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GLOBAL SOLUTIONS WITH A SINGLE TRANSONIC SHOCK WAVE FOR 
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Fumioki Asakura 

Dedicated to Professor Koji Kubota on his sixtieth birthday 

ABSTRACT. We shall study global solutions containing a single transonic shock 
wave for the general quasilinear hyperbolic system Ut + Fx = G. The presence 
of G brings about secondary waves. We shall single out the amount of such 
waves along each characteristic field and show that global-in-time solutions exist 
provided the total variation of L/Q, ||CJ||I, and the total amount of secondary waves 
along the transonic characteristic are sufficiently small. 

1. Introduction 

We study the Cauchy problem for the general quasilinear hyperbolic system of the 
form: 

lu+^F(U) = G(x9U)9    (x9t)eRxR+, (1) 

U(x,0) = Uo(x),       xeR. (2) 

Here U = t(ui,U2, - -. ,un) is a vector function which takes on values in an open set 
Q C Rn; F(U) and 6?(a?, U) are smooth maps from Q to Rn and from R x Q to Rn, 
respectively. We assume that the system (1) is strictly hyperbolic, which means that 
the Jacobian matrix F'(U) has the n real distinct eigenvalues 

Ai(C/) < A2(t0 <      < An(l7),    u e n. 

Let Rj(U) denote the right eigenvector of F'^JJ) corresponding to \j(U). We also 
assume that each characteristic field is genuinely nonlinear in the sense of Lax [7]: 

Rj • gr&dXj ^0   for   U eft,    l<j<n. 

Since solutions to a quasi-linear hyperbolic system become singular in general after 
a finite time (see John [6] and Lax [8]), we study the solution which satisfies the 
equations in a weak sense; we say that a locally integrable vector function U(x, t) is 
a weak solution if the correspondence 11-> [/"(*,£) E L1

1
oc(i2) is weakly continuous and 

the following integral identity holds 

/ / {U • <f>t + F(U) • <f)x + G(x, U) • 0}cfacft + f Uo(x) • .0(<c, 0)dx = 0      (3) 
JJ  RxR+ JR 

for every 0 G Lipc(J? x i?+). 
If G(x, U) = 0, the equations constitute a system of conservation laws, and the 

existence of weak global solutions to these systems was first established by Glimm 
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[3]. He constructed difference approximations in an ingenious way and showed that 
a subsequence converges to a weak solution provided the total variation TV([/o) is 
sufficiently small. The crucial estimate for the proof is to get a uniform bound of 
TV((i7/l(*,^)), the total variation in x of approximate solutions. He showed that as 
time increases the total variation increases and decreases by the interaction of simple 
waves which constitute the approximate solutions and proved that the total amount 
of such interaction is 0(l)(TV(C/o))2. 

For general quasilinear systems (1), the term G(x,U) acts as a source term whose 
effects propagate at zero speed. Studies based on the Glimm method were carried 
out by Liu [12] who constructed difference approximations combining solutions to the 
classical Riemann problem and steady state solutions. In this case, besides the inter- 
action of simple waves constituting approximate solutions, the secondary interaction, 
i.e., the interaction of simple waves and steady state solutions occurs and produces a 
certain amount of the secondary wave (Glimm et al. [5]). Let us define the quantity 

G(x) = max{ \G(x, U)\ + IG^x, U)\ : 17 in a small neighborhood of Uo(x) }.     (4) 

When the characteristic speeds are away from zero and the L1-norm of G(x) is finite, 
the interaction of a single wave and the source term is finite. Liu proved that the total 
amount of secondary wave produced is O(l) TV(UQ) times ||G||i. Hence, if TV(Uo) and 
||G||i are sufficiently small, global solutions exist and these solutions are stable in the 
sense that they converge to non-interacting wave patterns. If one of the characteristic 
speeds can be zero (the flow is transonic), new phenomena occur: we have a shock 
wave whose propagation speed is zero (a standing shock wave); the interaction of a 
standing shock wave and the source term may produce an infinite amount of secondary 
waves, because the standing shock wave and the effects of the source term propagate at 
the same speed and may interact for infinite time. Actually, in the transonic 1-D flow 
along the contracting duct, a standing shock wave is dynamically unstable and stable 
along the expanding duct (Liu [13]). When (1) is a single equation, Liu discussed an 
intrinsic approach to these phenomena [15]. 

We shall concentrate on solutions to (1) containing a single transonic shock wave 
and study in particular the secondary interactions. We single out the total amount of 
secondary interactions involving the single transonic shock wave and study conditions 
under which such an amount is uniformly bounded, which implies the global existence 
and stability of solutions. 

We assume that the p-th characteristic speed alone can be zero. There exists S > 0 
such that 

MtOI^*.  j^P,U€n (5) 

and 

Mp = {Uen:\p(U) = 0}^<f>. 

We shall construct a solution in which the strength of the single transonic shock wave 
is 0(l)a* and the strengths of the other waves (weak waves) is < a*. In this case, 
the secondary interactions involving the j-th waves (j ^ p) and weak p-waves are 
estimated in the same way as Liu [12] and only the secondary waves produced by 
the transonic waves remain. We first review, in Section 2, the definition and basic 
properties of steady state solutions. In Section 3, we construct approximate solutions 
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using the scheme introduced in Liu [12, 13]. In Section 4 we study the local interaction 
between weak waves and the single transonic shock wave. Let A denote an interaction 
diamond where the single strong shock wave enters. Let h denote the mesh length, 
G the maximum of G(x) in A, and a the speed of the transonic shock wave which 
enters A. We shall show that the amount of waves produced by the local interaction 
is estimated by Glimm's quadratic term, Gh/al times the amount of approaching 
waves and aGh/a* where the last term is the amount of secondary waves involving 
the transonic shock wave. In Section 5, we introduce a new Glimm potential and 
estimate the total amount of interaction in the presence of the transonic shock wave. 
The local interaction estimates indicate that the total amount of the secondary wave 
produced by the transonic wave is 

E 
n>0 * 

where the single strong shock wave enters Am(n)?n at t = nk with speed an. Since 
this is merely a time-dependent estimate, the above quantity (6) can become infinite, 
even if TV(C/o) and ||G||i/a^ are small. However, we shall show in Section 6 certain 
conditions which guarantee a uniform bound of (6) and hence the existence of global 
solutions. 

2. Steady state solutions 

Solutions to (1) are called steady state solutions if they do not depend on t. They 
satisfy the system of differential equations 

4-F(U) = G(x,U),    xGR. (7) 
ax 

Let Lj(U) be a left eigenvector corresponding to Aj(C/), chosen so that 

LJ(C7)i?j(C/) = l,    Lj(U)Rk(U) = 0(j^k). 

When U £ Np, equation (7) is expressed as 

f-t^W.  -*, (S) 
where gj(x,U) = lJ(U)G(x,U). If the L1-norm of the quantity G(x) is sufficiently 
small compared with |Ap(f7)|, there exists a unique steady state solution for any given 
U(0) G fi. Let C: x = x(t) be a Cfl-curve. We consider a weak solution of the form 

=,<)={; "<*«>-<£$: lit <9> 
Proposition 2.1. Let UL(X) and UR{X) be steady state solutions, and U(x,t) be de- 
fined as above. Then U(x11) is a weak solution in the sense (3) if and only if it satisfies 
the Rankine-Hugoniot condition 

x(t){UR(x(t)) - UL(x(t))} = F(UR(x(t))) - F(UL(x(t))). (10) 



36 ASAKURA 

The proof is obvious. 
We say that U(x) defined by 

Uix)=S{va(x),.   x>0, (11) 

is said to be a p-standing shock wave if 

1. Ui(x) and U2(x) are steady state solutions, 
2. F(Ui(0)) - F(U2(0))_= 0    (the Rankine-Hugoniot condition), and 
3. Ap([/2(0)) < 0 < \p(Ui(0))    (the Lax entropy condition). 

The above proposition says that U(x) is a weak solution. Standing shock waves 
are easily constructed: first we choose a constant vector Ui close to J\fp satisfying 
Ap({7i) > 0. Then we can find a unique constant vector U2 on Sp{Ui), namely the 
shock curve issuing from Ui satisfying <J(UI, U2) = 0 and Xpfa) < 0. Thus, solving 
the equations (7) with initial data [7i, U2, respectively, we have the steady state 
solutions Ui(x), U2(x), respectively, and obtain a standing p-shock wave by (11). 

Let U(x) be a standing shock wave, and let a* denote the strength of (f7i(0), U2{0)). 
In this paper, we confine ourselves to the initial data which are the perturbation of 
U(x) in the total variation norm 

U0(X) = l^   *<0' (12) 

J^TnUjW-Ujix))^^. (13) 
i=i,2 

3. Construction of approximate solutions 

Now we construct approximate solutions containing a relatively strong p-shock wave. 
We distinguish this single p-shock wave emerging at x = 0 from other waves and call 
it the single strong shock wave; other waves are called weak waves. 

Approximate solutions are constructed by the random choice scheme. Here we 
adopt a generalization of the Glimm scheme introduced in Liu [13]. 

Now we describe the difference scheme. Let h, k be mesh lengths satisfying the 
stability condition 

^ = \>sup\\i(U)\    (A>2). (14) 
& i,U 

We hold such A fixed; hence ft is a function of ft. Let 9 = {0n} be an equidistributed 
sequence in (0,1). Let m, n be integers such that n > 0 and Pm)n = (2mft,nfc). We 
set 

Am,n = (2(m + 0n)ft, nk), 

which will be sampling points. We define a diamond shaped domain Am)n by the 
vertices 

■*'m,n+l5   Am—l,n)   -*•m,n—15   •^■m,n' 

This domain is called the interaction diamond centered at Pm,n. A curve which 
consists of segments joining Pm5n to Am}n+i or j4m,n-i, and Amin to Pm+i5n+1 or 
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-Pm+i,n-i is called an approximate space-like curve. We can partially order these 
approximate space-like curves: I > J if every point of J is either on / or contained 
between / and t = 0. We denote by Oi and O2 the approximate space-like curves 
lying between t = k and t = 0. 

We construct an approximate solution Uh,6(Xit) as follows. At t = 0, we solve the 
steady state equation (7) in the interval 2mh < x < 2(m + l)/i with the initial value: 

U(2{m + e)h) = Uo(Amio) (15) 

and adopt U(x) as the approximation in the interval (2ra/i52(ra + l)/i) at t = 0. 
Suppose that the approximate solution is constructed for 0 < t < nfe, and the value 
Uh(x, nk — 0) exists. In the same manner as above, we solve the equation (7) in each 
interval 2mh < x <2(m+l)h with the initial value 

U(2(m + 6)h) = Uh(2(m + 0)h, nk - 0) (16) 

and define 

Uh(x, nk) = U(x),    2mh <x< 2(m + l)h. (17) 

Next we solve the original hyperbolic system 

div + dxF^ = G<<x'v^   (*'^ e (2<<m "1^'2<<m + ^ x (nfe' ^ + ^ ^18) 

with the discontinuous initial data 

V(x,nk) = Uh(x,nk),        x e (2(m-i)h,2(m+i)h), x^mh. (19) 

For simplicity, we consider (2mh,nk) as the origin and, denoting by VL(X), VR(X) 

steady state solutions defined on x < 0, x > 0, respectively, we express the initial 
data (19) as 

,o)={; V(»,0)=df»;    *<°' (20) 
VR^),    re > 0. 

This problem was extensively studied by Li and Yu [10], and local solutions are ob- 
tained. However, the structures of their solutions are complicated and not suitable 
to the study of the interaction of waves. Hence we adopt approximate solutions in- 
troduced in Liu [12]. The following lemma is fundamental in the estimates of the 
approximate solution. 

Lemma 3.1. Let V(x), W(x) be steady state solutions. If\Xp(V(x))\, |Ap(W(a;))| > 
ca* (c > 0) and V(x), W(x) are close to a constant vector UQ, then it follows that 

V(x2) - W(x2) = Vfa) - Wfa) + Oa^r^Wi) - Wfay. (21) 

Proof. 

A. 
dx 

= 0(l)^(V(x)-W(x)). (22) 
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Hence we have 

V(x) - W(x) = (Vfa) - WfayeWW*-*1*'01', (23) 

which implies (21). D 

Suppose that the strength of the above discontinuity is <^; a* (involving only weak 
waves). We construct the approximate solution by perturbing the solution to the 
Riemann problem for the system of conservation laws 

diV+faF(y)=0'    (xtt)GRxR+ (24) 

with initial data 

"<'■•»-{la:;:: 
By Lax [7], a solution exists, and this solution consists of (n + 1) constant regions 
VL(0) = VQ,Vi,...,Vn = yR(0) connected by rarefaction waves and shock waves. 
Moreover, the solution of this form is unique provided the intermediate constant vec- 
tors are restricted to Q. Let Vj(x), 0 < j < n denote the steady state solution with 
initial value 

The approximate solution of (1) with (25) consists of the steady states Vj(x), 0 < j < n 
separated by approximate j-elementary waves. 

If (V}_i, Vj) is a shock wave with shock speed CTJ = <7(Vj_i, Vj), we simply set 

Then we have the following estimate. 

Proposition 3.1. Assume thatVp-i, Vv $LNV. Then 

a^-ifot) - Vfat)] - [FiVj-fat)) - FiVfat))] = 0(1)^1^-! - Vjl (27) 

for 1 < j < n where G denote the maximum of the quantity G(x) in (4). 

Proof We set a — Gj and 

E(t) - cW-xiat) - Viiat)] - [Fiyj-^at)) - FiV^at))]. 

Then differentiating S(t), we find by (8) that 

- a{G{x, Vi-M) - G(x, Vjix))] (28) 

(x = at). Since crj = 0(1)^{XJ(VJ-I) + Aj(Vj)}, we have 

fw-0W^W-.-v,l 
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and, hence, the proposition. □ 

When (Vjf-i, Vj) = Vj(x/t) is a rarefaction wave, we first define two j-characteristic 
curves which will be edges of the fan of characteristics 

dx 
*i-i(*):    -^ = ^(Vj-iix)),   x(0) = 0 

dor 
*&)•>    ■£ = *j(Vj(x)),       x(0) = 0. 

In the region Xj-i(t) < x < ^(t), we solve the singular boundary-value problem 

V{xj-1(t),t) = Vj-i(xj-1(t)), 

Since the solution V(x, t) has a singularity at t = 0, the local existence of the solution 
does not follow from the standard existence theorem, (for example, Courant [2]). 
However, Liu [12] showed that the solution can be obtained by integration along the 
characteristics with the data on the characteristic curve x = Xj-i(t)] details are found 
in [12]. The solution has a possible discontinuity along x = Xj(t), which reflects the 
production of secondary shock waves (Glimm et. al. [5]). We have the estimate 

Proposition 3.2. Assume that |Ap(^_i(a;))|, |Ap(^,(a;))| > ca* (c > 0). Then 

Ct 
mx^t) - Vfam = O(l) —|^_i - Vjl (29) 

Proof. We find, by the construction of the approximate solution in [12], that 

Vixj.tW.t) - Vixjit) - 0,t) = Vj-! - Vj + CKlWI^-x - Vj\. (30) 

Differentiating Vj-i(x) and Vj(x) along x = Xj(t), we also have 

Ct 
Vj^ixjit)) - Vj(xj(t)) = Vj-! - Vj + 0(l)-2 |^-i - Vj\. (31) 

Hence we obtain 
Ct 

Vj{xj{t)) - v(xj(t) -o,t) = Vj^ixjit)) - yj-iM*)) + o(i)^|^-i - Vjl 

Since Xj(t) — Xj-i(t) = 0(l)£|V^_i — Vj-|, we have the proposition. □ 

In this way we have constructed the approximate solution when only weak waves 
are involved. 

Next we treat the case where single strong shock wave is involved. Here we apply 
the front tracking scheme introduced by Chern [1], which is to trace the location of 
the single strong shock wave. Suppose that the approximate solution is constructed 
by front tracking for 0 < t < nk, and the value Uh{x, nk - 0) exists (we take Uo(x) = 
Uh(x, nk — 0) at t = 0). We denote by x = xjr(t) the front of the single strong p-shock 
wave and 

'xjr(nky 
mj:{ri) = 

2h 
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where [a] is Gauss' symbol; by abuse of notation mjr = mjr{n) and x? = x^{t). We 
call the interval (2(m^ - l)ft, 2(m^ + 2)h) the "i&ront region" at t = nk. In the front 
region, we solve the steady state equation (7) in the interval 2{m^ — l)h < x < xjr 
and xj? < x < 2(mjr + 2)h with the initial value 

U(2(mr - 1 + 0)h) = CMJW-I,*), (32) 

U(2(mr + 1 + 0)h) = Uh(Am^hn), (33) 

respectively, and denote these solutions by U~ and [/+, respectively. Next we solve 
the Riemann problem for the system of conservation laws 

j^+^F(i7) = 0,    (x,t)eRxR+ (34) 

with initial data 

U^nk)-{U+{x:F{nk%   x>xHnk). (35) 

The solution U(x, t) contains a relatively strong p-shock wave which separates the 
p - 1-constant region Up-i and the p-constant region Up. We solve again the steady 
state equation (7) in the interval 2(77177 - l)h < x < x? and x? < x < 2{mjr + 2)h 
with the initial value 

U(xr{nk)) = Up-l, (36) 

UMnk)) = Uv, (37) 

respectively, and denote these solutions by Umjr-i and Umjr+u respectively, which 
will be the approximation in the front region at t = nk. For nk < t < (n + l)fc, we 
continue the front to be 

xr(t) :     ap(t- nk) + x^(nk) 

and define the approximate solution Uh by 

TT (     +\=   (Umr-lix),     (2™F - l)h < X < Xjr(t), .     . 
h{X'}      \Umr+l{x),    xF(t)<x<(2mT + Z)h. K 

Although the discontinuities at x = 2(mjr - l)h and 2{m^ + 2)h (the end points 
of the front region) are weak, a special construction is needed: in (25), we have to 
replace VR{G) = C/m^-i(2(m^ - l)h) and VL(0) = Um:F+1{2{mT + 2)h), respectively. 

4. Local interaction estimates 

We first study the case involving only weak waves. Let 7 denote the set of waves issuing 
from (2ra/i, (n+l)fc). Our construction of approximate solutions shows that if 0 < 6n < 
|, then 7 depends on the waves issuing from (2(m - l)ft, nk) and (2mh, nk), while if 
I < 0n < 1, then it depends on the waves issuing from (2mh, nk) and (2(m + l)h, nk). 
Now suppose that 0 < 0n < §• We denote by a the set of waves issuing from 
(2mft, nk) and by /? = /3H the set of waves issuing from (2(m - l)ft, nk) and entering 
the interaction diamond Amjn. We may assume that fy = 0 for j < p. Let UL(X) 

and UR(X) be steady state solutions connected by 7 and UM(X) another steady state 
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solution between l3R and a. The local interaction estimates in this case consist in 
comparing the solution to the hyperbolic system (1) with initial data 

U{X'0) - \UR(X),   x>2mh m 

and the solution with initial data 
fUL{x), x<2(m-l)h, 

U{x,0) = < UM{X)> 2(m -l)<x< 2mh,                           (40) 

,I7R(^)) x>2mh. 

We set 
V_ = UL(2(m - l)h), y+ = UM(2(m - l)h), 

W- = UM(2mh), W+ = UR(2mh), 
U- = UL(2mh), U+ = W+ = UR(2mh). 

Denote by (U-,U+)j the magnitude of the j-wave in the solution to the Riemann 
problem (G(x, U) = 0) with UL = ?7- and UR = U+, and set 

7i = {U-,U+h, fr = (V-,V^i, aj = (W-,W+h,    l<j<n. 

We say that Pi and aj are "approaching" if either one of the following holds: (i) i> j, 
or (ii) i = j and at least one of them is a shock. We define 

Qo(Amjn) = QoOS^a) = ^Z^ l&ail : ^ and ^ are aPProaclling}-        (41) 
If y+ = W-, then Qo(^, a) is denoted by Qo(U-,W-,U+). We set 

Q(Am,n) = Qo^a) + ^|/3*| (42) 

where Gm is the maximum of \G(x, U)\ + ^'^(a;, J7)| for 2(m — 1) < x < (2m + l)/i 
and U in a small neighborhood of V± and W±. Our local interaction estimates are 
the following. 

Lemma 4.1 (Liu [12]). Assume that \\p(Vp-i(x))\, |Ap(V^(a:))| > ca* (c > 0) and 
UL(%)IUM(%), and UJI(X) are close to a constant vector UQ. Then 

7i = Pj + ^ + 0(l)g(Am>ri),    1 < j < n. (43) 

Here 0(1) depends only on UL, UR, and the system. 

Proof. It follows from Lemma 3.1 that 

W. - U- = V+ - V. + 0(1)^17+ - V-|, 

U+-W- = W+-W-. 

Since the constant states composing the solution to the Riemann problem are differ- 
entiable with respect to the initial data, we have 

<17_,W_>i=/Ji + 0(1)£|V+-Vq, 
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Hence, 

= /?,• + aj +O{l)Q0{U-,W-,U+) + 0(1)^17+ -V-\ 

= Pi + ai + 0(l)Qo(/3R,a) + 0(l)^|/3a|. 

Thus, the lemma follows. □ 

Next we study the case involving the single strong shock wave. We set mjr(n) = m 
and denote by /?* = (0,... ,0,/?p,0,... ,0) the strong p-shock wave whose speed is 
cr. Assume as before that 0 < 6n < |. We denote by a the set of waves issuing 
from (2(m — l)/i, nk). The waves in a entering the interaction diamond Amjn are 
denoted by o^, and the waves entering Am_i)n by aL. We denote by 7^ the set of 
waves issuing from (2(m — 2)ft, nfc) and entering the interaction diamond Am_ijn. Let 
UL(X), UM(X)-> and UR{X) be steady state solutions such that aR connects UL(X) and 
UM(X), and /3 connects UM(X) and UR(X). 

As before, we set 

V_ = UL(2(m - l)ft),      y+ = UM(2(m - l)ft), 
W_ = UM(xAn)l W+ = %(^(n)). 

Also 

WL = C^if (^(n + 1)),     W+ = UR(xjr(n + 1)), 
17. = C/L(^(n+ 1)),       C7+ = W+ = %(^(n+ 1)). 

Let (7 denote the speed of the single strong shock wave issuing from (x^, nk) and 
UR(t) = UR(a(t - nk) + x^(n)), I7M(*) = C/M(^(* - nfc) + xjr(n)). We find that 

jt{UR(t) - UM(t)} = <r{^UR{x) - ^UM(x)^ 

" "fel MUR{x)) R>{UR{X)) -   XjiUMix)) WvWj 

= 0(1)£^2L. (44) 
a* 

Hence, integrating from nk to (n + l)fc, we have: 

Proposition 4.1. ///?* = 0(l)a*, ^ften 

W+ - W- = W+ - W- + 0(1)^^. (45) 

Now we carry out the interaction estimates involving the single strong shock wave. 
Prom Lemma 3.1, 

w- - u- = v+ - y_ + 0(1)^§V+ - V-\. 
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The above proposition says that 

U+ - W- = W+ - W- 

= W+ - W- + 0(1) 
aGmh 

ce* 

Hence it follows from the continuity of the Riemann solver with respect to the data 
that 

<tf-,wL>, = of+ 0(1)^10*1, 

(W-tU+h^pj + OQ.) 
aGmh 

&* 

where Pp = /?* and fy =0  (j^p). Hence, denoting Sj = (U-,U+)j, we have 

k Gmh. 
Sj = of + ft + 0(l)Qo(aR,l3*) + 0(l)-%-\V+ - V-\ 

af 
J^P5 

Z>p 

(46) 

(47) 
& + a* + 0(1)SSV| + 0(1)=^ + 0(1)/?* E 1^1'   i = * 

Here the p-th wave Jp is the strong shock wave leaving Am_i?n5 which is denoted from 
now on by /?£. Let ijv-\ and XJV denote constant states connected by bv. We denote 
by UM(X) the steady state solution satisfying 

UM(xT((n + l)k)) = Up-1 

and set 

V+ = UM(2(m-l)h). 

Then 

V+-V- = t/p-i - U. + 0(l)^|t/p-i - t/-|. 
af 

Hence 

(K.,^)^^ 

. aGmh 
a* 

'of + (>(l)^|a*l +0(1)^ +0(1)0. £l«fl>   l<i<P, 
/>p 

0(1)%V| + 0(1)^2* + 0(l)/3, £ |af |, 
f>P 

P < j ^n- 

(48) 

The interaction of aL and (VL, V+) produces a such that 

'a,+0(l)^f|^| + 0(l)^^ + 0(l)^^|af|,    l<j<p, 
l^ (49) 

"i + 0(l)%^|aR| + 0(1)^ + 0(1)^ £ |af |,   p < j < n. 
at a* 
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We define the quantity Qi(Am}n) = Qi(a,7;/3*) by 

Qi(a,r>0*) = I/3*! Yl laf l+H { la^ml • ^ and 7^ are approaching, 
Z>p 

Z satisfying 1 < I < p or / > p, af 7^ 0 >. 

Let e denote the set of waves issuing from (2(m^ — 1), (n + l)k) and leaving A™^ 
Combining the above estimates, we find that e has the estimates 

e,- = < 
+ 0(l)^^ + 0(l)Q1(a,7;/3*),    1<J<P, 

+ 0(1)^=^ + 0(l)Q1(a, 7;^),   P<J<», 

(50) 

af a* /S'^A + ^ + OW^Ia^l + OW^ + OaWxCa.rA). 

We set, as before, 

Q(Am,n) = Qi(Am!n) + ^f (Kl + |7fl|) 

(51) 

Gmhn_Rl       ,   R, 
Oit 

(52) 

where Gm is the maximum of \G{x, V)\ + |G^(x, f7)| for 2(m^ -1) < x < (2m^ + l)/i 
and U in a small neighborhood of V± and Wj.. Then we have the local interaction 
estimates involving the single strong shock wave in the following form. 

Lemma 4.2 (Chern [1]). Assume that \\p(Vp-i(x))\, \Xp{Vp(x))\ > ca* (c > 0), and 
UL(X), UM(%), and UR(X) are close to a constant vector UQ. Then it follows that 

<*i + if + 0(l)Q(Am,„) + O(l)^^, 1 < j < p, 

af + 7f + 0(l)Q(Am,n) + 0(1) ^^, p <j<n, 

fc=j3* + aK + 0(l)Q(Am<n) + 0(1) 
crGmh 

a* 

(53) 

(54) 

Here O(l) depends only on UL, UR, and the system. 
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5. Global interaction estimates 

The restriction of the approximate solution Uh,e to an approximate space-like curve 
J consists of steady state regions, rarefaction waves, and shock waves. Let a = 
(oil, 012, - • •, Oin), f3 = (/?i, /?23..., fin) be two waves in Uh,e crossing J. Suppose that a 
lies to the left of /? on J. We say that ai and fy are "approaching" if either one of the 
following holds: (i) i > j, or (ii) i = j and at least one of them is a shock. Let W( J) 
denote the collection of the weak waves crossing J. Also Wa(J) denotes the subset 
of W( J) the elements of which are approaching the single strong shock wave. Let us 
define 

L(J)=    £    |o|, 
aeW(J) 
/oo 

G(x)dx, 
-oo 

and let /?* denote also the magnitude of the single strong shock wave crossing J. L( J) 
together with /?* measures the total variation of Uh,e(x,t) on J. 

The global interaction estimates show that the total amount of interaction in the 
Glimm approximate solutions is uniformly bounded. Lemma 4.2 indicates that the 
total amount of the secondary wave produced by the transonic waves is 

Wn\Gm(n)h 

n>0 * 
(55) 

where the single strong shock wave enters Am(n)5n with speed (jn 

Theorem 5.1. Assume that a* and \\G\\i/al are sufficiently small and L(0) <C a*. 
1. If we further assume that the quantity (55) is also small, then we have 

^Q(A)<0(l)(L(0) + a, + l^}2 + 0(l)^l<T"|G^)fe. (56) 
A !> a*    > n>0 a* 

2. If we assume instead that the sign of the speed of the single strong shock front in 
the Glimm approximations never changes, then the following stronger estimate holds 

XfflA) + £ ^lG^)fc < 0(1) \L(0) -f- a, + Mil2 . (57) 
A n>0 a* ^ a*    J 

This theorem is proved by Lemmas 5.1 and 5.2. We introduce the potential function 
Q(J) defined for any J by 

Q(J) = Qo(J) + QP(J) + £ Qi(J) (58) 
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where 

Q0(J) = ]r{ \ap\ : a, 0 € W(J) and approaching } + /?* ^{ |a| : a G Wa(J) } 

Qp(J) = ^l *—£   ^2   G™>h : a is any P-wave in W(J) entering in Amo?n 
^        *   m.=m.'jr m=m^ mjr < mo 

( Irvl    rn:F 

+ ^2\  -4    ^2   Gmh   :   a iS any P~Wave in W(J) entering in Amo,n, 
a*m=mo mo<m^|, 

X^ 1       2     5Z    Gmft   :   a iS any ^•WaVe in W(t7) entering in Amo,n   k 
^     * m<mo 

i < i < P, 
Qi(J)==^    rid l 

^< ^-   ^  Gm/i : a is any j-wave in W(J) entering in Am0}n L 
^      * m>mo 

p < j < n. 

In defining Qp( J), we may assume that \p > 0 in the left region of the strong shock 
wave and Xp < 0 in the right region, because of (13). We also note that 

G( 
msmo 'Loh 

x)dx. 

Now suppose that 0 < 6n < \. As in the previous section, we denote by a the set of 
waves issuing from (2moft, nk) and by f3R the set of waves issuing from (2(rao-l)/i, nfc) 
and entering the interaction diamond A. The following lemma is fundamental in this 
section. 

Lemma 5.1. Let Ji, J2 be two consecutive approximate space-like curves such that 
J2 > Ji and A is the diamond between them. Assume that L(Ji), (3* and ||G||i/a* 
are sufficiently small Then we have 

Q(A) < 2(Q(J1) - Q(J2)) + 2|<7|Gmofe. (59) 

Proof. Case 1. The single strong shock wave does not enter A. Suppose that a and 
/? enter A and 7 leaves. 

Estimates ofQo(J). The Glimm interaction estimate implies for large K that 

QoW < Qo(Ji). - (1" *£(Ji))Qo(A) + KL{Ji)%^|^|. (60) 
Off 

Estimates ofQp(J). If mo < mr, we find that 

mi<m<m?r *   mi<m<mjr mi<m<mjr 
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(mi = mo or mo + 1). If mo > m^, we have in the same manner 

^ E c'sM E Gml+a&g(A), 
:<7n<mo 

(mi = mo or mo — 1). Hence 

mj?<.m<mQ mjr<m<mi 

QPW < Qp(Ji) - ^Gmoh + ffi!!lQ(A). (61) 

Estimates ofQj(J), j ^ p. For j > p, we have 

Tn>77ll 77l>77ll 77l>77ll 

(mi = mo or mo — 1). For j < p, similarly, 

l4 E Gmh<^ Z Gmh+^Q(A) 

(mi = mo or mo — 1). Hence 

Q;(^2)<Q;(Ji)-^Gmofc+^&Q(A). (62) 

Then it follows from (61) and (62) that 

i=i .7=1 * 

l-iTLW-^&l^l^l. (63) { 
Thus combining (60) and the above estimates, we obtain 

{ Q(J2) < Q(Ji) - \ 1 - ^(Ji) - ^^-\ {Qo(A) + %^|/3J 

^QW-jl-^I^-^MiJ^A). (64) 
Case 2. Tfte sm^/e strong shock wave enters A. Let A denote the interaction 

diamond between J2 and Ji. We adopt the notations in the proof of Lemma 4.2 except 
that we use m^(n) = mo- 

Estimates of Qo(J)- It follows from (53) and the Glimm interaction estimates that 

2J{ I a/31 :  a, /3 G W(J2) and approaching } 

— z^i la^l : Q"> P € W{Ji) and approaching} 

- JZ { la/^l : ai and ^m approaching, 

Z satisfying 1 < / < p or I > p, af ^ 0 i 

+ JifLM^fla*! + |7«|) + ifL^) H^mo^. (eg) 
a^ a* 
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Obviously, 

1>P l>p 

+ #> X^^ lal : a G W^aC Ji), not entering A } 

- A E l«?l + ^%^(|afl| + 17*1) + K0.W&Z&. (66) 

Here we may assume |a| < /3*. Hence, we have 

Qo(J2) < Qo(Ji) - (1 - *£(./!) - ii:/3,)Qi(A) 

+ KiLW + A)%^(|a«| + |7fi|) + if (X( JO + /3,)1^^.     (67) 

Estimates ofQp(J). We may assume that mo < mj?. It follows from (53) in Lemma 
4.2 that 

M^i < W,^i + ^^ + aoL{§(A, + HO^}. 
Hence, in the same fashion as Case 1, we have 

QP(J2) < QM) - %^(Kl + |7*I) + ^ {Q(A) + £!£s£\ .        (68) 

Estimates of Qj(J), j ^ p. For j > p, we have 

* m>mo "*   m>mo a*   m>mo a*        I »*        J 
For j < p, similarly, 

W E <w^ E <w+^ E ^+£HU{S(A)+te^}. 
* m<mo "*   m<mo <**   m>mQ 

a* I a*        J 
Hence, we obtain in both cases 

Qm < QiW - ^(|«f| + |Tf |) + £!!f!!i /g(A) + Jzl^sofc 1        (69) 

Thus combining (65), (68), and (69), we obtain an analogue to (64): 

Q^^Q^-U-KLiJ^-K^-^^XQ^ + K^MZ^oh,    (70) 

Now assume that L{Jx) and ||G||i/a2 are so small that 

£(J1) + A + &<^<1. (71) 
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Then we have from (64) and (70) 

Q(J2)-Q(Ji)<-lfa) + y&£, 

which proves the lemma in both cases. □ 

If (71) holds for all L(Ji) and /3*, by adding (59) for all interaction diamonds, it 
follows that 

^Q(A) < 2Q(0) + A ^ |anGm(n)|. (72) 
A a* n>0 

By Lemma 4.2, the increase of L(Ji) and /3* is due to the interaction Q(A) and 
\cr\Gh/a*. Hence, (71) holds for all L(Ji) and /?*, provided the quantities a*, ||G||/a^, 
L(O), and (55) are sufficiently small, which implies the first part of Theorem 5.1 

In case we know a priori that the sign of a never changes, we get better estimates 
as follows. Assuming a > 0, we define 

QB
P(J) = — GW(2(ro^ + l)/i-a*r) + —   V   Gmh 

where the single strong shock wave crossing J issues from (a^nfc), and set 

Q(J) = QS
P(J) + Q(J). 

Let Ji and J2 be as before. If the single strong shock wave enters A, then we find 
that 

QJMO = Qs
P(Ji) - Gm,(Mn) - xAn + 1) 

< QJ(Ji) - ^^^^ (73) 

where 1/2 comes from the stability condition (14). Otherwise, we have 

QSp(J2) = Qs
p(Ji). (74) 

Hence, we obtain, instead of (70) 

Q(J2) < Q(Ji) - {l - KLW - KP> - Mi} |Q(A) + ifM^j .     (75) 

In this way, we have the following lemma which implies the second part of the Theorem. 

Lemma 5.2. Let Ji, J2 be two consecutive approximate space-like curves such that 
J2 > J\ and A is the diamond between them. Assume that the sign of the speed of 
the single strong shock front never changes. If L{Ji), /?* and ||G||i/a* are sufficiently 
small, then 

Q(A) + ifM^ < 2(^(7!) _ Q{J2)). (76) 
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6. Existence of global solutions 

Theorem 5.1 in the previous section implies the following uniform estimate for the 
approximate solutions 

Theorem 6.1. Assume that a* and ||Gi||/a* are sufficiently small and 

^TV(C/i(a;)-C7i(a;))«a*. (77) 
.7=1,2 

1. If we assume that the quantity 

Yl\an\Gm(n)h (78) 
n>0 

is also small, then 

TVUhlo(*9t)<Lo   for   t>0. (79) 

Here the constant LQ is independent of h and 9. 
2. If we assume instead that the sign of the speed of the single strong shock front 

in the Glimm approximations never changes, then we also have the uniform esti- 
mate (79). 

Once the a priori bound (79) is obtained, by repeating the argument in Glimm [3] 
and Liu [11], [12], we have a global solution within L00(R^ BV(R))nUp (i?+; Lloc(R)). 

In [13] and [14], Liu studies the equations of 1-D duct flow 

d d ,    x a'(x) ,    x 
sp+^0m) = .^> (80) 

^(H + ^+PH-^p, (si) 

!(/>*) + ^fi + pu) = -^(^Eti + pu) (82) 

where /?, tx, p, and E are the density, velocity, pressure, and the total energy density of 
the gas, and a{x) is the cross section of the duct. He shows that the transonic shock 
wave accelerates along a contracting duct, which corresponds to the second case of the 
above theorem. He also shows that the shock wave decelerates along an expanding 
duct, where the analysis is more delicate. 

Here we can" study similar phenomena in our context. Let us assume that there 
exists an interval (£_,#+) such that 

GOr,C/) = 0,    xi{x-,x+) (83) 

and 

G{x) = o(lK    (« > 2). (84) 

We specify the initial data U(x). Let us recall the construction of standing shock 
waves in Section 2. We set Ui(x*) = Ui (x- < x* < x+) and choose a constant vector 
U2(#*) G Sp(Ui) between Ui and U2 satisfying 

0 < (T(^I(x*), Utfa)) = OaK"1"6    (c > 0). (85) 
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Then solving the equations (7) with initial values Ui(x*) and U2(#*), respectively, we 
define the initial data by 

U0(X) = {fjf\>   *<*« (86) 
11/2(0;),    X > X*. 

These initial data will satisfy the condition (13) if we choose [^(z*) arbitrarily close 
to C/2- Then the amount of secondary waves in 0 < t < T is estimated as 

y;|gn|Gm^ft = 0(i)<rar1r. (87) 
n>0 

By choosing T such that 

r = 0(l)a;-", (88) 

the amount of secondary wave sin 0 < t < T is o(l)a and can be made arbitrarily 
small compared to a. Since the only wave crossing O is the single p-shock wave issuing 
from (£*,0), all weak waves are these secondary waves and their interactions. Hence 
we have (85) for all 0 < t < T. On the other hand, we have 

aT = 0(l)cC 

which can be arbitrarily large. Thus we find that the single transonic shock wave goes 
out of the interval (#_,#+) within 0 < t < T. Hence the sign of the speed of the 
single strong shock front never changes and a global solution exists. 
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