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A MODULATION SOLUTION OF THE SIGNALLING PROBLEM 

FOR THE EQUATION OF SELF-INDUCED TRANSPARENCY 

IN THE SINE-GORDON LIMIT 

A. A. Minzoni and N. F. Smyth 

ABSTRACT. In the present work, modulation theory is used to study the signalling 
problem for the equations of self-induced transparency in the Sine-Gordon limit. 
In the case in which the signal switches on instantaneously to a finite value, the 
modulation solution is found to be a modulated kink train. To construct this train 
the modulation theory of Forest and McLaughlin for the Sine-Gordon equation 
is used, and the solution is found to be the analogue of the Gurevich-Pitaevskii 
solution for the Korteweg-de Vries equation. The modulation theory solution is 
compared with a full numerical solution of the Sine-Gordon equation, and good 
agreement is found. 

1. Introduction 

The phenomenon of self-induced transparency arises when coherent light interacts 
resonantly with the transition frequency of two populated energy levels of the material 
through which the light is propagating. In this situation, the light can propagate as a 
soliton pulse and depending on the intensity and duration of the incident pulse, many 
solitons can form. Details of this phenomenon can be found in Lamb [5]. The model 
used for the propagation of the light through the material treats the electromagnetic 
wave in a classical manner, and the interaction of the light with the energy levels of the 
material is treated using quantum mechanics on approximating the atoms as two level 
atoms (in other words, the other energy levels play no role in the interaction process). 
The incident wave is described as a slowly varying monochromatic wave with envelope 
amplitude E and phase (j). The interaction of the light with the material is via the 
dipole moment of the atoms and the incident field. The use of quantum mechanics 
then provides an expression for the polarisation of the material in terms of the envelope 
amplitude and phase. In this manner, equations for the modulation of the electric field 
of the light coupled with Schrodinger's equation for the two level atom are obtained. 
These equations can be written in terms of the envelope amplitude, one component of 
the polarisation and the population density difference between the two energy levels. 
If the atoms are assumed to be stationary, then it can be shown that the envelope 
amplitude is related to the time derivative of the solution of the Sine-Gordon equation. 

The signalling problem for the Sine-Gordon equation can be solved using the inverse 
scattering method when the incident signal has a finite duration time [5]. As the 
duration time of the signal increases, more and more solitons are generated, which 
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suggests that a modulated periodic wavetrain solution is a good approximation to the 
exact solution when the duration time of the input signal is large (or infinite). 

To study this possibility, the modulation theory of Whitham [8] is used. Modulation 
theory for the Sine-Gordon equation has been developed by Forest and McLaughlin [2] 
from the inverse scattering solution for the Sine-Gordon equation. Using the theory of 
Riemann surfaces, they derived the Riemann invariant formulation of the modulation 
equations for multi-phase modulated wavetrains. In the present work, the special case 
of a one-phase wavetrain is considered, and an explicit centered simple wave solution 
of these modulation equations is found. It is shown that this simple wave solution 
can be adjusted to produce a modulated wave solution which satisfies the required 
boundary conditions for the self-induced transparency problem. This modulation 
theory complements the result from inverse scattering for the case of a signal of finite 
duration [4] 

2. Formulation and modulation equations 

The equations for self-induced transparency are considered for the electric field E, the 
inverted population JV, and the polarisation S as given by Lamb [5] in the form of a 
signalling problem 

at       ox ^v 

dS-EN dN -    E<3 

for x > 0 and t > 0, together with the initial conditions 

E(x, 0) = 0,    S(z, 0) = 0,    N(x, 0) = 1,        x > 0, (2) 

and the signalling condition 

E(0,t) = Eo. (3) 

The system (1) forms a hyperbolic system with a right-going characteristic and vertical 
characteristics. The signalling problem hence is given on the right-going characteristic. 

Due to the form of the characteristics, it is convenient to introduce the signalling 
coordinates 

«-?*• T-o('-f) <4> 
and the change of dependent variables 

S = -sm0,    iV=-cos<£,    E=-£. (5) 
at 

With these new variables, the system (1) to (3) is transformed into the Sine-Gordon 
equation 

d2<t> 
= - sin 0,       £ > 0,    -oo < r < oo, (6) 

(7) 

drdt 
together with the boundary conditions 

90 _ (EQ     on £ = 0, r > 0, 

dr "" 1 0       on £ = 0, r < 0. 
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Since the modulation theory of Forest and McLaughlin [2] has been developed in 
laboratory coordinates, the new change of variables 

ti = r + f,    v = T-t (8) 

is introduced to obtain the equation 

^|-^+sin^ = 0 (9) 

with the boundary conditions 

du     dv      1 0       for u = v, v < 0. 

This system of equations can be interpreted as a signalling problem for an equation 
for a nonlinear string [5]. The disturbance moves along the right-going characteristic 
u = v and sheds waves moving on the left-going characteristics u + v = const. 

In order to apply modulation theory to the boundary-value problem of concern in 
the present work, we need to recall briefly the results of Forest and McLaughlin [2]. The 
relevant results from that work are the ones for the kink trains described on page 44 
of [2]. In [2], it was shown how multiply periodic solutions of the Sine-Gordon equation 
can be parametrised in terms of a Riemann surface associated with the periodic Lax 
Pair for the Sine-Gordon equation. In that representation, the parameters of the family 
of multiply periodic solutions are branch points on the (two sheeted) surface. It then 
was shown that the infinite sequence of conservation equations for the Sine-Gordon 
equation could be obtained as the coefficients in the expansion of a certain analytic 
function on the Riemann surface when the variable (on the surface) goes to infinity. 
In those terms, modulation theory was formulated by allowing the branch points 
to depend on slow space and time variables and then averaging out the fast phase 
variable. Conservation equations for the slow dependent variables (the parameters of 
the multi-phase wavetrain) then were found to result. It is remarkable that the form 
of the equations is explicit. Since the conservation equations were obtained from an 
analytic function on the Riemann surface, it follows from the general theory of such 
functions that in order to satisfy the conservation equations on the whole surface, it is 
sufficient to satisfy them at the branch points. This last requirement gave the Riemann 
invariant form of the modulation equations. This formulation of modulation theory 
for the Sine-Gordon equation now will be used to discuss the boundary-value problem 
described above. To this end, two negative real numbers Ei < E2 < 0 are introduced. 
They define the branch points of the surface. We also consider the canonical cycle b 
on the surface whose projection is shown in Figure 1. 

In these variables, the single phase travelling wave solution is represented in the 
form 

e-mutv) = Ku>v) (^ 
y/EiE2 

where |/x| = y/EiE2 and where fi satisfies the differential equation 

^ = -2iC^li{li-E1){ti-E2) . (12) 
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E-plane 

FIGURE 1. Complex E-plane 

The branch cuts for the square root in this equation are shown in Figure 1.   The 
normalisation constant C is defined by 

47ri Jb y/nbi-EJbi- E2) 
(13) 

With this normalisation, the function exp(—i*) is 27r-periodic with phase 

6 = — (KU + UJV) 
G 

where the wavenumber K and frequency u are given by 

R={l-wjm) and {,,=(1+i6^. 
The wavetrain is modulated by allowing the two parameters i£i and E2 to be slowly 

varying functions. Using the representation described above, Forest and McLaughlin 
[2] found that the modulation equations for a single phase wavetrain for the Sine- 
Gordon equation take the simple Riemann invariant form 

(14) 

(15) 

^1_ 5(1)^1 = 0, 
dv du 

dE2 _ 5(2) dE2 
= 0 

dv du 

where the characteristic speeds S^ and S^ are real and are given by 

(J) = Ei + ^VE^Ef1 - (C+ + j-6VErf-2C-) 
Ei - ^VWE^Ef1 - (C+ - ±sfErf-2C-) 

(16) 

(17) 



and the functions C~ v andC" 
differentials 

n+ = -ic 
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are determined by the condition that integrals of the 

n_ = -^P* (E-1 - c-) dE     = 
2      v J y/E(E-Ei)(E-E2) 

along the 6-cycle vanish. 
In order to use the modulation solution outlined above to solve (9) and (10), we 

recall that the travelling wave solution ^(u,v) has phase velocity greater than one. 
However, it is easily seen that (t){u,v) = TT + 9(v,u) solves the same equation, but 
now the wavetrain has a phase velocity less than one. Furthermore, the modulation 
equations for i&(v,u) are just (16) with u and v interchanged. Therefore Ei and E2 
now satisfy 

du dv 

^_ 5(2)^1 = 0 (19) 

du dv        ' 
for the transformed variables. With these transformed equations the qualitative be- 
havior of the modulation solution now can be described. To do this it is convenient 
to parameterise fi in terms of the real variable y(0) in the form 

p = v/£i£2e-2iarctan2/,    0 = 2 arctany. (20) 

Since the constant C in (13) is real and positive, we take y to be of the form 
y = y(x), x = C6. Substituting this form into (12) for /J, and using (20) gives the 
equation for y 

(£)   =2y/E^;(l-y4)-(E1 + E2)(l + y2)2. (21) 

It is clear from this equation that as E2 —> #1, the solution for 0 is a soliton since 
in this limit, the quartic on the right-hand side of (21) has co-incident roots. On the 
other hand, as E2 —> 0, we have 

| = v^r(i + y2). (22) 
It then follows that in this limit 

^x + S^Kl-ij^.+ ^+j^).]. (23) 
and the behavior of the solution is singular. However, the physical variable is the elec- 
tric field which is given by (fru + cfrv (see (4), (5), and (8)), not 0, and this combination 
is regular. To leading order, the electric field is then 

d<t>     d(t> 

From the behavior of the single phase wavetrain solution deduced above, it is clear 
that the relevant centered simple wave solution of the modulation equations needed for 
our boundary-value problem is the one with the Riemann invariant Ei constant and 
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with the expansion fan occurring on the Riemann invariant E2. The Riemann invariant 
E2 changes from E2 = 0 on the leading characteristic u = v to the value E2 = Ei 
on the trailing characteristic of the expansion fan. To show that this construction is 
possible, we need to show that 5^2^ -» 1 as E2 -> 0 and that 5^ coincides with the 
reciprocal speed of the left-going leading soliton of the expansion fan as E2 decreases 
to Ei (note that solitons propagate to the left in the phase variable (14)). 

We therefore consider the simple wave solution Ei = constant and E2 = f(u/v) 
of the modulation equations (19). From (19), it can be seen that the simple wave 
solution then is implicitly defined by 

v = ~S(2)(£2)* 
(25) 

It only remains to verify that the function S^ has the correct behavior and is mono- 
tone. 

To study the function S^2\ the conditions (18) determining C+ and C~ are written 
in the form 

f EdE  r dE  

^+__   Jby/E(E-E1)(E-E2)       „___  hEy/EjE-EJtE-Ed        ,oft. 
r dE '   v r 

JhJE(E-E1)(E-E2) lb y/E{E-E1){E-E2) Jb^E(E-E1){E-E2) 

Then, as E2 ->- 0, the integrals defining C+ and C~ are finite since the pole at E = 0 
is inside the contour b (see Figure 1). We thus have from (17) that, as E2 —> 0, 

1 BVPII^= 

~W)~'^m^r1' (27) 
The simple wave solution then starts at the leading edge characteristic u = v. It is 
thus possible to match with the boundary condition on the leading characteristic and 
obtain the parameter — Ei by applying the relation 

E0 = %t + ^=4^E-i     on    u = v. (28) 
ou     ov 

It now remains to verify that at the trailing edge of the expansion fan the function 
—1/S^ approaches the soliton speed 

m-k (29) 
\Ei\ + & 

To verify this it is necessary to evaluate C+ and C~ explicitly in terms of standard 
elliptic integrals. This, together with the explicit expressions for the modulation 
solution, will be discussed in the next section. 

3. Explicit modulation solution and comparison with numerical solution 

To explicitly construct the modulation solution, we start by calculating C+ and C~ 
in terms of elliptic integrals. To this end it is convenient to introduce the variable p 
with the transformation E2 = pEu so that 0 < p < 1. We begin by evaluating C+. 
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Let us deform the path b shown in Figure 1 onto the segment E2 < E < 0. Since 
the contour b goes onto the second Riemann sheet, the integral is non-zero. Writing 
the integral in the standard notation of Abramowitz and Stegun [1], we find 

C^lftl^P (30 
where K{jp) and E(p) are elliptic integrals of the first and second kinds of modulus 
squared p, respectively. 

The evaluation of C~ is different since one of the integrals in (26) has a pole at 
E = 0. To evaluate this integral with a pole, we deform the left-hand end of the path 
b to Ei and the right-hand end to infinity. Let us consider the integral in the upper 
half plane first. The integral in the numerator of the expression (26) for C~ thus is 
transformed into an integral in the range —oo<E<Ei and can be expressed in 
terms of standard elliptic integrals. The contribution from the integral on the second 
sheet is evaluated in the same way, and we thus obtain 

K(p)-E(p) 
c - m^p ■ (31) 

Finally, using the expressions (30) and (31) for C+ and C~ in the definition (17) 
for S(2\ the implicit solution of the modulation equations is obtained in the form 

« = 1    =   ^pjr(p)(i-p)|gi|-.E(p)(>^|gi|-^) 
v        5(2)(p) ^pK(p)(l-p)\E1\-E(p)(jp\E1\ + ±)- l    ; 

From this expression for the characteristic speed, it is clear that as p —> 0, u/v —>► 1 
as required. Also, as p -> 1, K(p) —► 00, but (1 — p)K(p) —> 0 [1], and therefore 

which is the soliton speed, as is required at the trailing characteristic. 
Transforming back to the original variables (taking Q = c = 1 which is just an 

re-scaling of the variables) using (4) and (8), the implicit solution of the modulation 
equations is therefore 

t-2x 1 

-r—wwr (34) 

It now can be seen from (32) that as x ->■ 0, p ->• 0 and from (33) that as p —> 1, the 
lead soliton travels with the speed 

1 

1 + 
(35) 

16|£i| 

which is slower than the characteristic speed at this point. 
To complete the modulation theory solution, the explicit expression for y is needed. 

From the differential equation (21) for y, it can be found that in terms of the original 
variables x and t 

y = sc   2V|JE1| (1 + VP) (1 + l6i4^)X]'m)' 
(j) = n + 2 arctan y, (36) 
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where 

mi = 
U + vW 

(37) 

In this solution, the standard conventions of [1] for the elliptic function sc and the 
modulus m = 1 — mi and the complementary modulus mi have been used. The 
solution for the electric field </>£ then is given in the modulation approximation by 

E = 
dt 

= adn (2VW Ei\(l+p) 1 + 
16|J5ilv5 

,m 

where 

a=A^/\Er\(i+p). 

(38) 

(39) 

The function p(x,t) is obtained by inverting (34). It can be seen from (32), (34), 
and (37) that as x -¥ 0, p -»• 0 and m -¥ 0 and thus dn -¥ 1 (see [1]). This recovers, 
as expected, the direct asymptotic result (28), which determines Ei in terms of the 
boundary value EQ as 

4y/\Er\ = Eo- (40) 

As p ->• 1, the modulation theory solution (38) becomes the leading soliton in the form 

dt 
Sx/f^ijsech iyfiETl t-    1 + 1 

16|£i 
(41) 

since dn —> sech as m -» 1. This behavior of the modulation theory solution for the 
boundary-value problem is the same as that obtained for the signalling problem for 
the Korteweg-de Vries equation by Marchant and Smyth [7]. 

To determine the accuracy of the modulation theory solution for the boundary-value 
problem for the Sine-Gordon equation, the solution (38) was compared with numerical 
solutions of the Sine-Gordon equation. The form of the Sine-Gordon equation used 
for the numerical solutions was 

d2(f>      d2(j) 
(42) 

To solve this equation numerically, it is easiest to write it as a first-order system by 
introducing the new (characteristic) variable 

so that the equation becomes 

_ d<p     cty 
V~~ dt+ dx' 

dt + dx ~ *' 
dv 
dt 

= — sin < 

(43) 

(44) 

(45) 
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Equation (44) then is solved using backward differences in x and forward differences 
in t to become 

</>(£, t + At) = (1 - — j (j)(x, t) + ~£-<l>{x - Ax, t) + Mv{x, t) (46) 

where At and Ax are the time and space steps, respectively.  The second equation 
(45) was solved using the second-order trapezoidal method in time 

v(x, t + At) = v(xi t) - -At [sin (j)(x, t + At)+ sin (j)(x, t)}. (47) 

This numerical scheme is stable if At/Ax < 1. 
The nonlinear equation (34) for p = p(x, t) was solved using the secant method 

combined with an asymptotic expansion near the singular limit p = 1 to obtain faster 
convergence in this limit. The elliptic integrals and elliptic functions were evaluated 
using approximations as given in Abramowitz and Stegun [1]. 

U 

FIGURE 2. Comparison between the numerical solution of the Sine- 
Gordon equation (42) ( ) and the modulation theory solution (38) 
( ). The solutions are shown at t = 75. 

A comparison between the modulation and numerical solutions at t = 75 is shown 
in Figure 2, for which EQ = 1.0. The comparison shown in this figure is typical 
of that for a wide range of boundary values EQ and final times t. It can be seen 
that there is good agreement in the envelope of the solution and in the number of 
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modulated waves. Unlike the similar modulation solution for the KdV equation [3, 4], 
the leading wave of the modulated wavetrain does not match smoothly into the zero 
state ahead. This is to be expected since the Sine-Gordon equation is hyperbolic and 
the characteristic speed is larger than the speed of the solitary wave at the leading 
edge of the modulated wavetrain. The solution in the region between the leading 
characteristic and the leading soliton is the result of the nonlinear evolution of the 
waves generated by the discontinuous start-up of the signalling boundary condition. 
The possibility of describing the waves in this region by another special solution of 
the integrable PDE (Sine-Gordon equation) has not yet been explored. 

In conclusion, we have shown that the solution for a special signalling problem can 
be approximated by a modulated train of kinks of the Gurevich-Pitaevskii type [4]. 
This approximate solution extends the exact inverse scattering solution for a signalling 
problem with a signal of finite duration to one with a signal of infinite duration. 

To make the present analysis rigorous, one may try to apply the Lax-Levermore 
theory [6] to the present problem. That theory allows the possibility of the appearance 
of new phases. However, numerical solutions show no evidence for the appearance of 
a new phase when the boundary condition of the signalling problem is held constant. 
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