the ratio n/N with n and N as in Theorem 2.1. 
If /? = const, for N -> oo then m = (1 — /3)iV -» oo as required there. We first choose 
equidistant nodes Xi = -14- ih, i = 0,... , iV, h = 2/N in [-1,1], and we also restrict 
consideration to even functions and polynomials. Although only powers of 2 appear 
in the tables, there are no restrictions on the value of N. 

Table 4.1 shows the growth of the Lebesgue constant for decreasing 0 and different 
values of AT. Prom this it is clear that values of /3 not too much smaller than 1 should 
be considered for larger N. A lone star as entry means that the corresponding value 
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16/3 N = 16 iV = 32 AT = 64 iV = 128 N = 256 
16 2.44 2.87 3.31 3.75 4.19 
15 2.44 2.88 3.32 3.76 4.20 
14 2.45 2.89 3.33 3.78 4.31 
13 2.45 2.91 3.38 4.11 7.9* 
12 2.48 2.96 3.67 8.99 * 
11 2.48 3.15 5.56 50.70 * 
10 2.59 3.62 13.17 * * 

TABLE 4.1. Growth of the Lebesgue constant for decreasing denom- 
inator degrees. 

f-      1 f-       1 
J      l + 5x2 J      1 + 25x2 

N equidistant random equidistant random 
8 1.5e-l 3.7e-l 1.0e+0 7.2e+0 
16 1.8e-l 8.9e-2 1.4e+l 7.6e+0 
32 4.3e-l 1.5e-2 5.0e+3 5.0e+l 
64 7.7e+0 6.7e+4 l.le+9 7.5e+9 
128 5.0e+19 1.5e+29 l.le+20 1.3e+19 
256 6.1e+57 1.0e+52 5.6e+57 5.6e+51 

TABLE 4.2. Error of polynomial interpolation between equidistant 
and random points for Runge's example. 

could not be computed. The entry 7.9 with the star means that this entry could not 
be found, but that 7.9 is the result for /? = 53/64 instead of 0 = 52/64. 

For test functions, we have considered the Runge example (1 + bx2)~1, for which 
the polynomial interpolating between equidistant points diverges at the extremities 
of [-1,1] if b > (l/£2) with f » .5255, i.e., if b > 3.622 [4]. Table 4.2 displays the 
maximal errors with equidistant as well as randomly chosen points for b = 5 and 
6 = 25. 

Table 4.3 lists for 0 = 3/4 the values of ||/ - rj^ || as well as of the error of the best 
approximation rj^ in B% for two different functions / and various N. The reader may 
check that the product of the latter error with the corresponding Lebesgue constant 
in Table 4.1 is always larger than the interpolation error. 

In view of Theorem 2.1, the approximation result with r^n for a given number iV+1 
of nodes should be at least as good as the best polynomial approximation of degree 
m = (1 — 0)N. To allow for the comparison, we give in Table 4.4 the approximation 
errors of the best polynomial approximations by polynomials of various degrees m. 

In all cases but the last, our Lebesgue-constant minimizing rational interpolation 
yields a smaller approximation error than a polynomial with the same number of 
degrees of freedom. Several hints led us to believe that numerical difficulties in the 
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f-      1 f-       1 
J      1 + 5a;2 J      1 + 25a;2 

JV IIZ-^II 11/-^J IIZ-^H ll/-^„ll 
8 2.3e-3 1.3e-3 7.0e-2 4.6e-2 
16 1.4e-3 7.5e-4 8.3e-3 5.0e-3 
32 5.5e-4 2.8e-4 1.9e-3 l.le-3 
64 4.8e-5 2.7e-5 1.8e-3 9.7e-4 
128 6.3e-7 3.9e-7 1.3e-3 3.9e-4 

TABLE 4.3. Error of Lebesgue-constant minimizing rational interpo- 
lation and of best approximation in the same subspace for /? = 3/4. 

m J      l-l-5x2 
f-       1 

J      1 + 25x2 

2 1.8e-l 3.2e-l 
4 7.4e-2 2.2e-l 
8 1.3e-2 9.8e-2 
16 4.1e-4 2.0e-2 
32 3.9e-7 8.3e-4 

TABLE 4.4. Error of best polynomial approximation of degree m in 
[-1,1] to given/(x). 

solution of the optimization problem are responsible for the slowing down of the con- 
vergence as iV becomes large. In particular, equioscillation of the Lebesgue function 
(see [2]), still present here for small JV", is less and less satisfied as JV grows. Some of 
the results were verified by reproducing them with quadruple precision. Although this 
was prohibitively slow for the largest cases, JV = 128, 256 in particular, the agreement 
seemed to diminish as JV was increased. 

Table 4.5 shows the results analogous to those in Table 4.3, but for /? = 7/8. 
To show that the method is not restricted to equidistant points, but could be used 

with most matrices of interpolation points, we display in Tables 4.6 and 4.7 the results 
analogous to those in Tables 4.3 and 4.5 for random interpolation points. The latter 
were generated on the interval (0,1) by the routine drand48 of the f 77-compiler on the 
HP9000, initialized by the command srand48(), ordered and reflected with respect 
to the origin. 

5. Solution of the computational problems 

Since all the numerical problems which needed to be solved to obtain the results of 
the previous section are standard, we wanted to use as much as possible standard 
methods and approaches that are implemented in easily accessible, preferably public 
domain computer programs. This could be accomplished, and we describe them in 
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f-      1 f-       1 
J      1 + 5a;2 J      1 + 25a;2 

N 11/      rNn 11 ll/-^B|| 11/-'iff II ll/-^nll 

16 2.4e-3 1.8e-3 4.3e-3 2.7e-3 
32 2.1e-4 1.564 3.7e-4 2.3e-4 
64 8.6e-5 4.16-5 2.5e-4 1.5e-4 
128 3.7e-6 2.2e-6 8.0e-5 5.3e-5 
256 8.1e-9 * 1.2e-5 8.5e-6 

TABLE 4.5. Error of Lebesgue-constant minimizing rational interpo- 
lation and of best approximation in the same subspace for /? = 7/8. 

f-      1 
f-       1 

J      1 + 5x2 J      1 + 25a;2 

N 11/-'iff II 11/ -rfrj 11/      rNn II 11/ -r*Nn\\ 

8 1.86-1 8.4e-2 3.2e-l 1.3e-l 
16 9.5e-2 3.6e-2 2.3e-l 9.6e-2 
32 4.5e-2 8.8e-3 2.0e-l 6.0e-2 
64 4.0e-4 1.3e-4 3.4e-2 9.7e-3 
128 * * * * 

TABLE 4.6. Same as Table 4.3 (/? = 3/4) but for random interpola- 
tion points. 

£   1 ^ _ 1 
'      1 + 5a;2 '      1 + 25a;2 

N llZ-rffll \\f-r*Nn\\ IIZ-^II \\f-r*Nn\\ 

16 1.36-1 5.7e-2 2.6e-l l.le-1 
32 5.9e-4 2.7e-4 9.3e-4 5.1e-4 
64 1.3e-2 4.9e-3 5.1e-2 2.5e-2 

128 4.5e-5 2.3e-5 4.9e-3 2.0e-3 

256 6.4e-7 * 1.4e-3 4.0e-4 

TABLE 4.7. Same as Table 4.4 (/? = 7/8) but for random interpola- 
tion points. 

the following in such a way that our results may be reproduced. It should be noted, 
however, that the computations were delicate and time-consuming. This does not 
diminish the usefulness of our approach in applications because the optimal weights 
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need to be computed only once, what we already did for two types of nodes, and can 
then be stored and used for the approximation of arbitrary functions. 

The core problem is the linearly as well as bound-constrained minimization prob- 
lem (3.1). For this, the sequential quadratic programming method was used as im- 
plemented in FFSQP/CFSQP [11]. We refer to [2] where details are given for the case 
without linear constraints. It suffices to say that a discontinuity inherent in this min- 
imax problem was overcome by using the capability of FFSQP to minimize multiple 
objective functions. Here, the objective functions were chosen as the local maxima of 
the quotient expression in the definition of the Lebesgue constant between the inter- 
polation points. Again, it was crucial to use continuation with respect to the nodes 
from a starting distribution with known feasible coefficients, here, as in [2], Cebysev 
nodes, to the desired points. 

The errors in Table 4.2 were computed using the barycentric formula of Section 3 
and evaluation at the points used in Section 5 of [2]. The entries in the second and 
fourth columns of Tables 4.3, 4.5-4.7 were obtained by minimizing ||/ — r|| over all 
r 6 RNU with the fixed denominator. Precisely, the barycentric formula was used with 
the optimal weights in both numerator and denominator while the function values in 
the numerator were treated as free parameters, cf. the end of Section 3. The error 
norm as measured over the set of points from Section 5 of [2] then was minimized by 
varying these function values. The values in Table 4.4 were computed with continuous 
Cebysev approximation programs for smaller m. However, the program, DRATCH from 
the IMSL library, failed for larger m, and a discrete Cebysev approximation program, 
here algorithm 501 from the TOMS collection in NETLIB, had to be used. A very large 
number of discrete nodes, 104-105, was chosen in order to minimize the deviation from 
continuous approximation. 

6. Conclusion 

The numerical results given above show that, for any array of nodes arising in practice, 
best approximation decreasing for small iV as fast as polynomial approximation can 
be achieved in practice. The small Lebesgue constants for these values of N yield a 
very good linear rational interpolant for functions like 1/(1 + bx2) (see Tables 4.3 and 
4.5), for which the interpolating polynomial is useless (Table 4.2). 

On the other hand, exponential convergence for difficult functions like 1/(1 +25x2) 
does not seem to be easily attainable. At present we are unclear about the exact reason: 
is it merely the stability of the algorithm, or is the whole problem ill-conditioned? 

The validity of Theorem 2.1 relies heavily on the fact that the sequence of denom- 
inators has precise degree n, in our examples n = /SN. We have achieved the corre- 
sponding degree reduction by the transposed Vandermonde linear constraints (3.1) in 
one method, by computing the Uk s from the a^ s in (3.2) in another. Both methods 
probably become ill-conditioned as N increases. Our calculations indeed seem to show 
that the number of identical digits in u* resulting from different methods seems to 
decrease as iV becomes larger. It therefore is possible that, if better degree reduc- 
tion can be achieved, e.g., by working in higher precision, then u* s with much better 
asymptotic approximation power can be computed. Our hope is that the main prob- 
lem is not too ill-conditioned, i.e., that arrays of FORTRAN double precision u* s with 
small Lebesgue constant and precisely satisfied degree reduction conditions exist. 
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